Fix RAR support

Fix RAR support
This commit is contained in:
Andy Vandijck 2025-07-10 11:03:05 +02:00
parent 07c6e3119e
commit 00e48e11e6
62 changed files with 11798 additions and 5 deletions

View File

@ -65,7 +65,38 @@ target_sources(vbam-fex
fex/Zip_Extractor.h
fex/Zlib_Inflater.cpp
fex/Zlib_Inflater.h
unrar/archive.cpp
unrar/arcread.cpp
unrar/blake2s_sse.cpp
unrar/blake2s.cpp
unrar/blake2sp.cpp
unrar/coder.cpp
unrar/crc.cpp
unrar/encname.cpp
unrar/extract.cpp
unrar/getbits.cpp
unrar/hash.cpp
unrar/headers.cpp
unrar/model.cpp
unrar/pathfn.cpp
unrar/rarvm.cpp
unrar/rarvmtbl.cpp
unrar/rawread.cpp
unrar/secpassword.cpp
unrar/strfn.cpp
unrar/suballoc.cpp
unrar/timefn.cpp
unrar/unicode.cpp
unrar/unpack.cpp
unrar/unpack15.cpp
unrar/unpack20.cpp
unrar/unpack30.cpp
unrar/unpack50.cpp
unrar/unpack50frag.cpp
unrar/unpackinline.cpp
unrar/unrar_misc.cpp
unrar/unrar_open.cpp
unrar/unrar.cpp
PUBLIC
fex.h
)

View File

@ -213,7 +213,7 @@ struct fex_type_t_ {
blargg_err_t (*init)(); // Called by fex_init(). Can be NULL.
};
extern const fex_type_t_ fex_7z_type[1], fex_gz_type[1], fex_rar_type[1], fex_zip_type[1],
extern const fex_type_t_ fex_7z_type[1], fex_gz_type[1], fex_lz4_type[1], fex_rar_type[1], fex_zip_type[1],
fex_bin_type[1];
inline blargg_err_t File_Extractor::open_v()

View File

@ -17,8 +17,11 @@
// Enable support for as building DLL on Windows.
//#define BLARGG_BUILD_DLL 1
// Support only the listed archive types. Remove any you don't need.
#define FEX_TYPE_LIST fex_7z_type, fex_gz_type, fex_zip_type,
#ifndef FEX_ENABLE_RAR
#define FEX_ENABLE_RAR 1
#endif
#define FEX_TYPE_LIST fex_7z_type, fex_gz_type, fex_zip_type, fex_rar_type
// Use standard config.h if present
#ifdef HAVE_CONFIG_H

View File

@ -41,7 +41,7 @@ BLARGG_EXPORT const fex_type_t* fex_type_list( void )
fex_bin_type,
NULL
};
return fex_type_list_;
}
@ -77,6 +77,7 @@ BLARGG_EXPORT const char* fex_identify_header( void const* header )
case 0x41724301: return ".arc";
case 0x4D534346: return ".cab";
case 0x5A4F4F20: return ".zoo";
case 0x04224D18: return ".lz4";
}
unsigned three = four >> 8;
@ -130,6 +131,7 @@ static int is_archive_extension( const char str [] )
".dmg",
".gz",
".lha",
".lz4",
".lz",
".lzh",
".lzma",

View File

@ -0,0 +1,92 @@
ACKNOWLEDGMENTS
* We used "Screaming Fast Galois Field Arithmetic Using Intel
SIMD Instructions" paper by James S. Plank, Kevin M. Greenan
and Ethan L. Miller to improve Reed-Solomon coding performance.
Also we are grateful to Artem Drobanov and Bulat Ziganshin
for samples and ideas allowed to make Reed-Solomon coding
more efficient.
* RAR text compression algorithm is based on Dmitry Shkarin PPMII
and Dmitry Subbotin carryless rangecoder public domain source code.
You may find it in ftp.elf.stuba.sk/pub/pc/pack.
* RAR encryption includes parts of code from Szymon Stefanek
and Brian Gladman AES implementations also as Steve Reid SHA-1 source.
---------------------------------------------------------------------------
Copyright (c) 2002, Dr Brian Gladman < >, Worcester, UK.
All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
---------------------------------------------------------------------------
Source code of this package also as other cryptographic technology
and computing project related links are available on Brian Gladman's
web site: http://www.gladman.me.uk
* RAR uses CRC32 function based on Intel Slicing-by-8 algorithm.
Original Intel Slicing-by-8 code is available here:
http://sourceforge.net/projects/slicing-by-8/
Original Intel Slicing-by-8 code is licensed under BSD License
available at http://www.opensource.org/licenses/bsd-license.html
Copyright (c) 2004-2006 Intel Corporation.
All Rights Reserved
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with
the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
* RAR archives may optionally include BLAKE2sp hash ( https://blake2.net ),
designed by Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O'Hearn
and Christian Winnerlein.
* Useful hints provided by Alexander Khoroshev and Bulat Ziganshin allowed
to significantly improve RAR compression and speed.

View File

@ -0,0 +1,96 @@
#include <stdio.h>
#include "rar.hpp"
#include "unrar.h"
Archive::Archive() : Raw( this )
{
Format=RARFMT15;
Solid=false;
CurBlockPos=0;
NextBlockPos=0;
memset(&MainHead,0,sizeof(MainHead));
memset(&EndArcHead,0,sizeof(EndArcHead));
HeaderCRC=0;
}
RARFORMAT Archive::IsSignature(const byte *D,size_t Size)
{
RARFORMAT Type=RARFMT_NONE;
if (Size>=1 && D[0]==0x52)
#ifndef SFX_MODULE
if (Size>=4 && D[1]==0x45 && D[2]==0x7e && D[3]==0x5e)
Type=RARFMT14;
else
#endif
if (Size>=7 && D[1]==0x61 && D[2]==0x72 && D[3]==0x21 && D[4]==0x1a && D[5]==0x07)
{
// We check for non-zero last signature byte, so we can return
// a sensible warning in case we'll want to change the archive
// format sometimes in the future.
if (D[6]==0)
Type=RARFMT15;
else if (D[6]==1)
Type=RARFMT50;
else if (D[6]==2)
Type=RARFMT_FUTURE;
}
return Type;
}
unrar_err_t Archive::IsArchive()
{
if (Read(MarkHead.Mark,SIZEOF_MARKHEAD3)!=SIZEOF_MARKHEAD3)
return unrar_err_not_arc;
RARFORMAT Type;
if ((Type=IsSignature(MarkHead.Mark,SIZEOF_MARKHEAD3))!=RARFMT_NONE)
{
Format=Type;
if (Format==RARFMT14)
Seek(Tell()-SIZEOF_MARKHEAD3,SEEK_SET);
}
else
{
if (SFXSize==0)
return unrar_err_not_arc;
}
if (Format==RARFMT_FUTURE)
return unrar_err_new_algo;
if (Format==RARFMT50) // RAR 5.0 signature is one byte longer.
{
Read(MarkHead.Mark+SIZEOF_MARKHEAD3,1);
if (MarkHead.Mark[SIZEOF_MARKHEAD3]!=0)
return unrar_err_not_arc;
MarkHead.HeadSize=SIZEOF_MARKHEAD5;
}
else
MarkHead.HeadSize=SIZEOF_MARKHEAD3;
unrar_err_t error;
size_t HeaderSize;
while ((error=ReadHeader(&HeaderSize))==unrar_ok && HeaderSize!=0)
{
HEADER_TYPE Type=GetHeaderType();
// In RAR 5.0 we need to quit after reading HEAD_CRYPT if we wish to
// avoid the password prompt.
if (Type==HEAD_MAIN)
break;
SeekToNext();
}
if ( error != unrar_ok )
return error;
SeekToNext();
return unrar_ok;
}
void Archive::SeekToNext()
{
Seek(NextBlockPos,SEEK_SET);
}

View File

@ -0,0 +1,55 @@
#ifndef _RAR_ARCHIVE_
#define _RAR_ARCHIVE_
typedef ComprDataIO File;
#include "rawread.hpp"
enum RARFORMAT {RARFMT_NONE,RARFMT14,RARFMT15,RARFMT50,RARFMT_FUTURE};
class Archive:public File
{
private:
void ConvertFileHeader(FileHeader *hd);
void WriteBlock50(HEADER_TYPE HeaderType,BaseBlock *wb,bool OnlySetSize,bool NonFinalWrite);
unrar_err_t ReadHeader14(size_t *ReadSize);
unrar_err_t ReadHeader15(size_t *ReadSize);
unrar_err_t ReadHeader50(size_t *ReadSize);
unrar_err_t ProcessExtra50(RawRead *Raw,size_t ExtraSize,BaseBlock *bb);
RawRead Raw;
HEADER_TYPE CurHeaderType;
public:
Archive();
RARFORMAT IsSignature(const byte *D,size_t Size);
unrar_err_t IsArchive();
size_t SearchBlock(HEADER_TYPE HeaderType);
size_t SearchSubBlock(const wchar *Type);
size_t SearchRR();
unrar_err_t ReadHeader(size_t *ReadSize);
void SeekToNext();
bool IsArcDir();
bool IsArcLabel();
int64 GetStartPos();
HEADER_TYPE GetHeaderType() {return(CurHeaderType);};
BaseBlock ShortBlock;
MarkHeader MarkHead;
MainHeader MainHead;
FileHeader FileHead;
EndArcHeader EndArcHead;
SubBlockHeader SubBlockHead;
FileHeader SubHead;
ProtectHeader ProtectHead;
int64 CurBlockPos;
int64 NextBlockPos;
RARFORMAT Format;
bool Solid;
enum { SFXSize = 0 }; // self-extracting not supported
ushort HeaderCRC;
};
#endif

View File

@ -0,0 +1,735 @@
#include "rar.hpp"
#include "unrar.h"
#include "unicode.hpp"
#include "encname.hpp"
// arcread.cpp
unrar_err_t Archive::ReadHeader(size_t * ReadSize_)
{
CurBlockPos=Tell();
unrar_err_t Error;
size_t ReadSize;
switch(Format)
{
#ifndef SFX_MODULE
case RARFMT14:
Error=ReadHeader14(&ReadSize);
break;
#endif
case RARFMT15:
Error=ReadHeader15(&ReadSize);
break;
case RARFMT50:
Error=ReadHeader50(&ReadSize);
break;
default: // unreachable
Error=unrar_err_corrupt;
break;
}
if (Error!=unrar_ok)
return Error;
if (ReadSize>0 && NextBlockPos<=CurBlockPos)
return unrar_err_corrupt;
*ReadSize_ = ReadSize;
return unrar_ok;
}
unrar_err_t Archive::ReadHeader15(size_t *ReadSize)
{
Raw.Reset();
Raw.Read(SIZEOF_SHORTBLOCKHEAD);
if (Raw.Size()==0)
return unrar_err_corrupt;
ShortBlock.HeadCRC=Raw.Get2();
ShortBlock.Reset();
uint HeaderType=Raw.Get1();
ShortBlock.Flags=Raw.Get2();
ShortBlock.SkipIfUnknown=(ShortBlock.Flags & SKIP_IF_UNKNOWN)!=0;
ShortBlock.HeadSize=Raw.Get2();
ShortBlock.HeaderType=(HEADER_TYPE)HeaderType;
if (ShortBlock.HeadSize<SIZEOF_SHORTBLOCKHEAD)
return unrar_err_corrupt;
// For simpler further processing we map header types common
// for RAR 1.5 and 5.0 formats to RAR 5.0 values. It does not include
// header types specific for RAR 1.5 - 4.x only.
switch(ShortBlock.HeaderType)
{
case HEAD3_MAIN: ShortBlock.HeaderType=HEAD_MAIN; break;
case HEAD3_FILE: ShortBlock.HeaderType=HEAD_FILE; break;
case HEAD3_SERVICE: ShortBlock.HeaderType=HEAD_SERVICE; break;
case HEAD3_ENDARC: ShortBlock.HeaderType=HEAD_ENDARC; break;
default: break;
}
CurHeaderType=ShortBlock.HeaderType;
if (ShortBlock.HeaderType==HEAD3_CMT)
{
// Old style (up to RAR 2.9) comment header embedded into main
// or file header. We must not read the entire ShortBlock.HeadSize here
// to not break the comment processing logic later.
Raw.Read(SIZEOF_COMMHEAD-SIZEOF_SHORTBLOCKHEAD);
}
else
if (ShortBlock.HeaderType==HEAD_MAIN && (ShortBlock.Flags & MHD_COMMENT)!=0)
{
// Old style (up to RAR 2.9) main archive comment embedded into
// the main archive header found. While we can read the entire
// ShortBlock.HeadSize here and remove this part of "if", it would be
// waste of memory, because we'll read and process this comment data
// in other function anyway and we do not need them here now.
Raw.Read(SIZEOF_MAINHEAD3-SIZEOF_SHORTBLOCKHEAD);
}
else
Raw.Read(ShortBlock.HeadSize-SIZEOF_SHORTBLOCKHEAD);
NextBlockPos=CurBlockPos+ShortBlock.HeadSize;
switch(ShortBlock.HeaderType)
{
case HEAD_MAIN:
MainHead.Reset();
*(BaseBlock *)&MainHead=ShortBlock;
MainHead.HighPosAV=Raw.Get2();
MainHead.PosAV=Raw.Get4();
Solid=(MainHead.Flags & MHD_SOLID)!=0;
MainHead.CommentInHeader=(MainHead.Flags & MHD_COMMENT)!=0;
break;
case HEAD_FILE:
case HEAD_SERVICE:
{
bool FileBlock=ShortBlock.HeaderType==HEAD_FILE;
FileHeader *hd=FileBlock ? &FileHead:&SubHead;
hd->Reset();
*(BaseBlock *)hd=ShortBlock;
hd->SplitBefore=(hd->Flags & LHD_SPLIT_BEFORE)!=0;
hd->SplitAfter=(hd->Flags & LHD_SPLIT_AFTER)!=0;
hd->Encrypted=(hd->Flags & LHD_PASSWORD)!=0;
hd->Solid=FileBlock && (hd->Flags & LHD_SOLID)!=0;
hd->SubBlock=!FileBlock && (hd->Flags & LHD_SOLID)!=0;
hd->Dir=(hd->Flags & LHD_WINDOWMASK)==LHD_DIRECTORY;
hd->WinSize=hd->Dir ? 0:0x10000<<((hd->Flags & LHD_WINDOWMASK)>>5);
hd->CommentInHeader=(hd->Flags & LHD_COMMENT)!=0;
hd->Version=(hd->Flags & LHD_VERSION)!=0;
hd->DataSize=Raw.Get4();
uint LowUnpSize=Raw.Get4();
hd->HostOS=Raw.Get1();
hd->FileHash.Type=HASH_CRC32;
hd->FileHash.CRC32=Raw.Get4();
uint FileTime=Raw.Get4();
hd->UnpVer=Raw.Get1();
hd->Method=Raw.Get1()-0x30;
size_t NameSize=Raw.Get2();
hd->FileAttr=Raw.Get4();
if (hd->Encrypted)
return unrar_err_encrypted;
hd->HSType=HSYS_UNKNOWN;
if (hd->HostOS==HOST_UNIX || hd->HostOS==HOST_BEOS)
hd->HSType=HSYS_UNIX;
else
if (hd->HostOS<HOST_MAX)
hd->HSType=HSYS_WINDOWS;
hd->RedirType=FSREDIR_NONE;
// RAR 4.x Unix symlink.
if (hd->HostOS==HOST_UNIX && (hd->FileAttr & 0xF000)==0xA000)
{
hd->RedirType=FSREDIR_UNIXSYMLINK;
*hd->RedirName=0;
}
hd->Inherited=!FileBlock && (hd->SubFlags & SUBHEAD_FLAGS_INHERITED)!=0;
hd->LargeFile=(hd->Flags & LHD_LARGE)!=0;
uint HighPackSize,HighUnpSize;
if (hd->LargeFile)
{
HighPackSize=Raw.Get4();
HighUnpSize=Raw.Get4();
hd->UnknownUnpSize=(LowUnpSize==0xffffffff && HighUnpSize==0xffffffff);
}
else
{
HighPackSize=HighUnpSize=0;
// UnpSize equal to 0xffffffff without LHD_LARGE flag indicates
// that we do not know the unpacked file size and must unpack it
// until we find the end of file marker in compressed data.
hd->UnknownUnpSize=(LowUnpSize==0xffffffff);
}
hd->PackSize=int32to64(HighPackSize,hd->DataSize);
hd->UnpSize=int32to64(HighUnpSize,LowUnpSize);
if (hd->UnknownUnpSize)
hd->UnpSize=INT64NDF;
char FileName[NM*4];
size_t ReadNameSize=Min(NameSize,ASIZE(FileName)-1);
Raw.GetB((byte *)FileName,ReadNameSize);
FileName[ReadNameSize]=0;
if (FileBlock)
{
if ((hd->Flags & LHD_UNICODE)!=0)
{
EncodeFileName NameCoder;
size_t Length=strlen(FileName);
Length++;
NameCoder.Decode(FileName,(byte *)FileName+Length,
NameSize-Length,hd->FileName,
ASIZE(hd->FileName));
}
else
*hd->FileName=0;
char AnsiName[NM];
IntToExt(FileName,AnsiName,ASIZE(AnsiName));
GetWideName(AnsiName,hd->FileName,hd->FileName,ASIZE(hd->FileName));
ConvertFileHeader(hd);
}
else
{
CharToWide(FileName,hd->FileName,ASIZE(hd->FileName));
// Calculate the size of optional data.
int DataSize=int(hd->HeadSize-NameSize-SIZEOF_FILEHEAD3);
if ((hd->Flags & LHD_SALT)!=0)
return unrar_err_encrypted;
if (DataSize>0)
{
// Here we read optional additional fields for subheaders.
// They are stored after the file name and before salt.
hd->SubData.Alloc(DataSize);
Raw.GetB(&hd->SubData[0],DataSize);
}
}
if ((hd->Flags & LHD_SALT)!=0)
return unrar_err_encrypted;
hd->mtime.SetDos(FileTime);
if ((hd->Flags & LHD_EXTTIME)!=0)
{
ushort Flags=Raw.Get2();
RarTime *tbl[4];
tbl[0]=&FileHead.mtime;
tbl[1]=&FileHead.ctime;
tbl[2]=&FileHead.atime;
tbl[3]=NULL; // Archive time is not used now.
for (int I=0;I<4;I++)
{
RarTime *CurTime=tbl[I];
uint rmode=Flags>>(3-I)*4;
if ((rmode & 8)==0 || CurTime==NULL)
continue;
if (I!=0)
{
uint DosTime=Raw.Get4();
CurTime->SetDos(DosTime);
}
RarLocalTime rlt;
CurTime->GetLocal(&rlt);
if (rmode & 4)
rlt.Second++;
rlt.Reminder=0;
int count=rmode&3;
for (int J=0;J<count;J++)
{
byte CurByte=Raw.Get1();
rlt.Reminder|=(((uint)CurByte)<<((J+3-count)*8));
}
CurTime->SetLocal(&rlt);
}
}
NextBlockPos+=hd->PackSize;
bool CRCProcessedOnly=hd->CommentInHeader;
ushort HeaderCRC=Raw.GetCRC15(CRCProcessedOnly);
if (hd->HeadCRC!=HeaderCRC)
return unrar_err_corrupt;
}
break;
case HEAD_ENDARC:
*(BaseBlock *)&EndArcHead=ShortBlock;
EndArcHead.NextVolume=(EndArcHead.Flags & EARC_NEXT_VOLUME)!=0;
EndArcHead.DataCRC=(EndArcHead.Flags & EARC_DATACRC)!=0;
EndArcHead.RevSpace=(EndArcHead.Flags & EARC_REVSPACE)!=0;
EndArcHead.StoreVolNumber=(EndArcHead.Flags & EARC_VOLNUMBER)!=0;
if (EndArcHead.DataCRC)
EndArcHead.ArcDataCRC=Raw.Get4();
if (EndArcHead.StoreVolNumber)
return unrar_err_segmented;
break;
default:
if (ShortBlock.Flags & LONG_BLOCK)
NextBlockPos+=Raw.Get4();
break;
}
ushort HeaderCRC=Raw.GetCRC15(false);
// Old AV header does not have header CRC properly set.
if (ShortBlock.HeadCRC!=HeaderCRC && ShortBlock.HeaderType!=HEAD3_SIGN &&
ShortBlock.HeaderType!=HEAD3_AV)
return unrar_err_corrupt;
if (NextBlockPos<=CurBlockPos)
return unrar_err_corrupt;
*ReadSize=Raw.Size();
return unrar_ok;
}
unrar_err_t Archive::ReadHeader50(size_t *ReadSize)
{
Raw.Reset();
// Header size must not occupy more than 3 variable length integer bytes
// resulting in 2 MB maximum header size, so here we read 4 byte CRC32
// followed by 3 bytes or less of header size.
const size_t FirstReadSize=7; // Smallest possible block size.
if (Raw.Read(FirstReadSize)<FirstReadSize)
return unrar_err_arc_eof;
ShortBlock.Reset();
ShortBlock.HeadCRC=Raw.Get4();
uint SizeBytes=Raw.GetVSize(4);
uint64 BlockSize=Raw.GetV();
if (BlockSize==0 || SizeBytes==0)
return unrar_err_corrupt;
int SizeToRead=int(BlockSize);
SizeToRead-=FirstReadSize-SizeBytes-4; // Adjust overread size bytes if any.
uint HeaderSize=4+SizeBytes+(uint)BlockSize;
if (SizeToRead<0 || HeaderSize<SIZEOF_SHORTBLOCKHEAD5)
return unrar_err_corrupt;
Raw.Read(SizeToRead);
if (Raw.Size()<HeaderSize)
return unrar_err_arc_eof;
uint HeaderCRC=Raw.GetCRC50();
ShortBlock.HeaderType=(HEADER_TYPE)Raw.GetV();
ShortBlock.Flags=(uint)Raw.GetV();
ShortBlock.SkipIfUnknown=(ShortBlock.Flags & HFL_SKIPIFUNKNOWN)!=0;
ShortBlock.HeadSize=HeaderSize;
CurHeaderType=ShortBlock.HeaderType;
bool BadCRC=(ShortBlock.HeadCRC!=HeaderCRC);
if (BadCRC)
return unrar_err_corrupt;
uint64 ExtraSize=0;
if ((ShortBlock.Flags & HFL_EXTRA)!=0)
{
ExtraSize=Raw.GetV();
if (ExtraSize>=ShortBlock.HeadSize)
return unrar_err_corrupt;
}
uint64 DataSize=0;
if ((ShortBlock.Flags & HFL_DATA)!=0)
DataSize=Raw.GetV();
NextBlockPos=CurBlockPos+ShortBlock.HeadSize+DataSize;
switch(ShortBlock.HeaderType)
{
case HEAD_CRYPT:
return unrar_err_encrypted;
case HEAD_MAIN:
{
MainHead.Reset();
*(BaseBlock *)&MainHead=ShortBlock;
uint ArcFlags=(uint)Raw.GetV();
Solid=(ArcFlags & MHFL_SOLID)!=0;
if (ExtraSize!=0)
{
unrar_err_t Error;
if ((Error=ProcessExtra50(&Raw,(size_t)ExtraSize,&MainHead))!=unrar_ok)
return Error;
}
}
break;
case HEAD_FILE:
case HEAD_SERVICE:
{
FileHeader *hd=ShortBlock.HeaderType==HEAD_FILE ? &FileHead:&SubHead;
hd->Reset();
*(BaseBlock *)hd=ShortBlock;
bool FileBlock=ShortBlock.HeaderType==HEAD_FILE;
hd->LargeFile=true;
hd->PackSize=DataSize;
hd->FileFlags=(uint)Raw.GetV();
hd->UnpSize=Raw.GetV();
hd->UnknownUnpSize=(hd->FileFlags & FHFL_UNPUNKNOWN)!=0;
if (hd->UnknownUnpSize)
hd->UnpSize=INT64NDF;
hd->MaxSize=Max(hd->PackSize,hd->UnpSize);
hd->FileAttr=(uint)Raw.GetV();
if ((hd->FileFlags & FHFL_UTIME)!=0)
hd->mtime=(time_t)Raw.Get4();
hd->FileHash.Type=HASH_NONE;
if ((hd->FileFlags & FHFL_CRC32)!=0)
{
hd->FileHash.Type=HASH_CRC32;
hd->FileHash.CRC32=Raw.Get4();
}
hd->RedirType=FSREDIR_NONE;
uint CompInfo=(uint)Raw.GetV();
hd->Method=(CompInfo>>7) & 7;
hd->UnpVer=CompInfo & 0x3f;
hd->HostOS=(byte)Raw.GetV();
size_t NameSize=(size_t)Raw.GetV();
hd->Inherited=(ShortBlock.Flags & HFL_INHERITED)!=0;
hd->HSType=HSYS_UNKNOWN;
if (hd->HostOS==HOST5_UNIX)
hd->HSType=HSYS_UNIX;
else
if (hd->HostOS==HOST5_WINDOWS)
hd->HSType=HSYS_WINDOWS;
hd->SplitBefore=(hd->Flags & HFL_SPLITBEFORE)!=0;
hd->SplitAfter=(hd->Flags & HFL_SPLITAFTER)!=0;
hd->SubBlock=(hd->Flags & HFL_CHILD)!=0;
hd->Solid=FileBlock && (CompInfo & FCI_SOLID)!=0;
hd->Dir=(hd->FileFlags & FHFL_DIRECTORY)!=0;
hd->WinSize=hd->Dir ? 0:size_t(0x20000)<<((CompInfo>>10)&0xf);
if (hd->Encrypted)
return unrar_err_encrypted;
char FileName[NM*4];
size_t ReadNameSize=Min(NameSize,ASIZE(FileName)-1);
Raw.GetB((byte *)FileName,ReadNameSize);
FileName[ReadNameSize]=0;
UtfToWide(FileName,hd->FileName,ASIZE(hd->FileName)-1);
// Should do it before converting names, because extra fields can
// affect name processing, like in case of NTFS streams.
if (ExtraSize!=0)
ProcessExtra50(&Raw,(size_t)ExtraSize,hd);
if (FileBlock)
ConvertFileHeader(hd);
if (BadCRC) // Add the file name to broken header message displayed above.
return unrar_err_corrupt;
}
break;
case HEAD_ENDARC:
{
*(BaseBlock *)&EndArcHead=ShortBlock;
uint ArcFlags=(uint)Raw.GetV();
EndArcHead.NextVolume=(ArcFlags & EHFL_NEXTVOLUME)!=0;
EndArcHead.StoreVolNumber=false;
EndArcHead.DataCRC=false;
EndArcHead.RevSpace=false;
}
break;
}
if (NextBlockPos<=CurBlockPos)
return unrar_err_corrupt;
*ReadSize=Raw.Size();
return unrar_ok;
}
unrar_err_t Archive::ProcessExtra50(RawRead *Raw,size_t ExtraSize,BaseBlock *bb)
{
// Read extra data from the end of block skipping any fields before it.
size_t ExtraStart=Raw->Size()-ExtraSize;
if (ExtraStart<Raw->GetPos())
return unrar_err_corrupt;
Raw->SetPos(ExtraStart);
while (Raw->DataLeft()>=2)
{
int64 FieldSize=Raw->GetV();
if (FieldSize==0 || Raw->DataLeft()==0 || FieldSize>(int64)Raw->DataLeft())
break;
size_t NextPos=size_t(Raw->GetPos()+FieldSize);
uint64 FieldType=Raw->GetV();
FieldSize=Raw->DataLeft(); // Field size without size and type fields.
if (bb->HeaderType==HEAD_MAIN)
{
MainHeader *hd=(MainHeader *)bb;
if (FieldType==MHEXTRA_LOCATOR)
{
hd->Locator=true;
uint Flags=(uint)Raw->GetV();
if ((Flags & MHEXTRA_LOCATOR_QLIST)!=0)
{
uint64 Offset=Raw->GetV();
if (Offset!=0) // 0 means that reserved space was not enough to write the offset.
hd->QOpenOffset=Offset+CurBlockPos;
}
if ((Flags & MHEXTRA_LOCATOR_RR)!=0)
{
uint64 Offset=Raw->GetV();
if (Offset!=0) // 0 means that reserved space was not enough to write the offset.
hd->RROffset=Offset+CurBlockPos;
}
}
}
if (bb->HeaderType==HEAD_FILE || bb->HeaderType==HEAD_SERVICE)
{
FileHeader *hd=(FileHeader *)bb;
switch(FieldType)
{
case FHEXTRA_CRYPT:
return unrar_err_encrypted;
case FHEXTRA_HASH:
{
FileHeader *hd=(FileHeader *)bb;
uint Type=(uint)Raw->GetV();
if (Type==FHEXTRA_HASH_BLAKE2)
{
hd->FileHash.Type=HASH_BLAKE2;
Raw->GetB(hd->FileHash.Digest,BLAKE2_DIGEST_SIZE);
}
}
break;
case FHEXTRA_HTIME:
if (FieldSize>=9)
{
byte Flags=(byte)Raw->GetV();
bool UnixTime=(Flags & FHEXTRA_HTIME_UNIXTIME)!=0;
if ((Flags & FHEXTRA_HTIME_MTIME)!=0)
{
if (UnixTime)
hd->mtime=(time_t)Raw->Get4();
else
hd->mtime.SetRaw(Raw->Get8());
}
if ((Flags & FHEXTRA_HTIME_CTIME)!=0)
{
if (UnixTime)
hd->ctime=(time_t)Raw->Get4();
else
hd->ctime.SetRaw(Raw->Get8());
}
if ((Flags & FHEXTRA_HTIME_ATIME)!=0)
{
if (UnixTime)
hd->atime=(time_t)Raw->Get4();
else
hd->atime.SetRaw(Raw->Get8());
}
}
break;
case FHEXTRA_REDIR:
{
hd->RedirType=(FILE_SYSTEM_REDIRECT)Raw->GetV();
uint Flags=(uint)Raw->GetV();
hd->DirTarget=(Flags & FHEXTRA_REDIR_DIR)!=0;
size_t NameSize=(size_t)Raw->GetV();
char UtfName[NM*4];
*UtfName=0;
if (NameSize<ASIZE(UtfName)-1)
{
Raw->GetB(UtfName,NameSize);
UtfName[NameSize]=0;
}
#ifdef _WIN_ALL
UnixSlashToDos(UtfName,UtfName,ASIZE(UtfName));
#endif
UtfToWide(UtfName,hd->RedirName,ASIZE(hd->RedirName));
}
break;
case FHEXTRA_UOWNER:
{
uint Flags=(uint)Raw->GetV();
hd->UnixOwnerNumeric=(Flags & FHEXTRA_UOWNER_NUMUID)!=0;
hd->UnixGroupNumeric=(Flags & FHEXTRA_UOWNER_NUMGID)!=0;
*hd->UnixOwnerName=*hd->UnixGroupName=0;
if ((Flags & FHEXTRA_UOWNER_UNAME)!=0)
{
size_t Length=(size_t)Raw->GetV();
Length=Min(Length,ASIZE(hd->UnixOwnerName)-1);
Raw->GetB(hd->UnixOwnerName,Length);
hd->UnixOwnerName[Length]=0;
}
if ((Flags & FHEXTRA_UOWNER_GNAME)!=0)
{
size_t Length=(size_t)Raw->GetV();
Length=Min(Length,ASIZE(hd->UnixGroupName)-1);
Raw->GetB(hd->UnixGroupName,Length);
hd->UnixGroupName[Length]=0;
}
#ifdef _UNIX
if (hd->UnixOwnerNumeric)
hd->UnixOwnerID=(uid_t)Raw->GetV();
if (hd->UnixGroupNumeric)
hd->UnixGroupID=(uid_t)Raw->GetV();
#else
// Need these fields in Windows too for 'list' command,
// but uid_t and gid_t are not defined.
if (hd->UnixOwnerNumeric)
hd->UnixOwnerID=(uint)Raw->GetV();
if (hd->UnixGroupNumeric)
hd->UnixGroupID=(uint)Raw->GetV();
#endif
hd->UnixOwnerSet=true;
}
break;
case FHEXTRA_SUBDATA:
{
hd->SubData.Alloc((size_t)FieldSize);
Raw->GetB(hd->SubData.Addr(0),(size_t)FieldSize);
}
break;
}
}
Raw->SetPos(NextPos);
}
return unrar_ok;
}
#ifndef SFX_MODULE
unrar_err_t Archive::ReadHeader14(size_t *ReadSize)
{
Raw.Reset();
if (CurBlockPos<=(int64)SFXSize)
{
Raw.Read(SIZEOF_MAINHEAD14);
MainHead.Reset();
byte Mark[4];
Raw.GetB(Mark,4);
uint HeadSize=Raw.Get2();
byte Flags=Raw.Get1();
NextBlockPos=CurBlockPos+HeadSize;
CurHeaderType=HEAD_MAIN;
Solid=(Flags & MHD_SOLID)!=0;
MainHead.CommentInHeader=(Flags & MHD_COMMENT)!=0;
MainHead.PackComment=(Flags & MHD_PACK_COMMENT)!=0;
}
else
{
Raw.Read(SIZEOF_FILEHEAD14);
FileHead.Reset();
FileHead.HeaderType=HEAD_FILE;
FileHead.DataSize=Raw.Get4();
FileHead.UnpSize=Raw.Get4();
FileHead.FileHash.Type=HASH_RAR14;
FileHead.FileHash.CRC32=Raw.Get2();
FileHead.HeadSize=Raw.Get2();
uint FileTime=Raw.Get4();
FileHead.FileAttr=Raw.Get1();
FileHead.Flags=Raw.Get1()|LONG_BLOCK;
FileHead.UnpVer=(Raw.Get1()==2) ? 13 : 10;
size_t NameSize=Raw.Get1();
FileHead.Method=Raw.Get1();
FileHead.SplitBefore=(FileHead.Flags & LHD_SPLIT_BEFORE)!=0;
FileHead.SplitAfter=(FileHead.Flags & LHD_SPLIT_AFTER)!=0;
FileHead.Encrypted=(FileHead.Flags & LHD_PASSWORD)!=0;
if (FileHead.Encrypted)
return unrar_err_encrypted;
FileHead.PackSize=FileHead.DataSize;
FileHead.WinSize=0x10000;
FileHead.mtime.SetDos(FileTime);
Raw.Read(NameSize);
char FileName[NM];
Raw.GetB((byte *)FileName,Min(NameSize,ASIZE(FileName)));
FileName[NameSize]=0;
IntToExt(FileName,FileName,ASIZE(FileName));
CharToWide(FileName,FileHead.FileName,ASIZE(FileHead.FileName));
if (Raw.Size()!=0)
NextBlockPos=CurBlockPos+FileHead.HeadSize+FileHead.PackSize;
CurHeaderType=HEAD_FILE;
}
*ReadSize=(NextBlockPos>CurBlockPos ? Raw.Size():0);
return unrar_ok;
}
#endif
// (removed name case and attribute conversion)
bool Archive::IsArcDir()
{
return FileHead.Dir;
}
bool Archive::IsArcLabel()
{
return(FileHead.HostOS<=HOST_WIN32 && (FileHead.FileAttr & 8));
}
void Archive::ConvertFileHeader(FileHeader *hd)
{
if (Format==RARFMT15 && hd->UnpVer<20 && (hd->FileAttr & 0x10))
hd->Dir=true;
if (hd->HSType==HSYS_UNKNOWN)
if (hd->Dir)
hd->FileAttr=0x10;
else
hd->FileAttr=0x20;
}
int64 Archive::GetStartPos()
{
int64 StartPos=SFXSize+MarkHead.HeadSize;
StartPos+=MainHead.HeadSize;
return StartPos;
}

View File

@ -0,0 +1,171 @@
#ifndef _RAR_ARRAY_
#define _RAR_ARRAY_
#include <new>
template <class T> class Array
{
private:
T *Buffer;
size_t BufSize;
size_t AllocSize;
size_t MaxSize;
public:
Array();
Array(size_t Size);
Array(const Array &Src); // Copy constructor.
~Array();
inline void CleanData();
inline T& operator [](size_t Item) const;
inline T* operator + (size_t Pos);
inline size_t Size();
void Add(size_t Items);
void Alloc(size_t Items);
void Reset();
void SoftReset();
void operator = (Array<T> &Src);
void Push(T Item);
void Append(T *Item,size_t Count);
T* Addr(size_t Item) {return Buffer+Item;}
void SetMaxSize(size_t Size) {MaxSize=Size;}
};
template <class T> void Array<T>::CleanData()
{
Buffer=NULL;
BufSize=0;
AllocSize=0;
MaxSize=0;
}
template <class T> Array<T>::Array()
{
CleanData();
}
template <class T> Array<T>::Array(size_t Size)
{
CleanData();
Add(Size);
}
// Copy constructor in case we need to pass an object as value.
template <class T> Array<T>::Array(const Array &Src)
{
CleanData();
Alloc(Src.BufSize);
if (Src.BufSize!=0)
memcpy((void *)Buffer,(void *)Src.Buffer,Src.BufSize*sizeof(T));
}
template <class T> Array<T>::~Array()
{
if (Buffer!=NULL)
rarfree(Buffer);
}
template <class T> inline T& Array<T>::operator [](size_t Item) const
{
return Buffer[Item];
}
template <class T> inline T* Array<T>::operator +(size_t Pos)
{
return Buffer+Pos;
}
template <class T> inline size_t Array<T>::Size()
{
return BufSize;
}
template <class T> void Array<T>::Add(size_t Items)
{
size_t NewBufSize=BufSize+Items;
if (NewBufSize>AllocSize)
{
if (MaxSize!=0 && NewBufSize>MaxSize)
throw std::bad_alloc();
size_t Suggested=AllocSize+AllocSize/4+32;
size_t NewSize=Max(NewBufSize,Suggested);
T *NewBuffer=(T *)rarrealloc(Buffer,NewSize*sizeof(T));
if (NewBuffer==NULL)
throw std::bad_alloc();
Buffer=NewBuffer;
AllocSize=NewSize;
}
BufSize=NewBufSize;
}
template <class T> void Array<T>::Alloc(size_t Items)
{
if (Items>AllocSize)
Add(Items-BufSize);
else
BufSize=Items;
}
template <class T> void Array<T>::Reset()
{
// Keep memory allocated if it's small
// Eliminates constant reallocation when scanning archive
if ( AllocSize < 1024/sizeof(T) )
{
BufSize = 0;
return;
}
if (Buffer!=NULL)
{
rarfree(Buffer);
Buffer=NULL;
}
BufSize=0;
AllocSize=0;
}
// Reset buffer size, but preserve already allocated memory if any,
// so we can reuse it without wasting time to allocation.
template <class T> void Array<T>::SoftReset()
{
BufSize=0;
}
template <class T> void Array<T>::operator =(Array<T> &Src)
{
Reset();
Alloc(Src.BufSize);
if (Src.BufSize!=0)
memcpy((void *)Buffer,(void *)Src.Buffer,Src.BufSize*sizeof(T));
}
template <class T> void Array<T>::Push(T Item)
{
Add(1);
(*this)[Size()-1]=Item;
}
template <class T> void Array<T>::Append(T *Items,size_t Count)
{
size_t CurSize=Size();
Add(Count);
memcpy(Buffer+CurSize,Items,Count*sizeof(T));
}
#endif

View File

@ -0,0 +1,189 @@
// Based on public domain code written in 2012 by Samuel Neves
#include "rar.hpp"
#ifdef USE_SSE
#include "blake2s_sse.cpp"
#endif
static void blake2s_init_param( blake2s_state *S, uint32 node_offset, uint32 node_depth);
static void blake2s_update( blake2s_state *S, const byte *in, size_t inlen );
static void blake2s_final( blake2s_state *S, byte *digest );
#include "blake2sp.cpp"
static const uint32 blake2s_IV[8] =
{
0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL,
0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL
};
static const byte blake2s_sigma[10][16] =
{
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } ,
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } ,
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } ,
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } ,
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } ,
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } ,
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } ,
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } ,
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } ,
};
static inline void blake2s_set_lastnode( blake2s_state *S )
{
S->f[1] = ~0U;
}
/* Some helper functions, not necessarily useful */
static inline void blake2s_set_lastblock( blake2s_state *S )
{
if( S->last_node ) blake2s_set_lastnode( S );
S->f[0] = ~0U;
}
static inline void blake2s_increment_counter( blake2s_state *S, const uint32 inc )
{
S->t[0] += inc;
S->t[1] += ( S->t[0] < inc );
}
/* init2 xors IV with input parameter block */
void blake2s_init_param( blake2s_state *S, uint32 node_offset, uint32 node_depth)
{
#ifdef USE_SSE
if (_SSE_Version>=SSE_SSE2)
blake2s_init_sse();
#endif
S->init(); // Clean data.
for( int i = 0; i < 8; ++i )
S->h[i] = blake2s_IV[i];
S->h[0] ^= 0x02080020; // We use BLAKE2sp parameters block.
S->h[2] ^= node_offset;
S->h[3] ^= (node_depth<<16)|0x20000000;
}
static inline uint32 rotr32( const uint32 w, const unsigned c )
{
return ( w >> c ) | ( w << ( 32 - c ) );
}
#define G(r,i,m,a,b,c,d) \
a = a + b + m[blake2s_sigma[r][2*i+0]]; \
d = rotr32(d ^ a, 16); \
c = c + d; \
b = rotr32(b ^ c, 12); \
a = a + b + m[blake2s_sigma[r][2*i+1]]; \
d = rotr32(d ^ a, 8); \
c = c + d; \
b = rotr32(b ^ c, 7);
static void blake2s_compress( blake2s_state *S, const byte block[BLAKE2S_BLOCKBYTES] )
{
uint32 m[16];
uint32 v[16];
for( size_t i = 0; i < 16; ++i )
m[i] = RawGet4( block + i * 4 );
for( size_t i = 0; i < 8; ++i )
v[i] = S->h[i];
v[ 8] = blake2s_IV[0];
v[ 9] = blake2s_IV[1];
v[10] = blake2s_IV[2];
v[11] = blake2s_IV[3];
v[12] = S->t[0] ^ blake2s_IV[4];
v[13] = S->t[1] ^ blake2s_IV[5];
v[14] = S->f[0] ^ blake2s_IV[6];
v[15] = S->f[1] ^ blake2s_IV[7];
for ( uint r = 0; r <= 9; ++r ) // No gain on i7 if unrolled, but exe size grows.
{
G(r,0,m,v[ 0],v[ 4],v[ 8],v[12]);
G(r,1,m,v[ 1],v[ 5],v[ 9],v[13]);
G(r,2,m,v[ 2],v[ 6],v[10],v[14]);
G(r,3,m,v[ 3],v[ 7],v[11],v[15]);
G(r,4,m,v[ 0],v[ 5],v[10],v[15]);
G(r,5,m,v[ 1],v[ 6],v[11],v[12]);
G(r,6,m,v[ 2],v[ 7],v[ 8],v[13]);
G(r,7,m,v[ 3],v[ 4],v[ 9],v[14]);
}
for( size_t i = 0; i < 8; ++i )
S->h[i] = S->h[i] ^ v[i] ^ v[i + 8];
}
void blake2s_update( blake2s_state *S, const byte *in, size_t inlen )
{
while( inlen > 0 )
{
size_t left = S->buflen;
size_t fill = 2 * BLAKE2S_BLOCKBYTES - left;
if( inlen > fill )
{
memcpy( S->buf + left, in, fill ); // Fill buffer
S->buflen += fill;
blake2s_increment_counter( S, BLAKE2S_BLOCKBYTES );
#ifdef USE_SSE
#ifdef _WIN_32 // We use SSSE3 _mm_shuffle_epi8 only in x64 mode.
if (_SSE_Version>=SSE_SSE2)
#else
if (_SSE_Version>=SSE_SSSE3)
#endif
blake2s_compress_sse( S, S->buf );
else
blake2s_compress( S, S->buf ); // Compress
#else
blake2s_compress( S, S->buf ); // Compress
#endif
memcpy( S->buf, S->buf + BLAKE2S_BLOCKBYTES, BLAKE2S_BLOCKBYTES ); // Shift buffer left
S->buflen -= BLAKE2S_BLOCKBYTES;
in += fill;
inlen -= fill;
}
else // inlen <= fill
{
memcpy( S->buf + left, in, (size_t)inlen );
S->buflen += (size_t)inlen; // Be lazy, do not compress
in += inlen;
inlen -= inlen;
}
}
}
void blake2s_final( blake2s_state *S, byte *digest )
{
if( S->buflen > BLAKE2S_BLOCKBYTES )
{
blake2s_increment_counter( S, BLAKE2S_BLOCKBYTES );
blake2s_compress( S, S->buf );
S->buflen -= BLAKE2S_BLOCKBYTES;
memcpy( S->buf, S->buf + BLAKE2S_BLOCKBYTES, S->buflen );
}
blake2s_increment_counter( S, ( uint32 )S->buflen );
blake2s_set_lastblock( S );
memset( S->buf + S->buflen, 0, 2 * BLAKE2S_BLOCKBYTES - S->buflen ); /* Padding */
blake2s_compress( S, S->buf );
for( int i = 0; i < 8; ++i ) /* Output full hash */
RawPut4( S->h[i], digest + 4 * i );
}

View File

@ -0,0 +1,101 @@
// Based on public domain code written in 2012 by Samuel Neves
#ifndef _RAR_BLAKE2_
#define _RAR_BLAKE2_
#define BLAKE2_DIGEST_SIZE 32
enum blake2s_constant
{
BLAKE2S_BLOCKBYTES = 64,
BLAKE2S_OUTBYTES = 32
};
// Alignment to 64 improves performance of both SSE and non-SSE versions.
// Alignment to n*16 is required for SSE version, so we selected 64.
// We use the custom alignment scheme instead of __declspec(align(x)),
// because it is less compiler dependent. Also the compiler directive
// does not help if structure is a member of class allocated through
// 'new' operator.
struct blake2s_state
{
enum { BLAKE_ALIGNMENT = 64 };
// buffer and uint32 h[8], t[2], f[2];
enum { BLAKE_DATA_SIZE = 48 + 2 * BLAKE2S_BLOCKBYTES };
byte ubuf[BLAKE_DATA_SIZE + BLAKE_ALIGNMENT];
byte *buf; // byte buf[2 * BLAKE2S_BLOCKBYTES].
uint32 *h, *t, *f; // uint32 h[8], t[2], f[2].
size_t buflen;
byte last_node;
blake2s_state()
{
set_pointers();
}
// Required when we declare and assign in the same command.
blake2s_state(blake2s_state &st)
{
set_pointers();
*this=st;
}
void set_pointers()
{
// Set aligned pointers. Must be done in constructor, not in Init(),
// so assignments like 'blake2sp_state res=blake2ctx' work correctly
// even if blake2sp_init is not called for 'res'.
buf = (byte *) ALIGN_VALUE(ubuf, BLAKE_ALIGNMENT);
h = (uint32 *) (buf + 2 * BLAKE2S_BLOCKBYTES);
t = h + 8;
f = t + 2;
}
void init()
{
memset( ubuf, 0, sizeof( ubuf ) );
buflen = 0;
last_node = 0;
}
// Since we use pointers, the default = would work incorrectly.
blake2s_state& operator = (blake2s_state &st)
{
if (this != &st)
{
memcpy(buf, st.buf, BLAKE_DATA_SIZE);
buflen = st.buflen;
last_node = st.last_node;
}
return *this;
}
};
#ifdef RAR_SMP
class ThreadPool;
#endif
struct blake2sp_state
{
blake2s_state S[8];
blake2s_state R;
byte buf[8 * BLAKE2S_BLOCKBYTES];
size_t buflen;
#ifdef RAR_SMP
ThreadPool *ThPool;
uint MaxThreads;
#endif
};
void blake2sp_init( blake2sp_state *S );
void blake2sp_update( blake2sp_state *S, const byte *in, size_t inlen );
void blake2sp_final( blake2sp_state *S, byte *digest );
#endif

View File

@ -0,0 +1,131 @@
// Based on public domain code written in 2012 by Samuel Neves
#ifdef RAR_COMMON_HPP
extern const byte blake2s_sigma[10][16];
// Initialization vector.
static __m128i blake2s_IV_0_3, blake2s_IV_4_7;
#ifdef _WIN_64
// Constants for cyclic rotation. Used in 64-bit mode in mm_rotr_epi32 macro.
static __m128i crotr8, crotr16;
#endif
static void blake2s_init_sse()
{
// We cannot initialize these 128 bit variables in place when declaring
// them globally, because global scope initialization is performed before
// our SSE check and it would make code incompatible with older non-SSE2
// CPUs. Also we cannot initialize them as static inside of function
// using these variables, because SSE static initialization is not thread
// safe: first thread starts initialization and sets "init done" flag even
// if it is not done yet, second thread can attempt to access half-init
// SSE data. So we moved init code here.
blake2s_IV_0_3 = _mm_setr_epi32( 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A );
blake2s_IV_4_7 = _mm_setr_epi32( 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 );
#ifdef _WIN_64
crotr8 = _mm_set_epi8( 12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1 );
crotr16 = _mm_set_epi8( 13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2 );
#endif
}
#define LOAD(p) _mm_load_si128( (__m128i *)(p) )
#define STORE(p,r) _mm_store_si128((__m128i *)(p), r)
#ifdef _WIN_32
// 32-bit mode has less SSE2 registers and in MSVC2008 it is more efficient
// to not use _mm_shuffle_epi8 here.
#define mm_rotr_epi32(r, c) ( \
_mm_xor_si128(_mm_srli_epi32( (r), c ),_mm_slli_epi32( (r), 32-c )) )
#else
#define mm_rotr_epi32(r, c) ( \
c==8 ? _mm_shuffle_epi8(r,crotr8) \
: c==16 ? _mm_shuffle_epi8(r,crotr16) \
: _mm_xor_si128(_mm_srli_epi32( (r), c ),_mm_slli_epi32( (r), 32-c )) )
#endif
#define G1(row1,row2,row3,row4,buf) \
row1 = _mm_add_epi32( _mm_add_epi32( row1, buf), row2 ); \
row4 = _mm_xor_si128( row4, row1 ); \
row4 = mm_rotr_epi32(row4, 16); \
row3 = _mm_add_epi32( row3, row4 ); \
row2 = _mm_xor_si128( row2, row3 ); \
row2 = mm_rotr_epi32(row2, 12);
#define G2(row1,row2,row3,row4,buf) \
row1 = _mm_add_epi32( _mm_add_epi32( row1, buf), row2 ); \
row4 = _mm_xor_si128( row4, row1 ); \
row4 = mm_rotr_epi32(row4, 8); \
row3 = _mm_add_epi32( row3, row4 ); \
row2 = _mm_xor_si128( row2, row3 ); \
row2 = mm_rotr_epi32(row2, 7);
#define DIAGONALIZE(row1,row2,row3,row4) \
row4 = _mm_shuffle_epi32( row4, _MM_SHUFFLE(2,1,0,3) ); \
row3 = _mm_shuffle_epi32( row3, _MM_SHUFFLE(1,0,3,2) ); \
row2 = _mm_shuffle_epi32( row2, _MM_SHUFFLE(0,3,2,1) );
#define UNDIAGONALIZE(row1,row2,row3,row4) \
row4 = _mm_shuffle_epi32( row4, _MM_SHUFFLE(0,3,2,1) ); \
row3 = _mm_shuffle_epi32( row3, _MM_SHUFFLE(1,0,3,2) ); \
row2 = _mm_shuffle_epi32( row2, _MM_SHUFFLE(2,1,0,3) );
#ifdef _WIN_64
// MSVC 2008 in x64 mode expands _mm_set_epi32 to store to stack and load
// from stack operations, which are slower than this code.
#define _mm_set_epi32(i3,i2,i1,i0) \
_mm_unpacklo_epi32(_mm_unpacklo_epi32(_mm_cvtsi32_si128(i0),_mm_cvtsi32_si128(i2)), \
_mm_unpacklo_epi32(_mm_cvtsi32_si128(i1),_mm_cvtsi32_si128(i3)))
#endif
// Original BLAKE2 SSE4.1 message loading code was a little slower in x86 mode
// and about the same in x64 mode in our test. Perhaps depends on compiler.
#define SSE_ROUND(m,row,r) \
{ \
__m128i buf; \
buf=_mm_set_epi32(m[blake2s_sigma[r][6]],m[blake2s_sigma[r][4]],m[blake2s_sigma[r][2]],m[blake2s_sigma[r][0]]); \
G1(row[0],row[1],row[2],row[3],buf); \
buf=_mm_set_epi32(m[blake2s_sigma[r][7]],m[blake2s_sigma[r][5]],m[blake2s_sigma[r][3]],m[blake2s_sigma[r][1]]); \
G2(row[0],row[1],row[2],row[3],buf); \
DIAGONALIZE(row[0],row[1],row[2],row[3]); \
buf=_mm_set_epi32(m[blake2s_sigma[r][14]],m[blake2s_sigma[r][12]],m[blake2s_sigma[r][10]],m[blake2s_sigma[r][8]]); \
G1(row[0],row[1],row[2],row[3],buf); \
buf=_mm_set_epi32(m[blake2s_sigma[r][15]],m[blake2s_sigma[r][13]],m[blake2s_sigma[r][11]],m[blake2s_sigma[r][9]]); \
G2(row[0],row[1],row[2],row[3],buf); \
UNDIAGONALIZE(row[0],row[1],row[2],row[3]); \
}
static int blake2s_compress_sse( blake2s_state *S, const byte block[BLAKE2S_BLOCKBYTES] )
{
__m128i row[4];
__m128i ff0, ff1;
const uint32 *m = ( uint32 * )block;
row[0] = ff0 = LOAD( &S->h[0] );
row[1] = ff1 = LOAD( &S->h[4] );
row[2] = blake2s_IV_0_3;
row[3] = _mm_xor_si128( blake2s_IV_4_7, LOAD( &S->t[0] ) );
SSE_ROUND( m, row, 0 );
SSE_ROUND( m, row, 1 );
SSE_ROUND( m, row, 2 );
SSE_ROUND( m, row, 3 );
SSE_ROUND( m, row, 4 );
SSE_ROUND( m, row, 5 );
SSE_ROUND( m, row, 6 );
SSE_ROUND( m, row, 7 );
SSE_ROUND( m, row, 8 );
SSE_ROUND( m, row, 9 );
STORE( &S->h[0], _mm_xor_si128( ff0, _mm_xor_si128( row[0], row[2] ) ) );
STORE( &S->h[4], _mm_xor_si128( ff1, _mm_xor_si128( row[1], row[3] ) ) );
return 0;
}
#endif

View File

@ -0,0 +1,157 @@
/*
BLAKE2 reference source code package - reference C implementations
Written in 2012 by Samuel Neves <sneves@dei.uc.pt>
To the extent possible under law, the author(s) have dedicated all copyright
and related and neighboring rights to this software to the public domain
worldwide. This software is distributed without any warranty.
You should have received a copy of the CC0 Public Domain Dedication along with
this software. If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#ifdef RAR_COMMON_HPP
#define PARALLELISM_DEGREE 8
void blake2sp_init( blake2sp_state *S )
{
memset( S->buf, 0, sizeof( S->buf ) );
S->buflen = 0;
blake2s_init_param( &S->R, 0, 1 ); // Init root.
for( uint i = 0; i < PARALLELISM_DEGREE; ++i )
blake2s_init_param( &S->S[i], i, 0 ); // Init leaf.
S->R.last_node = 1;
S->S[PARALLELISM_DEGREE - 1].last_node = 1;
}
struct Blake2ThreadData
{
void Update();
blake2s_state *S;
const byte *in;
size_t inlen;
};
void Blake2ThreadData::Update()
{
size_t inlen__ = inlen;
const byte *in__ = ( const byte * )in;
while( inlen__ >= PARALLELISM_DEGREE * BLAKE2S_BLOCKBYTES )
{
#ifdef USE_SSE
// We gain 5% in i7 SSE mode by prefetching next data block.
if (_SSE_Version>=SSE_SSE && inlen__ >= 2 * PARALLELISM_DEGREE * BLAKE2S_BLOCKBYTES)
_mm_prefetch((char*)(in__ + PARALLELISM_DEGREE * BLAKE2S_BLOCKBYTES), _MM_HINT_T0);
#endif
blake2s_update( S, in__, BLAKE2S_BLOCKBYTES );
in__ += PARALLELISM_DEGREE * BLAKE2S_BLOCKBYTES;
inlen__ -= PARALLELISM_DEGREE * BLAKE2S_BLOCKBYTES;
}
}
#ifdef RAR_SMP
THREAD_PROC(Blake2Thread)
{
Blake2ThreadData *td=(Blake2ThreadData *)Data;
td->Update();
}
#endif
void blake2sp_update( blake2sp_state *S, const byte *in, size_t inlen )
{
size_t left = S->buflen;
size_t fill = sizeof( S->buf ) - left;
if( left && inlen >= fill )
{
memcpy( S->buf + left, in, fill );
for( size_t i = 0; i < PARALLELISM_DEGREE; ++i )
blake2s_update( &S->S[i], S->buf + i * BLAKE2S_BLOCKBYTES, BLAKE2S_BLOCKBYTES );
in += fill;
inlen -= fill;
left = 0;
}
Blake2ThreadData btd_array[PARALLELISM_DEGREE];
#ifdef RAR_SMP
uint ThreadNumber = inlen < 0x1000 ? 1 : S->MaxThreads;
if (ThreadNumber==6 || ThreadNumber==7) // 6 and 7 threads work slower than 4 here.
ThreadNumber=4;
#else
uint ThreadNumber=1;
#endif
for (size_t id__=0;id__<PARALLELISM_DEGREE;)
{
for (uint Thread=0;Thread<ThreadNumber && id__<PARALLELISM_DEGREE;Thread++)
{
Blake2ThreadData *btd=btd_array+Thread;
btd->inlen = inlen;
btd->in = in + id__ * BLAKE2S_BLOCKBYTES;
btd->S = &S->S[id__];
#ifdef RAR_SMP
if (ThreadNumber>1)
S->ThPool->AddTask(Blake2Thread,(void*)btd);
else
btd->Update();
#else
btd->Update();
#endif
id__++;
}
#ifdef RAR_SMP
if (S->ThPool!=NULL) // Can be NULL in -mt1 mode.
S->ThPool->WaitDone();
#endif // RAR_SMP
}
in += inlen - inlen % ( PARALLELISM_DEGREE * BLAKE2S_BLOCKBYTES );
inlen %= PARALLELISM_DEGREE * BLAKE2S_BLOCKBYTES;
if( inlen > 0 )
memcpy( S->buf + left, in, (size_t)inlen );
S->buflen = left + (size_t)inlen;
}
void blake2sp_final( blake2sp_state *S, byte *digest )
{
byte hash[PARALLELISM_DEGREE][BLAKE2S_OUTBYTES];
for( size_t i = 0; i < PARALLELISM_DEGREE; ++i )
{
if( S->buflen > i * BLAKE2S_BLOCKBYTES )
{
size_t left = S->buflen - i * BLAKE2S_BLOCKBYTES;
if( left > BLAKE2S_BLOCKBYTES ) left = BLAKE2S_BLOCKBYTES;
blake2s_update( &S->S[i], S->buf + i * BLAKE2S_BLOCKBYTES, left );
}
blake2s_final( &S->S[i], hash[i] );
}
for( size_t i = 0; i < PARALLELISM_DEGREE; ++i )
blake2s_update( &S->R, hash[i], BLAKE2S_OUTBYTES );
blake2s_final( &S->R, digest );
}
#endif

View File

@ -0,0 +1,141 @@
unrar_core source code changes
------------------------------
Unrar_core is based on UnRAR (unrarsrc-3.8.5.tar.gz) by Alexander L.
Roshal. The original sources have been HEAVILY modified, trimmed down,
and purged of all OS-specific calls for file access and other
unnecessary operations. Support for encryption, recovery records, and
segmentation has been REMOVED. See license.txt for licensing. In
particular, this code cannot be used to re-create the RAR compression
algorithm, which is proprietary.
If you obtained this code as a part of my File_Extractor library and
want to use it on its own, get my unrar_core library, which includes
examples and documentation.
The source is as close as possible to the original, to make it simple to
update when a new version of UnRAR comes out. In many places the
original names and object nesting are kept, even though it's a bit
harder to follow. See rar.hpp for the main "glue".
Website: http://www.slack.net/~ant/
E-mail : Shay Green <gblargg@gmail.com>
Contents
--------
* Diff-friendly changes
* Removal of features
* Error reporting changes
* Minor tweaks
* Unrar findings
Diff-friendly changes
---------------------
To make my source code changes more easily visible with a line-based
file diff, I've tried to make changes by inserting or deleting lines,
rather than modifying them. So if the original declared a static array
static int array [4] = { 1, 2, 3, 4 };
and I want to make it const, I add the const on a line before
const // added
static int array [4] = { 1, 2, 3, 4 };
rather than on the same line
static const int array [4] = { 1, 2, 3, 4 };
This way a diff will simply show an added line, making it clear what was
added. If I simply inserted const on the same line, it wouldn't be as
clear what all I had changed.
I've also made use of several macros rather than changing the source
text. For example, since a class name like Unpack might easily conflict,
I've renamed it to Rar_Unpack by using #define Unpack Rar_Unpack rather
than changing the source text. These macros are only defined when
compiling the library sources; the user-visible unrar.h is very clean.
Removal of features
-------------------
This library is meant for simple access to common archives without
having to extract them first. Encryption, segmentation, huge files, and
self-extracting archives aren't common for things that need to be
accessed in this manner, so I've removed support for them. Also,
encryption adds complexity to the code that must be maintained.
Segmentation would require a way to specify the other segments.
Error reporting changes
-----------------------
The original used C++ exceptions to report errors. I've eliminated use
of these through a combination of error codes and longjmp. This allows
use of the library from C or some other language which doesn't easily
support exceptions.
I tried to make as few changes as possible in the conversion. Due to the
number of places file reads occur, propagating an error code via return
statements would have required too many code changes. Instead, I perform
the read, save the error code, and return 0 bytes read in case of an
error. I also ensure that the calling code interprets this zero in an
acceptable way. I then check this saved error code after the operation
completes, and have it take priority over the error the RAR code
returned. I do a similar thing for write errors.
Minor tweaks
------------
- Eliminated as many GCC warnings as reasonably possible.
- Non-class array allocations now use malloc(), allowing the code to be
linked without the standard C++ library (particularly, operator new).
Class object allocations use a class-specific allocator that just calls
malloc(), also avoiding calls to operator new.
- Made all unchanging static data const. Several pieces of static data
in the original code weren't marked const where they could be.
- Initialization of some static tables was done on an as-needed basis,
creating a problem when extracting from archives in multiple threads.
This initialization can now be done by the user before any archives are
opened.
- Tweaked CopyString, the major bottleneck during compression. I inlined
it, cached some variables in locals in case the compiler couldn't easily
see that the memory accesses don't modify them, and made them use
memcpy() where possible. This improved performance by at least 20% on
x86. Perhaps it won't work as well on files with lots of smaller string
matches.
- Some .cpp files are #included by others. I've added guards to these so
that you can simply compile all .cpp files and not get any redefinition
errors.
- The current solid extraction position is kept track of, allowing the
user to randomly extract files without regard to proper extraction
order. The library optimizes solid extraction and only restarts it if
the user is extracting a file earlier in the archive than the last
solid-extracted one.
- Most of the time a solid file's data is already contiguously in the
internal Unpack::Window, which unrar_extract_mem() takes advantage of.
This avoids extra allocation in many cases.
- Allocation of Unpack is delayed until the first extraction, rather
than being allocated immediately on opening the archive. This allows
scanning with minimal memory usage.
Unrar findings
--------------
- Apparently the LHD_SOLID flag indicates that file depends on previous
files, rather than that later files depend on the current file's
contents. Thus this flag can't be used to intelligently decide which
files need to be internally extracted when skipping them, making it
necessary to internally extract every file before the one to be
extracted, if the archive is solid.
--
Shay Green <gblargg@gmail.com>

View File

@ -0,0 +1,50 @@
// #included by unpack.cpp
#ifdef RAR_COMMON_HPP
inline unsigned int RangeCoder::GetChar()
{
return(UnpackRead->GetChar());
}
void RangeCoder::InitDecoder(Unpack *UnpackRead)
{
RangeCoder::UnpackRead=UnpackRead;
low=code=0;
range=uint(-1);
for (int i=0;i < 4;i++)
code=(code << 8) | GetChar();
}
// (int) cast before "low" added only to suppress compiler warnings.
#define ARI_DEC_NORMALIZE(code,low,range,read) \
{ \
while ((low^(low+range))<TOP || range<BOT && ((range=-(int)low&(BOT-1)),1)) \
{ \
code=(code << 8) | read->GetChar(); \
range <<= 8; \
low <<= 8; \
} \
}
inline int RangeCoder::GetCurrentCount()
{
return (code-low)/(range /= SubRange.scale);
}
inline uint RangeCoder::GetCurrentShiftCount(uint SHIFT)
{
return (code-low)/(range >>= SHIFT);
}
inline void RangeCoder::Decode()
{
low += range*SubRange.LowCount;
range *= SubRange.HighCount-SubRange.LowCount;
}
#endif

View File

@ -0,0 +1,23 @@
/****************************************************************************
* Contents: 'Carryless rangecoder' by Dmitry Subbotin *
****************************************************************************/
class RangeCoder
{
public:
void InitDecoder(Unpack *UnpackRead);
inline int GetCurrentCount();
inline uint GetCurrentShiftCount(uint SHIFT);
inline void Decode();
inline void PutChar(unsigned int c);
inline unsigned int GetChar();
uint low, code, range;
struct SUBRANGE
{
uint LowCount, HighCount, scale;
} SubRange;
Unpack *UnpackRead;
};

View File

@ -0,0 +1,50 @@
#ifndef _RAR_COMPRESS_
#define _RAR_COMPRESS_
// Combine pack and unpack constants to class to avoid polluting global
// namespace with numerous short names.
class PackDef
{
public:
static const uint MAX_LZ_MATCH = 0x1001;
static const uint MAX3_LZ_MATCH = 0x101; // Maximum match length for RAR v3.
static const uint LOW_DIST_REP_COUNT = 16;
static const uint NC = 306; /* alphabet = {0, 1, 2, ..., NC - 1} */
static const uint DC = 64;
static const uint LDC = 16;
static const uint RC = 44;
static const uint HUFF_TABLE_SIZE = NC + DC + RC + LDC;
static const uint BC = 20;
static const uint NC30 = 299; /* alphabet = {0, 1, 2, ..., NC - 1} */
static const uint DC30 = 60;
static const uint LDC30 = 17;
static const uint RC30 = 28;
static const uint BC30 = 20;
static const uint HUFF_TABLE_SIZE30 = NC30 + DC30 + RC30 + LDC30;
static const uint NC20 = 298; /* alphabet = {0, 1, 2, ..., NC - 1} */
static const uint DC20 = 48;
static const uint RC20 = 28;
static const uint BC20 = 19;
static const uint MC20 = 257;
// Largest alphabet size among all values listed above.
static const uint LARGEST_TABLE_SIZE = 306;
enum {
CODE_HUFFMAN, CODE_LZ, CODE_REPEATLZ, CODE_CACHELZ, CODE_STARTFILE,
CODE_ENDFILE, CODE_FILTER, CODE_FILTERDATA
};
};
enum FilterType {
// These values must not be changed, because we use them directly
// in RAR5 compression and decompression code.
FILTER_DELTA=0, FILTER_E8, FILTER_E8E9, FILTER_ARM,
FILTER_AUDIO, FILTER_RGB, FILTER_ITANIUM, FILTER_PPM, FILTER_NONE
};
#endif

View File

@ -0,0 +1,97 @@
// This CRC function is based on Intel Slicing-by-8 algorithm.
//
// Original Intel Slicing-by-8 code is available here:
//
// http://sourceforge.net/projects/slicing-by-8/
//
// Original Intel Slicing-by-8 code is licensed as:
//
// Copyright (c) 2004-2006 Intel Corporation - All Rights Reserved
//
// This software program is licensed subject to the BSD License,
// available at http://www.opensource.org/licenses/bsd-license.html
#include "rar.hpp"
uint crc_tables[8][256]; // Tables for Slicing-by-8.
// Build the classic CRC32 lookup table.
// We also provide this function to legacy RAR and ZIP decryption code.
void InitCRC32(uint *CRCTab)
{
if (CRCTab[1]!=0)
return;
for (uint I=0;I<256;I++)
{
uint C=I;
for (uint J=0;J<8;J++)
C=(C & 1) ? (C>>1)^0xEDB88320 : (C>>1);
CRCTab[I]=C;
}
}
void InitCRCTables()
{
InitCRC32(crc_tables[0]);
for (uint I=0;I<256;I++) // Build additional lookup tables.
{
uint C=crc_tables[0][I];
for (uint J=1;J<8;J++)
{
C=crc_tables[0][(byte)C]^(C>>8);
crc_tables[J][I]=C;
}
}
}
uint CRC32(uint StartCRC,const void *Addr,size_t Size)
{
byte *Data=(byte *)Addr;
// Align Data to 8 for better performance.
for (;Size>0 && ((size_t)Data & 7);Size--,Data++)
StartCRC=crc_tables[0][(byte)(StartCRC^Data[0])]^(StartCRC>>8);
for (;Size>=8;Size-=8,Data+=8)
{
#ifdef BIG_ENDIAN
StartCRC ^= Data[0]|(Data[1] << 8)|(Data[2] << 16)|(Data[3] << 24);
uint NextData = Data[4]|(Data[5] << 8)|(Data[6] << 16)|(Data[7] << 24);
#else
StartCRC ^= *(uint32 *) Data;
uint NextData = *(uint32 *) (Data +4);
#endif
StartCRC = crc_tables[7][(byte) StartCRC ] ^
crc_tables[6][(byte)(StartCRC >> 8) ] ^
crc_tables[5][(byte)(StartCRC >> 16)] ^
crc_tables[4][(byte)(StartCRC >> 24)] ^
crc_tables[3][(byte) NextData ] ^
crc_tables[2][(byte)(NextData >>8 ) ] ^
crc_tables[1][(byte)(NextData >> 16)] ^
crc_tables[0][(byte)(NextData >> 24)];
}
for (;Size>0;Size--,Data++) // Process left data.
StartCRC=crc_tables[0][(byte)(StartCRC^Data[0])]^(StartCRC>>8);
return StartCRC;
}
#ifndef SFX_MODULE
// For RAR 1.4 archives in case somebody still has them.
ushort Checksum14(ushort StartCRC,const void *Addr,size_t Size)
{
byte *Data=(byte *)Addr;
for (size_t I=0;I<Size;I++)
{
StartCRC=(StartCRC+Data[I])&0xffff;
StartCRC=((StartCRC<<1)|(StartCRC>>15))&0xffff;
}
return StartCRC;
}
#endif

View File

@ -0,0 +1,57 @@
#include "rar.hpp"
EncodeFileName::EncodeFileName()
{
Flags=0;
FlagBits=0;
FlagsPos=0;
DestSize=0;
}
void EncodeFileName::Decode(char *Name,byte *EncName,size_t EncSize,wchar *NameW,
size_t MaxDecSize)
{
size_t EncPos=0,DecPos=0;
byte HighByte=EncName[EncPos++];
while (EncPos<EncSize && DecPos<MaxDecSize)
{
if (FlagBits==0)
{
Flags=EncName[EncPos++];
FlagBits=8;
}
switch(Flags>>6)
{
case 0:
NameW[DecPos++]=EncName[EncPos++];
break;
case 1:
NameW[DecPos++]=EncName[EncPos++]+(HighByte<<8);
break;
case 2:
NameW[DecPos++]=EncName[EncPos]+(EncName[EncPos+1]<<8);
EncPos+=2;
break;
case 3:
{
int Length=EncName[EncPos++];
if (Length & 0x80)
{
byte Correction=EncName[EncPos++];
for (Length=(Length&0x7f)+2;Length>0 && DecPos<MaxDecSize;Length--,DecPos++)
NameW[DecPos]=((Name[DecPos]+Correction)&0xff)+(HighByte<<8);
}
else
for (Length+=2;Length>0 && DecPos<MaxDecSize;Length--,DecPos++)
NameW[DecPos]=Name[DecPos];
}
break;
}
Flags<<=2;
FlagBits-=2;
}
NameW[DecPos<MaxDecSize ? DecPos:MaxDecSize-1]=0;
}

View File

@ -0,0 +1,20 @@
#ifndef _RAR_ENCNAME_
#define _RAR_ENCNAME_
class EncodeFileName
{
private:
void AddFlags(int Value);
byte *EncName;
byte Flags;
size_t FlagBits;
size_t FlagsPos;
size_t DestSize;
public:
EncodeFileName();
size_t Encode(char *Name,wchar *NameW,byte *EncName);
void Decode(char *Name,byte *EncName,size_t EncSize,wchar *NameW,size_t MaxDecSize);
};
#endif

View File

@ -0,0 +1,114 @@
#include <stdio.h>
#include "rar.hpp"
#include "unrar.h"
#define DataIO Arc
unrar_err_t CmdExtract::ExtractCurrentFile( bool SkipSolid, bool check_compatibility_only )
{
check( Arc.GetHeaderType() == FILE_HEAD );
if ( Arc.FileHead.SplitBefore || Arc.FileHead.SplitAfter )
return unrar_err_segmented;
if ( Arc.FileHead.Encrypted )
return unrar_err_encrypted;
if ( !check_compatibility_only )
{
check( Arc.NextBlockPos-Arc.FileHead.PackSize == Arc.Tell() );
Arc.Seek(Arc.NextBlockPos-Arc.FileHead.PackSize,SEEK_SET);
}
// (removed lots of command-line handling)
#ifdef SFX_MODULE
if ((Arc.FileHead.UnpVer!=UNP_VER && Arc.FileHead.UnpVer!=29) &&
Arc.FileHead.Method!=0x30)
#else
if (Arc.FileHead.UnpVer!=VER_UNPACK5 &&
(Arc.FileHead.UnpVer<13 || Arc.FileHead.UnpVer>VER_UNPACK))
#endif
{
if (Arc.FileHead.UnpVer>VER_UNPACK)
return unrar_err_new_algo;
return unrar_err_old_algo;
}
if ( check_compatibility_only )
return unrar_ok;
// (removed lots of command-line/encryption/volume handling)
update_first_file_pos();
FileCount++;
DataIO.UnpFileCRC=Arc.OldFormat ? 0 : 0xffffffff;
// (removed decryption)
DataIO.UnpHash.Init(Arc.FileHead.FileHash.Type,1);
DataIO.PackedDataHash.Init(Arc.FileHead.FileHash.Type,1);
DataIO.SetPackedSizeToRead(Arc.FileHead.PackSize);
DataIO.SetSkipUnpCRC(SkipSolid);
// (removed command-line handling)
DataIO.SetSkipUnpCRC(SkipSolid);
if (Arc.FileHead.Method==0)
UnstoreFile(Arc.FileHead.UnpSize);
else
{
// Defer creation of Unpack until first extraction
if ( !Unp )
{
Unp = new Unpack( &Arc );
if ( !Unp )
return unrar_err_memory;
}
Unp->Init(Arc.FileHead.WinSize,Arc.FileHead.Solid);
Unp->SetDestSize(Arc.FileHead.UnpSize);
#ifndef SFX_MODULE
if (Arc.Format!=RARFMT50 && Arc.FileHead.UnpVer<=15)
Unp->DoUnpack(15,FileCount>1 && Arc.Solid);
else
#endif
Unp->DoUnpack(Arc.FileHead.UnpVer,Arc.FileHead.Solid);
}
// (no need to seek to next file)
if (!SkipSolid)
{
HashValue UnpHash;
DataIO.UnpHash.Result(&UnpHash);
if (UnpHash==Arc.FileHead.FileHash)
{
// CRC is correct
}
else
{
return unrar_err_corrupt;
}
}
// (removed broken file handling)
// (removed command-line handling)
return unrar_ok;
}
void CmdExtract::UnstoreFile(int64 DestUnpSize)
{
Buffer.Alloc((int)Min(DestUnpSize,0x10000));
while (1)
{
unsigned int Code=DataIO.UnpRead(&Buffer[0],(uint)Buffer.Size());
if (Code==0 || (int)Code==-1)
break;
Code=Code<DestUnpSize ? Code:int64to32(DestUnpSize);
DataIO.UnpWrite(&Buffer[0],Code);
if (DestUnpSize>=0)
DestUnpSize-=Code;
}
Buffer.Reset();
}

View File

@ -0,0 +1,56 @@
#include "rar.hpp"
BitInput::BitInput(bool AllocBuffer)
{
ExternalBuffer=false;
if (AllocBuffer)
{
// getbits32 attempts to read data from InAddr, ... InAddr+3 positions.
// So let's allocate 3 additional bytes for situation, when we need to
// read only 1 byte from the last position of buffer and avoid a crash
// from access to next 3 bytes, which contents we do not need.
size_t BufSize=MAX_SIZE+3;
InBuf=new byte[BufSize];
// Ensure that we get predictable results when accessing bytes in area
// not filled with read data.
memset(InBuf,0,BufSize);
}
else
InBuf=NULL;
}
BitInput::~BitInput()
{
if (!ExternalBuffer)
delete[] InBuf;
}
void BitInput::handle_mem_error( Rar_Error_Handler& ErrHandler )
{
if ( !InBuf )
ErrHandler.MemoryError();
}
void BitInput::faddbits(uint Bits)
{
// Function wrapped version of inline addbits to save code size.
addbits(Bits);
}
uint BitInput::fgetbits()
{
// Function wrapped version of inline getbits to save code size.
return(getbits());
}
void BitInput::SetExternalBuffer(byte *Buf)
{
if (InBuf!=NULL && !ExternalBuffer)
delete[] InBuf;
InBuf=Buf;
ExternalBuffer=true;
}

View File

@ -0,0 +1,70 @@
#ifndef _RAR_GETBITS_
#define _RAR_GETBITS_
class BitInput
: public Rar_Allocator
{
public:
enum BufferSize {MAX_SIZE=0x8000}; // Size of input buffer.
int InAddr; // Curent byte position in the buffer.
int InBit; // Current bit position in the current byte.
bool ExternalBuffer;
public:
BitInput(bool AllocBuffer);
~BitInput();
void handle_mem_error( Rar_Error_Handler& );
byte *InBuf; // Dynamically allocated input buffer.
void InitBitInput()
{
InAddr=InBit=0;
}
// Move forward by 'Bits' bits.
void addbits(uint Bits)
{
Bits+=InBit;
InAddr+=Bits>>3;
InBit=Bits&7;
}
// Return 16 bits from current position in the buffer.
// Bit at (InAddr,InBit) has the highest position in returning data.
uint getbits()
{
uint BitField=(uint)InBuf[InAddr] << 16;
BitField|=(uint)InBuf[InAddr+1] << 8;
BitField|=(uint)InBuf[InAddr+2];
BitField >>= (8-InBit);
return(BitField & 0xffff);
}
// Return 32 bits from current position in the buffer.
// Bit at (InAddr,InBit) has the highest position in returning data.
uint getbits32()
{
uint BitField=(uint)InBuf[InAddr] << 24;
BitField|=(uint)InBuf[InAddr+1] << 16;
BitField|=(uint)InBuf[InAddr+2] << 8;
BitField|=(uint)InBuf[InAddr+3];
BitField <<= InBit;
BitField|=(uint)InBuf[InAddr+4] >> (8-InBit);
return(BitField & 0xffffffff);
}
void faddbits(uint Bits);
uint fgetbits();
// Check if buffer has enough space for IncPtr bytes. Returns 'true'
// if buffer will be overflown.
bool Overflow(uint IncPtr)
{
return(InAddr+IncPtr>=MAX_SIZE);
}
void SetExternalBuffer(byte *Buf);
};
#endif

118
src/core/fex/unrar/hash.cpp Normal file
View File

@ -0,0 +1,118 @@
#include "rar.hpp"
void HashValue::Init(HASH_TYPE Type)
{
HashValue::Type=Type;
// Zero length data CRC32 is 0. It is important to set it when creating
// headers with no following data like directories or symlinks.
if (Type==HASH_RAR14 || Type==HASH_CRC32)
CRC32=0;
if (Type==HASH_BLAKE2)
{
// dd0e891776933f43c7d032b08a917e25741f8aa9a12c12e1cac8801500f2ca4f
// is BLAKE2sp hash of empty data. We init the structure to this value,
// so if we create a file or service header with no following data like
// "file copy" or "symlink", we set the checksum to proper value avoiding
// additional header type or size checks when extracting.
static byte EmptyHash[32]={
0xdd, 0x0e, 0x89, 0x17, 0x76, 0x93, 0x3f, 0x43,
0xc7, 0xd0, 0x32, 0xb0, 0x8a, 0x91, 0x7e, 0x25,
0x74, 0x1f, 0x8a, 0xa9, 0xa1, 0x2c, 0x12, 0xe1,
0xca, 0xc8, 0x80, 0x15, 0x00, 0xf2, 0xca, 0x4f
};
memcpy(Digest,EmptyHash,sizeof(Digest));
}
}
bool HashValue::operator == (const HashValue &cmp)
{
if (Type==HASH_NONE || cmp.Type==HASH_NONE)
return true;
if ((Type==HASH_RAR14 && cmp.Type==HASH_RAR14) ||
(Type==HASH_CRC32 && cmp.Type==HASH_CRC32))
return CRC32==cmp.CRC32;
if (Type==HASH_BLAKE2 && cmp.Type==HASH_BLAKE2)
return memcmp(Digest,cmp.Digest,sizeof(Digest))==0;
return false;
}
DataHash::DataHash()
{
HashType=HASH_NONE;
#ifdef RAR_SMP
ThPool=NULL;
MaxThreads=0;
#endif
}
DataHash::~DataHash()
{
#ifdef RAR_SMP
DestroyThreadPool(ThPool);
#endif
cleandata(&blake2ctx, sizeof(blake2ctx));
cleandata(&CurCRC32, sizeof(CurCRC32));
}
void DataHash::Init(HASH_TYPE Type,uint MaxThreads)
{
HashType=Type;
if (Type==HASH_RAR14)
CurCRC32=0;
if (Type==HASH_CRC32)
CurCRC32=0xffffffff; // Initial CRC32 value.
if (Type==HASH_BLAKE2)
blake2sp_init( &blake2ctx );
#ifdef RAR_SMP
DataHash::MaxThreads=Min(MaxThreads,MaxHashThreads);
#endif
}
void DataHash::Update(const void *Data,size_t DataSize)
{
#ifndef SFX_MODULE
if (HashType==HASH_RAR14)
CurCRC32=Checksum14((ushort)CurCRC32,Data,DataSize);
#endif
if (HashType==HASH_CRC32)
CurCRC32=CRC32(CurCRC32,Data,DataSize);
if (HashType==HASH_BLAKE2)
{
#ifdef RAR_SMP
if (MaxThreads>1 && ThPool==NULL)
ThPool=CreateThreadPool();
blake2ctx.ThPool=ThPool;
blake2ctx.MaxThreads=MaxThreads;
#endif
blake2sp_update( &blake2ctx, (byte *)Data, DataSize);
}
}
void DataHash::Result(HashValue *Result)
{
Result->Type=HashType;
if (HashType==HASH_RAR14)
Result->CRC32=CurCRC32;
if (HashType==HASH_CRC32)
Result->CRC32=CurCRC32^0xffffffff;
if (HashType==HASH_BLAKE2)
{
// Preserve the original context, so we can continue hashing if necessary.
blake2sp_state res=blake2ctx;
blake2sp_final( &res, Result->Digest );
}
}
uint DataHash::GetCRC32()
{
return HashType==HASH_CRC32 ? CurCRC32^0xffffffff : 0;
}

View File

@ -0,0 +1,52 @@
#ifndef _RAR_DATAHASH_
#define _RAR_DATAHASH_
enum HASH_TYPE {HASH_NONE,HASH_RAR14,HASH_CRC32,HASH_BLAKE2};
struct HashValue
{
void Init(HASH_TYPE Type);
bool operator == (const HashValue &cmp);
bool operator != (const HashValue &cmp) {return !(*this==cmp);}
HASH_TYPE Type;
union
{
uint CRC32;
byte Digest[SHA256_DIGEST_SIZE];
};
};
#ifdef RAR_SMP
class ThreadPool;
class DataHash;
#endif
class DataHash
{
private:
HASH_TYPE HashType;
uint CurCRC32;
blake2sp_state blake2ctx;
#ifdef RAR_SMP
ThreadPool *ThPool;
uint MaxThreads;
// Upper limit for maximum threads to prevent wasting threads in pool.
static const uint MaxHashThreads=8;
#endif
public:
DataHash();
~DataHash();
void Init(HASH_TYPE Type,uint MaxThreads);
void Update(const void *Data,size_t DataSize);
void Result(HashValue *Result);
uint GetCRC32();
bool Cmp(HashValue *CmpValue,byte *Key);
HASH_TYPE Type() {return HashType;}
};
#endif

View File

@ -0,0 +1,60 @@
#include "rar.hpp"
void FileHeader::Reset(size_t SubDataSize)
{
SubData.Alloc(SubDataSize);
BaseBlock::Reset();
#ifndef SHELL_EXT
FileHash.Init(HASH_NONE);
#endif
mtime.Reset();
atime.Reset();
ctime.Reset();
SplitBefore=false;
SplitAfter=false;
UnknownUnpSize=0;
SubFlags=0; // Important for RAR 3.0 subhead.
Encrypted=false;
UsePswCheck=false;
UseHashKey=false;
Lg2Count=0;
Solid=false;
Dir=false;
WinSize=0;
Inherited=false;
SubBlock=false;
CommentInHeader=false;
Version=false;
LargeFile=false;
RedirType=FSREDIR_NONE;
UnixOwnerSet=false;
}
FileHeader& FileHeader::operator = (FileHeader &hd)
{
SubData.Reset();
memcpy(this,&hd,sizeof(*this));
SubData.CleanData();
SubData=hd.SubData;
return *this;
}
void MainHeader::Reset()
{
HighPosAV=0;
PosAV=0;
CommentInHeader=false;
PackComment=false;
Locator=false;
QOpenOffset=0;
QOpenMaxSize=0;
RROffset=0;
RRMaxSize=0;
}

View File

@ -0,0 +1,362 @@
#ifndef _RAR_HEADERS_
#define _RAR_HEADERS_
#define SIZEOF_MARKHEAD3 7 // Size of RAR 4.x archive mark header.
#define SIZEOF_MAINHEAD14 7 // Size of RAR 1.4 main archive header.
#define SIZEOF_MAINHEAD3 13 // Size of RAR 4.x main archive header.
#define SIZEOF_FILEHEAD14 21 // Size of RAR 1.4 file header.
#define SIZEOF_FILEHEAD3 32 // Size of RAR 3.0 file header.
#define SIZEOF_SHORTBLOCKHEAD 7
#define SIZEOF_LONGBLOCKHEAD 11
#define SIZEOF_SUBBLOCKHEAD 14
#define SIZEOF_COMMHEAD 13
#define SIZEOF_PROTECTHEAD 26
#define SIZEOF_AVHEAD 14
#define SIZEOF_SIGNHEAD 15
#define SIZEOF_UOHEAD 18
#define SIZEOF_MACHEAD 22
#define SIZEOF_EAHEAD 24
#define SIZEOF_BEEAHEAD 24
#define SIZEOF_STREAMHEAD 26
#define VER_PACK 29
#define VER_PACK5 0
#define VER_UNPACK 29
#define VER_UNPACK5 0
#define MHD_VOLUME 0x0001U
// Old style main archive comment embed into main archive header. Must not
// be used in new archives anymore.
#define MHD_COMMENT 0x0002U
#define MHD_LOCK 0x0004U
#define MHD_SOLID 0x0008U
#define MHD_PACK_COMMENT 0x0010U
#define MHD_NEWNUMBERING 0x0010U
#define MHD_AV 0x0020U
#define MHD_PROTECT 0x0040U
#define MHD_PASSWORD 0x0080U
#define MHD_FIRSTVOLUME 0x0100U
#define LHD_SPLIT_BEFORE 0x0001U
#define LHD_SPLIT_AFTER 0x0002U
#define LHD_PASSWORD 0x0004U
// Old style file comment embed into file header. Must not be used
// in new archives anymore.
#define LHD_COMMENT 0x0008U
// For non-file subheaders it denotes 'subblock having a parent file' flag.
#define LHD_SOLID 0x0010U
#define LHD_WINDOWMASK 0x00e0U
#define LHD_WINDOW64 0x0000U
#define LHD_WINDOW128 0x0020U
#define LHD_WINDOW256 0x0040U
#define LHD_WINDOW512 0x0060U
#define LHD_WINDOW1024 0x0080U
#define LHD_WINDOW2048 0x00a0U
#define LHD_WINDOW4096 0x00c0U
#define LHD_DIRECTORY 0x00e0U
#define LHD_LARGE 0x0100U
#define LHD_UNICODE 0x0200U
#define LHD_SALT 0x0400U
#define LHD_VERSION 0x0800U
#define LHD_EXTTIME 0x1000U
#define SKIP_IF_UNKNOWN 0x4000U
#define LONG_BLOCK 0x8000U
#define EARC_NEXT_VOLUME 0x0001U // Not last volume.
#define EARC_DATACRC 0x0002U // Store CRC32 of RAR archive (now is used only in volumes).
#define EARC_REVSPACE 0x0004U // Reserve space for end of REV file 7 byte record.
#define EARC_VOLNUMBER 0x0008U // Store a number of current volume.
enum HEADER_TYPE {
// RAR 5.0 header types.
HEAD_MARK=0x00, HEAD_MAIN=0x01, HEAD_FILE=0x02, HEAD_SERVICE=0x03,
HEAD_CRYPT=0x04, HEAD_ENDARC=0x05, HEAD_UNKNOWN=0xff,
// RAR 1.5 - 4.x header types.
HEAD3_MARK=0x72,HEAD3_MAIN=0x73,HEAD3_FILE=0x74,HEAD3_CMT=0x75,
HEAD3_AV=0x76,HEAD3_OLDSERVICE=0x77,HEAD3_PROTECT=0x78,HEAD3_SIGN=0x79,
HEAD3_SERVICE=0x7a,HEAD3_ENDARC=0x7b
};
enum { EA_HEAD=0x100,UO_HEAD=0x101,MAC_HEAD=0x102,BEEA_HEAD=0x103,
NTACL_HEAD=0x104,STREAM_HEAD=0x105 };
// Internal implementation, depends on archive format version.
enum HOST_SYSTEM {
// RAR 5.0 host OS
HOST5_WINDOWS=0,HOST5_UNIX=1,
// RAR 3.0 host OS.
HOST_MSDOS=0,HOST_OS2=1,HOST_WIN32=2,HOST_UNIX=3,HOST_MACOS=4,
HOST_BEOS=5,HOST_MAX
};
// Unified archive format independent implementation.
enum HOST_SYSTEM_TYPE {
HSYS_WINDOWS, HSYS_UNIX, HSYS_UNKNOWN
};
// We also use these values in extra field, so do not modify them.
enum FILE_SYSTEM_REDIRECT {
FSREDIR_NONE=0, FSREDIR_UNIXSYMLINK, FSREDIR_WINSYMLINK, FSREDIR_JUNCTION,
FSREDIR_HARDLINK, FSREDIR_FILECOPY
};
static const wchar SUBHEAD_TYPE_CMT[] = {'C', 'M', 'T', 0};
static const wchar SUBHEAD_TYPE_QOPEN[] = {'Q', 'O', 0};
static const wchar SUBHEAD_TYPE_ACL[] = {'A', 'C', 'L', 0};
static const wchar SUBHEAD_TYPE_STREAM[] = {'S', 'T', 'M', 0};
static const wchar SUBHEAD_TYPE_UOWNER[] = {'U', 'O', 'W', 0};
static const wchar SUBHEAD_TYPE_AV[] = {'A', 'V', 0};
static const wchar SUBHEAD_TYPE_RR[] = {'R', 'R', 0};
static const wchar SUBHEAD_TYPE_OS2EA[] = {'E', 'A', '2', 0};
/* new file inherits a subblock when updating a host file */
#define SUBHEAD_FLAGS_INHERITED 0x80000000
#define SUBHEAD_FLAGS_CMT_UNICODE 0x00000001
struct MarkHeader
{
byte Mark[8];
// Following fields are virtual and not present in real blocks.
uint HeadSize;
};
struct BaseBlock
{
uint HeadCRC; // 'ushort' for RAR 1.5.
HEADER_TYPE HeaderType; // 1 byte for RAR 1.5.
uint Flags; // 'ushort' for RAR 1.5.
uint HeadSize; // 'ushort' for RAR 1.5, up to 2 MB for RAR 5.0.
bool SkipIfUnknown;
void Reset()
{
SkipIfUnknown=false;
}
};
struct BlockHeader:BaseBlock
{
uint DataSize;
};
struct MainHeader:BaseBlock
{
ushort HighPosAV;
uint PosAV;
bool CommentInHeader;
bool PackComment; // For RAR 1.4 archive format only.
bool Locator;
uint64 QOpenOffset; // Offset of quick list record.
uint64 QOpenMaxSize; // Maximum size of QOpen offset in locator extra field.
uint64 RROffset; // Offset of recovery record.
uint64 RRMaxSize; // Maximum size of RR offset in locator extra field.
void Reset();
};
struct FileHeader:BlockHeader
{
byte HostOS;
byte UnpVer;
byte Method;
union {
uint FileAttr;
uint SubFlags;
};
wchar FileName[NM];
Array<byte> SubData;
RarTime mtime;
RarTime ctime;
RarTime atime;
int64 PackSize;
int64 UnpSize;
int64 MaxSize; // Reserve size bytes for vint of this size.
HashValue FileHash;
uint FileFlags;
bool SplitBefore;
bool SplitAfter;
bool UnknownUnpSize;
bool Encrypted;
bool UsePswCheck;
// Use HMAC calculated from HashKey and checksum instead of plain checksum.
bool UseHashKey;
uint Lg2Count; // Log2 of PBKDF2 repetition count.
bool Solid;
bool Dir;
bool CommentInHeader; // RAR 2.0 file comment.
bool Version; // name.ext;ver file name containing the version number.
size_t WinSize;
bool Inherited; // New file inherits a subblock when updating a host file (for subblocks only).
// 'true' if file sizes use 8 bytes instead of 4. Not used in RAR 5.0.
bool LargeFile;
// 'true' for HEAD_SERVICE block, which is a child of preceding file block.
// RAR 4.x uses 'solid' flag to indicate child subheader blocks in archives.
bool SubBlock;
HOST_SYSTEM_TYPE HSType;
FILE_SYSTEM_REDIRECT RedirType;
wchar RedirName[NM];
bool DirTarget;
bool UnixOwnerSet,UnixOwnerNumeric,UnixGroupNumeric;
char UnixOwnerName[256],UnixGroupName[256];
#ifdef _UNIX
uid_t UnixOwnerID;
uid_t UnixGroupID;
#else // Need these Unix fields in Windows too for 'list' command.
uint UnixOwnerID;
uint UnixGroupID;
#endif
void Reset(size_t SubDataSize=0);
bool CmpName(const wchar *Name)
{
return(my_wcscmp(FileName,Name)==0);
}
FileHeader& operator = (FileHeader &hd);
};
struct EndArcHeader:BaseBlock
{
// Optional CRC32 of entire archive up to start of EndArcHeader block.
// Present in RAR 4.x archives if EARC_DATACRC flag is set.
uint ArcDataCRC;
uint VolNumber; // Optional number of current volume.
// 7 additional zero bytes can be stored here if EARC_REVSPACE is set.
bool NextVolume; // Not last volume.
bool DataCRC;
bool RevSpace;
bool StoreVolNumber;
void Reset()
{
BaseBlock::Reset();
NextVolume=false;
DataCRC=false;
RevSpace=false;
StoreVolNumber=false;
}
};
// SubBlockHeader and its successors were used in RAR 2.x format.
// RAR 4.x uses FileHeader with HEAD_SERVICE HeaderType for subblocks.
struct SubBlockHeader:BlockHeader
{
ushort SubType;
byte Level;
};
struct CommentHeader:BaseBlock
{
ushort UnpSize;
byte UnpVer;
byte Method;
ushort CommCRC;
};
struct ProtectHeader:BlockHeader
{
byte Version;
ushort RecSectors;
uint TotalBlocks;
byte Mark[8];
};
struct AVHeader:BaseBlock
{
byte UnpVer;
byte Method;
byte AVVer;
uint AVInfoCRC;
};
struct SignHeader:BaseBlock
{
uint CreationTime;
ushort ArcNameSize;
ushort UserNameSize;
};
struct UnixOwnersHeader:SubBlockHeader
{
ushort OwnerNameSize;
ushort GroupNameSize;
/* dummy */
char OwnerName[256];
char GroupName[256];
};
struct EAHeader:SubBlockHeader
{
uint UnpSize;
byte UnpVer;
byte Method;
uint EACRC;
};
struct StreamHeader:SubBlockHeader
{
uint UnpSize;
byte UnpVer;
byte Method;
uint StreamCRC;
ushort StreamNameSize;
char StreamName[260];
};
struct MacFInfoHeader:SubBlockHeader
{
uint fileType;
uint fileCreator;
};
#endif

View File

@ -0,0 +1,99 @@
#ifndef _RAR_HEADERS5_
#define _RAR_HEADERS5_
#define SIZEOF_MARKHEAD5 8 // RAR 5.0 signature length.
#define SIZEOF_SHORTBLOCKHEAD5 7 // Smallest RAR 5.0 block size.
// RAR 5.0 block flags common for all blocks.
// Additional extra area is present in the end of block header.
#define HFL_EXTRA 0x0001
// Additional data area is present in the end of block header.
#define HFL_DATA 0x0002
// Unknown blocks with this flag must be skipped when updating an archive.
#define HFL_SKIPIFUNKNOWN 0x0004
// Data area of this block is continuing from previous volume.
#define HFL_SPLITBEFORE 0x0008
// Data area of this block is continuing in next volume.
#define HFL_SPLITAFTER 0x0010
// Block depends on preceding file block.
#define HFL_CHILD 0x0020
// Preserve a child block if host is modified.
#define HFL_INHERITED 0x0040
// RAR 5.0 main archive header specific flags.
#define MHFL_VOLUME 0x0001 // Volume.
#define MHFL_VOLNUMBER 0x0002 // Volume number field is present. True for all volumes except first.
#define MHFL_SOLID 0x0004 // Solid archive.
#define MHFL_PROTECT 0x0008 // Recovery record is present.
#define MHFL_LOCK 0x0010 // Locked archive.
// RAR 5.0 file header specific flags.
#define FHFL_DIRECTORY 0x0001 // Directory.
#define FHFL_UTIME 0x0002 // Time field in Unix format is present.
#define FHFL_CRC32 0x0004 // CRC32 field is present.
#define FHFL_UNPUNKNOWN 0x0008 // Unknown unpacked size.
// RAR 5.0 end of archive header specific flags.
#define EHFL_NEXTVOLUME 0x0001 // Not last volume.
// RAR 5.0 archive encryption header specific flags.
#define CHFL_CRYPT_PSWCHECK 0x0001 // Password check data is present.
// RAR 5.0 file compression flags.
#define FCI_ALGO_BIT0 0x0001 // Version of compression algorithm.
#define FCI_ALGO_BIT1 0x0002 // 0 .. 63.
#define FCI_ALGO_BIT2 0x0004
#define FCI_ALGO_BIT3 0x0008
#define FCI_ALGO_BIT4 0x0010
#define FCI_ALGO_BIT5 0x0020
#define FCI_SOLID 0x0040 // Solid flag.
#define FCI_METHOD_BIT0 0x0080 // Compression method.
#define FCI_METHOD_BIT1 0x0100 // 0 .. 5 (6 and 7 are not used).
#define FCI_METHOD_BIT2 0x0200
#define FCI_DICT_BIT0 0x0400 // Dictionary size.
#define FCI_DICT_BIT1 0x0800 // 128 KB .. 4 GB.
#define FCI_DICT_BIT2 0x1000
#define FCI_DICT_BIT3 0x2000
// Main header extra field values.
#define MHEXTRA_LOCATOR 0x01 // Position of quick list and other blocks.
// Flags for MHEXTRA_LOCATOR.
#define MHEXTRA_LOCATOR_QLIST 0x01 // Quick open offset is present.
#define MHEXTRA_LOCATOR_RR 0x02 // Recovery record offset is present.
// File and service header extra field values.
#define FHEXTRA_CRYPT 0x01 // Encryption parameters.
#define FHEXTRA_HASH 0x02 // File hash.
#define FHEXTRA_HTIME 0x03 // High precision file time.
#define FHEXTRA_VERSION 0x04 // File version information.
#define FHEXTRA_REDIR 0x05 // File system redirection (links, etc.).
#define FHEXTRA_UOWNER 0x06 // Unix owner and group information.
#define FHEXTRA_SUBDATA 0x07 // Service header subdata array.
// Hash type values for FHEXTRA_HASH.
#define FHEXTRA_HASH_BLAKE2 0x00
// Flags for FHEXTRA_HTIME.
#define FHEXTRA_HTIME_UNIXTIME 0x01 // Use Unix time_t format.
#define FHEXTRA_HTIME_MTIME 0x02 // mtime is present.
#define FHEXTRA_HTIME_CTIME 0x04 // ctime is present.
#define FHEXTRA_HTIME_ATIME 0x08 // atime is present.
// Flags for FHEXTRA_CRYPT.
#define FHEXTRA_CRYPT_PSWCHECK 0x01 // Store password check data.
#define FHEXTRA_CRYPT_HASHMAC 0x02 // Use MAC for unpacked data checksums.
// Flags for FHEXTRA_REDIR.
#define FHEXTRA_REDIR_DIR 0x01 // Link target is directory.
// Flags for FHEXTRA_UOWNER.
#define FHEXTRA_UOWNER_UNAME 0x01 // User name string is present.
#define FHEXTRA_UOWNER_GNAME 0x02 // Group name string is present.
#define FHEXTRA_UOWNER_NUMUID 0x04 // Numeric user ID is present.
#define FHEXTRA_UOWNER_NUMGID 0x08 // Numeric group ID is present.
#endif

View File

@ -0,0 +1,42 @@
****** ***** ****** UnRAR - free utility for RAR archives
** ** ** ** ** ** ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
****** ******* ****** License for use and distribution of
** ** ** ** ** ** ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
** ** ** ** ** ** FREE portable version
~~~~~~~~~~~~~~~~~~~~~
The source code of UnRAR utility is freeware. This means:
1. All copyrights to RAR and the utility UnRAR are exclusively
owned by the author - Alexander Roshal.
2. UnRAR source code may be used in any software to handle
RAR archives without limitations free of charge, but cannot be
used to develop RAR (WinRAR) compatible archiver and to
re-create RAR compression algorithm, which is proprietary.
Distribution of modified UnRAR source code in separate form
or as a part of other software is permitted, provided that
full text of this paragraph, starting from "UnRAR source code"
words, is included in license, or in documentation if license
is not available, and in source code comments of resulting package.
3. The UnRAR utility may be freely distributed. It is allowed
to distribute UnRAR inside of other software packages.
4. THE RAR ARCHIVER AND THE UnRAR UTILITY ARE DISTRIBUTED "AS IS".
NO WARRANTY OF ANY KIND IS EXPRESSED OR IMPLIED. YOU USE AT
YOUR OWN RISK. THE AUTHOR WILL NOT BE LIABLE FOR DATA LOSS,
DAMAGES, LOSS OF PROFITS OR ANY OTHER KIND OF LOSS WHILE USING
OR MISUSING THIS SOFTWARE.
5. Installing and using the UnRAR utility signifies acceptance of
these terms and conditions of the license.
6. If you don't agree with terms of the license you must remove
UnRAR files from your storage devices and cease to use the
utility.
Thank you for your interest in RAR and UnRAR.
Alexander L. Roshal

View File

@ -0,0 +1,621 @@
/****************************************************************************
* This file is part of PPMd project *
* Written and distributed to public domain by Dmitry Shkarin 1997, *
* 1999-2000 *
* Contents: model description and encoding/decoding routines *
****************************************************************************/
#ifdef RAR_COMMON_HPP
static const int MAX_O=64; /* maximum allowed model order */
const uint TOP=1 << 24, BOT=1 << 15;
template <class T>
inline void _PPMD_SWAP(T& t1,T& t2) { T tmp=t1; t1=t2; t2=tmp; }
inline RARPPM_CONTEXT* RARPPM_CONTEXT::createChild(ModelPPM *Model,RARPPM_STATE* pStats,
RARPPM_STATE& FirstState)
{
RARPPM_CONTEXT* pc = (RARPPM_CONTEXT*) Model->SubAlloc.AllocContext();
if ( pc )
{
pc->NumStats=1;
pc->OneState=FirstState;
pc->Suffix=this;
pStats->Successor=pc;
}
return pc;
}
ModelPPM::ModelPPM()
{
MinContext=NULL;
MaxContext=NULL;
MedContext=NULL;
}
void ModelPPM::RestartModelRare()
{
int i, k, m;
memset(CharMask,0,sizeof(CharMask));
SubAlloc.InitSubAllocator();
InitRL=-(MaxOrder < 12 ? MaxOrder:12)-1;
MinContext = MaxContext = (RARPPM_CONTEXT*) SubAlloc.AllocContext();
MinContext->Suffix=NULL;
OrderFall=MaxOrder;
MinContext->U.SummFreq=(MinContext->NumStats=256)+1;
FoundState=MinContext->U.Stats=(RARPPM_STATE*)SubAlloc.AllocUnits(256/2);
for (RunLength=InitRL, PrevSuccess=i=0;i < 256;i++)
{
MinContext->U.Stats[i].Symbol=i;
MinContext->U.Stats[i].Freq=1;
MinContext->U.Stats[i].Successor=NULL;
}
static const ushort InitBinEsc[]={
0x3CDD,0x1F3F,0x59BF,0x48F3,0x64A1,0x5ABC,0x6632,0x6051
};
for (i=0;i < 128;i++)
for (k=0;k < 8;k++)
for (m=0;m < 64;m += 8)
BinSumm[i][k+m]=BIN_SCALE-InitBinEsc[k]/(i+2);
for (i=0;i < 25;i++)
for (k=0;k < 16;k++)
SEE2Cont[i][k].init(5*i+10);
}
void ModelPPM::StartModelRare(int MaxOrder)
{
int i, k, m ,Step;
EscCount=1;
/*
if (MaxOrder < 2)
{
memset(CharMask,0,sizeof(CharMask));
OrderFall=ModelPPM::MaxOrder;
MinContext=MaxContext;
while (MinContext->Suffix != NULL)
{
MinContext=MinContext->Suffix;
OrderFall--;
}
FoundState=MinContext->U.Stats;
MinContext=MaxContext;
}
else
*/
{
ModelPPM::MaxOrder=MaxOrder;
RestartModelRare();
NS2BSIndx[0]=2*0;
NS2BSIndx[1]=2*1;
memset(NS2BSIndx+2,2*2,9);
memset(NS2BSIndx+11,2*3,256-11);
for (i=0;i < 3;i++)
NS2Indx[i]=i;
for (m=i, k=Step=1;i < 256;i++)
{
NS2Indx[i]=m;
if ( !--k )
{
k = ++Step;
m++;
}
}
memset(HB2Flag,0,0x40);
memset(HB2Flag+0x40,0x08,0x100-0x40);
DummySEE2Cont.Shift=PERIOD_BITS;
}
}
void RARPPM_CONTEXT::rescale(ModelPPM *Model)
{
int OldNS=NumStats, i=NumStats-1, Adder, EscFreq;
RARPPM_STATE* p1, * p;
for (p=Model->FoundState;p != U.Stats;p--)
_PPMD_SWAP(p[0],p[-1]);
U.Stats->Freq += 4;
U.SummFreq += 4;
EscFreq=U.SummFreq-p->Freq;
Adder=(Model->OrderFall != 0);
U.SummFreq = (p->Freq=(p->Freq+Adder) >> 1);
do
{
EscFreq -= (++p)->Freq;
U.SummFreq += (p->Freq=(p->Freq+Adder) >> 1);
if (p[0].Freq > p[-1].Freq)
{
RARPPM_STATE tmp=*(p1=p);
do
{
p1[0]=p1[-1];
} while (--p1 != U.Stats && tmp.Freq > p1[-1].Freq);
*p1=tmp;
}
} while ( --i );
if (p->Freq == 0)
{
do
{
i++;
} while ((--p)->Freq == 0);
EscFreq += i;
if ((NumStats -= i) == 1)
{
RARPPM_STATE tmp=*U.Stats;
do
{
tmp.Freq-=(tmp.Freq >> 1);
EscFreq>>=1;
} while (EscFreq > 1);
Model->SubAlloc.FreeUnits(U.Stats,(OldNS+1) >> 1);
*(Model->FoundState=&OneState)=tmp; return;
}
}
U.SummFreq += (EscFreq -= (EscFreq >> 1));
int n0=(OldNS+1) >> 1, n1=(NumStats+1) >> 1;
if (n0 != n1)
U.Stats = (RARPPM_STATE*) Model->SubAlloc.ShrinkUnits(U.Stats,n0,n1);
Model->FoundState=U.Stats;
}
inline RARPPM_CONTEXT* ModelPPM::CreateSuccessors(bool Skip,RARPPM_STATE* p1)
{
#ifdef __ICL
static
#endif
RARPPM_STATE UpState;
RARPPM_CONTEXT* pc=MinContext, * UpBranch=FoundState->Successor;
RARPPM_STATE * p, * ps[MAX_O], ** pps=ps;
if ( !Skip )
{
*pps++ = FoundState;
if ( !pc->Suffix )
goto NO_LOOP;
}
if ( p1 )
{
p=p1;
pc=pc->Suffix;
goto LOOP_ENTRY;
}
do
{
pc=pc->Suffix;
if (pc->NumStats != 1)
{
if ((p=pc->U.Stats)->Symbol != FoundState->Symbol)
do
{
p++;
} while (p->Symbol != FoundState->Symbol);
}
else
p=&(pc->OneState);
LOOP_ENTRY:
if (p->Successor != UpBranch)
{
pc=p->Successor;
break;
}
*pps++ = p;
} while ( pc->Suffix );
NO_LOOP:
if (pps == ps)
return pc;
UpState.Symbol=*(byte*) UpBranch;
UpState.Successor=(RARPPM_CONTEXT*) (((byte*) UpBranch)+1);
if (pc->NumStats != 1)
{
if ((byte*) pc <= SubAlloc.pText)
return(NULL);
if ((p=pc->U.Stats)->Symbol != UpState.Symbol)
do
{
p++;
} while (p->Symbol != UpState.Symbol);
uint cf=p->Freq-1;
uint s0=pc->U.SummFreq-pc->NumStats-cf;
UpState.Freq=1+((2*cf <= s0)?(5*cf > s0):((2*cf+3*s0-1)/(2*s0)));
}
else
UpState.Freq=pc->OneState.Freq;
do
{
pc = pc->createChild(this,*--pps,UpState);
if ( !pc )
return NULL;
} while (pps != ps);
return pc;
}
inline void ModelPPM::UpdateModel()
{
RARPPM_STATE fs = *FoundState, *p = NULL;
RARPPM_CONTEXT *pc, *Successor;
uint ns1, ns, cf, sf, s0;
if (fs.Freq < MAX_FREQ/4 && (pc=MinContext->Suffix) != NULL)
{
if (pc->NumStats != 1)
{
if ((p=pc->U.Stats)->Symbol != fs.Symbol)
{
do
{
p++;
} while (p->Symbol != fs.Symbol);
if (p[0].Freq >= p[-1].Freq)
{
_PPMD_SWAP(p[0],p[-1]);
p--;
}
}
if (p->Freq < MAX_FREQ-9)
{
p->Freq += 2;
pc->U.SummFreq += 2;
}
}
else
{
p=&(pc->OneState);
p->Freq += (p->Freq < 32);
}
}
if ( !OrderFall )
{
MinContext=MaxContext=FoundState->Successor=CreateSuccessors(TRUE,p);
if ( !MinContext )
goto RESTART_MODEL;
return;
}
*SubAlloc.pText++ = fs.Symbol;
Successor = (RARPPM_CONTEXT*) SubAlloc.pText;
if (SubAlloc.pText >= SubAlloc.FakeUnitsStart)
goto RESTART_MODEL;
if ( fs.Successor )
{
if ((byte*) fs.Successor <= SubAlloc.pText &&
(fs.Successor=CreateSuccessors(FALSE,p)) == NULL)
goto RESTART_MODEL;
if ( !--OrderFall )
{
Successor=fs.Successor;
SubAlloc.pText -= (MaxContext != MinContext);
}
}
else
{
FoundState->Successor=Successor;
fs.Successor=MinContext;
}
s0=MinContext->U.SummFreq-(ns=MinContext->NumStats)-(fs.Freq-1);
for (pc=MaxContext;pc != MinContext;pc=pc->Suffix)
{
if ((ns1=pc->NumStats) != 1)
{
if ((ns1 & 1) == 0)
{
pc->U.Stats=(RARPPM_STATE*) SubAlloc.ExpandUnits(pc->U.Stats,ns1 >> 1);
if ( !pc->U.Stats )
goto RESTART_MODEL;
}
pc->U.SummFreq += (2*ns1 < ns)+2*((4*ns1 <= ns) & (pc->U.SummFreq <= 8*ns1));
}
else
{
p=(RARPPM_STATE*) SubAlloc.AllocUnits(1);
if ( !p )
goto RESTART_MODEL;
*p=pc->OneState;
pc->U.Stats=p;
if (p->Freq < MAX_FREQ/4-1)
p->Freq += p->Freq;
else
p->Freq = MAX_FREQ-4;
pc->U.SummFreq=p->Freq+InitEsc+(ns > 3);
}
cf=2*fs.Freq*(pc->U.SummFreq+6);
sf=s0+pc->U.SummFreq;
if (cf < 6*sf)
{
cf=1+(cf > sf)+(cf >= 4*sf);
pc->U.SummFreq += 3;
}
else
{
cf=4+(cf >= 9*sf)+(cf >= 12*sf)+(cf >= 15*sf);
pc->U.SummFreq += cf;
}
p=pc->U.Stats+ns1;
p->Successor=Successor;
p->Symbol = fs.Symbol;
p->Freq = cf;
pc->NumStats=++ns1;
}
MaxContext=MinContext=fs.Successor;
return;
RESTART_MODEL:
RestartModelRare();
EscCount=0;
}
// Tabulated escapes for exponential symbol distribution
static const byte ExpEscape[16]={ 25,14, 9, 7, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2 };
#define GET_MEAN(SUMM,SHIFT,ROUND) ((SUMM+(1 << (SHIFT-ROUND))) >> (SHIFT))
inline void RARPPM_CONTEXT::decodeBinSymbol(ModelPPM *Model)
{
RARPPM_STATE& rs=OneState;
Model->HiBitsFlag=Model->HB2Flag[Model->FoundState->Symbol];
ushort& bs=Model->BinSumm[rs.Freq-1][Model->PrevSuccess+
Model->NS2BSIndx[Suffix->NumStats-1]+
Model->HiBitsFlag+2*Model->HB2Flag[rs.Symbol]+
((Model->RunLength >> 26) & 0x20)];
if (Model->Coder.GetCurrentShiftCount(TOT_BITS) < bs)
{
Model->FoundState=&rs;
rs.Freq += (rs.Freq < 128);
Model->Coder.SubRange.LowCount=0;
Model->Coder.SubRange.HighCount=bs;
bs = GET_SHORT16(bs+INTERVAL-GET_MEAN(bs,PERIOD_BITS,2));
Model->PrevSuccess=1;
Model->RunLength++;
}
else
{
Model->Coder.SubRange.LowCount=bs;
bs = GET_SHORT16(bs-GET_MEAN(bs,PERIOD_BITS,2));
Model->Coder.SubRange.HighCount=BIN_SCALE;
Model->InitEsc=ExpEscape[bs >> 10];
Model->NumMasked=1;
Model->CharMask[rs.Symbol]=Model->EscCount;
Model->PrevSuccess=0;
Model->FoundState=NULL;
}
}
inline void RARPPM_CONTEXT::update1(ModelPPM *Model,RARPPM_STATE* p)
{
(Model->FoundState=p)->Freq += 4;
U.SummFreq += 4;
if (p[0].Freq > p[-1].Freq)
{
_PPMD_SWAP(p[0],p[-1]);
Model->FoundState=--p;
if (p->Freq > MAX_FREQ)
rescale(Model);
}
}
inline bool RARPPM_CONTEXT::decodeSymbol1(ModelPPM *Model)
{
Model->Coder.SubRange.scale=U.SummFreq;
RARPPM_STATE* p=U.Stats;
int i, HiCnt;
int count=Model->Coder.GetCurrentCount();
if (count>=(int)Model->Coder.SubRange.scale)
return(false);
if (count < (HiCnt=p->Freq))
{
Model->PrevSuccess=(2*(Model->Coder.SubRange.HighCount=HiCnt) > Model->Coder.SubRange.scale);
Model->RunLength += Model->PrevSuccess;
(Model->FoundState=p)->Freq=(HiCnt += 4);
U.SummFreq += 4;
if (HiCnt > MAX_FREQ)
rescale(Model);
Model->Coder.SubRange.LowCount=0;
return(true);
}
else
if (Model->FoundState==NULL)
return(false);
Model->PrevSuccess=0;
i=NumStats-1;
while ((HiCnt += (++p)->Freq) <= count)
if (--i == 0)
{
Model->HiBitsFlag=Model->HB2Flag[Model->FoundState->Symbol];
Model->Coder.SubRange.LowCount=HiCnt;
Model->CharMask[p->Symbol]=Model->EscCount;
i=(Model->NumMasked=NumStats)-1;
Model->FoundState=NULL;
do
{
Model->CharMask[(--p)->Symbol]=Model->EscCount;
} while ( --i );
Model->Coder.SubRange.HighCount=Model->Coder.SubRange.scale;
return(true);
}
Model->Coder.SubRange.LowCount=(Model->Coder.SubRange.HighCount=HiCnt)-p->Freq;
update1(Model,p);
return(true);
}
inline void RARPPM_CONTEXT::update2(ModelPPM *Model,RARPPM_STATE* p)
{
(Model->FoundState=p)->Freq += 4;
U.SummFreq += 4;
if (p->Freq > MAX_FREQ)
rescale(Model);
Model->EscCount++;
Model->RunLength=Model->InitRL;
}
inline RARPPM_SEE2_CONTEXT* RARPPM_CONTEXT::makeEscFreq2(ModelPPM *Model,int Diff)
{
RARPPM_SEE2_CONTEXT* psee2c;
if (NumStats != 256)
{
psee2c=Model->SEE2Cont[Model->NS2Indx[Diff-1]]+
(Diff < Suffix->NumStats-NumStats)+
2*(U.SummFreq < 11*NumStats)+4*(Model->NumMasked > Diff)+
Model->HiBitsFlag;
Model->Coder.SubRange.scale=psee2c->getMean();
}
else
{
psee2c=&Model->DummySEE2Cont;
Model->Coder.SubRange.scale=1;
}
return psee2c;
}
inline bool RARPPM_CONTEXT::decodeSymbol2(ModelPPM *Model)
{
int count, HiCnt, i=NumStats-Model->NumMasked;
RARPPM_SEE2_CONTEXT* psee2c=makeEscFreq2(Model,i);
RARPPM_STATE* ps[256], ** pps=ps, * p=U.Stats-1;
HiCnt=0;
do
{
do
{
p++;
} while (Model->CharMask[p->Symbol] == Model->EscCount);
HiCnt += p->Freq;
*pps++ = p;
} while ( --i );
Model->Coder.SubRange.scale += HiCnt;
count=Model->Coder.GetCurrentCount();
if (count>=(int)Model->Coder.SubRange.scale)
return(false);
p=*(pps=ps);
if (count < HiCnt)
{
HiCnt=0;
while ((HiCnt += p->Freq) <= count)
p=*++pps;
Model->Coder.SubRange.LowCount = (Model->Coder.SubRange.HighCount=HiCnt)-p->Freq;
psee2c->update();
update2(Model,p);
}
else
{
Model->Coder.SubRange.LowCount=HiCnt;
Model->Coder.SubRange.HighCount=Model->Coder.SubRange.scale;
i=NumStats-Model->NumMasked;
pps--;
do
{
Model->CharMask[(*++pps)->Symbol]=Model->EscCount;
} while ( --i );
psee2c->Summ += Model->Coder.SubRange.scale;
Model->NumMasked = NumStats;
}
return(true);
}
inline void ModelPPM::ClearMask()
{
EscCount=1;
memset(CharMask,0,sizeof(CharMask));
}
// reset PPM variables after data error allowing safe resuming
// of further data processing
void ModelPPM::CleanUp()
{
SubAlloc.StopSubAllocator();
SubAlloc.StartSubAllocator(1);
StartModelRare(2);
}
bool ModelPPM::DecodeInit(Unpack *UnpackRead,int &EscChar)
{
int MaxOrder=UnpackRead->GetChar();
bool Reset=(MaxOrder & 0x20)!=0;
int MaxMB;
if (Reset)
MaxMB=UnpackRead->GetChar();
else
if (SubAlloc.GetAllocatedMemory()==0)
return(false);
if (MaxOrder & 0x40)
EscChar=UnpackRead->GetChar();
Coder.InitDecoder(UnpackRead);
if (Reset)
{
MaxOrder=(MaxOrder & 0x1f)+1;
if (MaxOrder>16)
MaxOrder=16+(MaxOrder-16)*3;
if (MaxOrder==1)
{
SubAlloc.StopSubAllocator();
return(false);
}
SubAlloc.StartSubAllocator(MaxMB+1);
StartModelRare(MaxOrder);
}
return(MinContext!=NULL);
}
int ModelPPM::DecodeChar()
{
if ((byte*)MinContext <= SubAlloc.pText || (byte*)MinContext>SubAlloc.HeapEnd)
return(-1);
if (MinContext->NumStats != 1)
{
if ((byte*)MinContext->U.Stats <= SubAlloc.pText || (byte*)MinContext->U.Stats>SubAlloc.HeapEnd)
return(-1);
if (!MinContext->decodeSymbol1(this))
return(-1);
}
else
MinContext->decodeBinSymbol(this);
Coder.Decode();
while ( !FoundState )
{
ARI_DEC_NORMALIZE(Coder.code,Coder.low,Coder.range,Coder.UnpackRead);
do
{
OrderFall++;
MinContext=MinContext->Suffix;
if ((byte*)MinContext <= SubAlloc.pText || (byte*)MinContext>SubAlloc.HeapEnd)
return(-1);
} while (MinContext->NumStats == NumMasked);
if (!MinContext->decodeSymbol2(this))
return(-1);
Coder.Decode();
}
int Symbol=FoundState->Symbol;
if (!OrderFall && (byte*) FoundState->Successor > SubAlloc.pText)
MinContext=MaxContext=FoundState->Successor;
else
{
UpdateModel();
if (EscCount == 0)
ClearMask();
}
ARI_DEC_NORMALIZE(Coder.code,Coder.low,Coder.range,Coder.UnpackRead);
return(Symbol);
}
#endif

View File

@ -0,0 +1,122 @@
#ifndef _RAR_PPMMODEL_
#define _RAR_PPMMODEL_
#include "coder.hpp"
#include "suballoc.hpp"
#ifdef ALLOW_MISALIGNED
#pragma pack(1)
#endif
struct RARPPM_DEF
{
static const int INT_BITS=7, PERIOD_BITS=7, TOT_BITS=INT_BITS+PERIOD_BITS,
INTERVAL=1 << INT_BITS, BIN_SCALE=1 << TOT_BITS, MAX_FREQ=124;
};
struct RARPPM_SEE2_CONTEXT : RARPPM_DEF
{ // SEE-contexts for PPM-contexts with masked symbols
ushort Summ;
byte Shift, Count;
void init(int InitVal)
{
Summ=InitVal << (Shift=PERIOD_BITS-4);
Count=4;
}
uint getMean()
{
uint RetVal=GET_SHORT16(Summ) >> Shift;
Summ -= RetVal;
return RetVal+(RetVal == 0);
}
void update()
{
if (Shift < PERIOD_BITS && --Count == 0)
{
Summ += Summ;
Count=3 << Shift++;
}
}
};
class ModelPPM;
struct RARPPM_CONTEXT;
struct RARPPM_STATE
{
byte Symbol;
byte Freq;
RARPPM_CONTEXT* Successor;
};
struct RARPPM_CONTEXT : RARPPM_DEF
{
ushort NumStats;
struct FreqData
{
ushort SummFreq;
RARPPM_STATE RARPPM_PACK_ATTR * Stats;
};
union
{
FreqData U;
RARPPM_STATE OneState;
};
RARPPM_CONTEXT* Suffix;
inline void encodeBinSymbol(ModelPPM *Model,int symbol); // MaxOrder:
inline void encodeSymbol1(ModelPPM *Model,int symbol); // ABCD context
inline void encodeSymbol2(ModelPPM *Model,int symbol); // BCD suffix
inline void decodeBinSymbol(ModelPPM *Model); // BCDE successor
inline bool decodeSymbol1(ModelPPM *Model); // other orders:
inline bool decodeSymbol2(ModelPPM *Model); // BCD context
inline void update1(ModelPPM *Model,RARPPM_STATE* p); // CD suffix
inline void update2(ModelPPM *Model,RARPPM_STATE* p); // BCDE successor
void rescale(ModelPPM *Model);
inline RARPPM_CONTEXT* createChild(ModelPPM *Model,RARPPM_STATE* pStats,RARPPM_STATE& FirstState);
inline RARPPM_SEE2_CONTEXT* makeEscFreq2(ModelPPM *Model,int Diff);
};
#ifdef ALLOW_MISALIGNED
#ifdef _AIX
#pragma pack(pop)
#else
#pragma pack()
#endif
#endif
class ModelPPM : RARPPM_DEF
{
private:
friend struct RARPPM_CONTEXT;
RARPPM_SEE2_CONTEXT SEE2Cont[25][16], DummySEE2Cont;
struct RARPPM_CONTEXT *MinContext, *MedContext, *MaxContext;
RARPPM_STATE* FoundState; // found next state transition
int NumMasked, InitEsc, OrderFall, MaxOrder, RunLength, InitRL;
byte CharMask[256], NS2Indx[256], NS2BSIndx[256], HB2Flag[256];
byte EscCount, PrevSuccess, HiBitsFlag;
ushort BinSumm[128][64]; // binary SEE-contexts
RangeCoder Coder;
SubAllocator SubAlloc;
void RestartModelRare();
void StartModelRare(int MaxOrder);
inline RARPPM_CONTEXT* CreateSuccessors(bool Skip,RARPPM_STATE* p1);
inline void UpdateModel();
inline void ClearMask();
public:
ModelPPM();
void CleanUp(); // reset PPM variables after data error
bool DecodeInit(Unpack *UnpackRead,int &EscChar);
int DecodeChar();
};
#endif

View File

@ -0,0 +1,56 @@
#include "rar.hpp"
wchar* GetWideName(const char *Name,const wchar *NameW,wchar *DestW,size_t DestSize)
{
if (NameW!=NULL && *NameW!=0)
{
if (DestW!=NameW)
my_wcsncpy(DestW,NameW,DestSize);
}
else
if (Name!=NULL)
CharToWide(Name,DestW,DestSize);
else
*DestW=0;
// Ensure that we return a zero terminate string for security reasons.
if (DestSize>0)
DestW[DestSize-1]=0;
return(DestW);
}
void UnixSlashToDos(const char *SrcName, char *DestName, size_t MaxLength)
{
size_t Copied = 0;
for (; Copied<MaxLength - 1 && SrcName[Copied] != 0; Copied++)
DestName[Copied] = SrcName[Copied] == '/' ? '\\' : SrcName[Copied];
DestName[Copied] = 0;
}
void DosSlashToUnix(const char *SrcName, char *DestName, size_t MaxLength)
{
size_t Copied = 0;
for (; Copied<MaxLength - 1 && SrcName[Copied] != 0; Copied++)
DestName[Copied] = SrcName[Copied] == '\\' ? '/' : SrcName[Copied];
DestName[Copied] = 0;
}
void UnixSlashToDos(const wchar *SrcName, wchar *DestName, size_t MaxLength)
{
size_t Copied = 0;
for (; Copied<MaxLength - 1 && SrcName[Copied] != 0; Copied++)
DestName[Copied] = SrcName[Copied] == '/' ? '\\' : SrcName[Copied];
DestName[Copied] = 0;
}
void DosSlashToUnix(const wchar *SrcName, wchar *DestName, size_t MaxLength)
{
size_t Copied = 0;
for (; Copied<MaxLength - 1 && SrcName[Copied] != 0; Copied++)
DestName[Copied] = SrcName[Copied] == '\\' ? '/' : SrcName[Copied];
DestName[Copied] = 0;
}

249
src/core/fex/unrar/rar.hpp Normal file
View File

@ -0,0 +1,249 @@
// This source code is a heavily modified version based on the unrar package.
// It may NOT be used to develop a RAR (WinRAR) compatible archiver.
// See license.txt for copyright and licensing.
// unrar_core 5.1.7
#ifndef RAR_COMMON_HPP
#define RAR_COMMON_HPP
#include "unrar.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <setjmp.h>
#include <limits.h>
//// Glue
// One goal is to keep source code as close to original as possible, so
// that changes to the original can be found and merged more easily.
// These names are too generic and might clash (or have already, hmpf)
#define Array Rar_Array
#define uint32 rar_uint32
#define int32 rar_int32
#define Unpack Rar_Unpack
#define Archive Rar_Archive
#define RawRead Rar_RawRead
#define BitInput Rar_BitInput
#define ModelPPM Rar_ModelPPM
#define RangeCoder Rar_RangeCoder
#define SubAllocator Rar_SubAllocator
#define UnpackFilter Rar_UnpackFilter
#define VM_PreparedProgram Rar_VM_PreparedProgram
#define CRCTab Rar_CRCTab
// original source used rar* names for these as well
#define rarmalloc malloc
#define rarrealloc realloc
#define rarfree free
// Internal flags, possibly set later
#undef SFX_MODULE
#undef VM_OPTIMIZE
#undef VM_STANDARDFILTERS
#undef NORARVM
// During debugging if expr is false, prints message then continues execution
#ifndef check
#define check( expr ) ((void) 0)
#endif
struct Rar_Error_Handler
{
jmp_buf jmp_env;
void MemoryError();
void ReportError( unrar_err_t );
};
// throw spec is mandatory in ISO C++ if operator new can return NULL
#if __cplusplus >= 199711 || __GNUC__ >= 3
#define UNRAR_NOTHROW throw ()
#else
#define UNRAR_NOTHROW
#endif
struct Rar_Allocator
{
// provides allocator that doesn't throw an exception on failure
static void operator delete ( void* p ) { free( p ); }
static void* operator new ( size_t s ) UNRAR_NOTHROW { return malloc( s ); }
static void* operator new ( size_t, void* p ) UNRAR_NOTHROW { return p; }
};
//// os.hpp
#define FALSE 0
#define TRUE 1
#undef STRICT_ALIGNMENT_REQUIRED
#undef LITTLE_ENDIAN
#define NM 1024
#if defined (__i386__) || defined (__x86_64__) || defined (_M_IX86) || defined (_M_X64)
// Optimizations mostly only apply to x86
#define LITTLE_ENDIAN
#define ALLOW_NOT_ALIGNED_INT
#endif
#if defined(__sparc) || defined(sparc) || defined(__sparcv9)
/* prohibit not aligned access to data structures in text comression
algorithm, increases memory requirements */
#define STRICT_ALIGNMENT_REQUIRED
#endif
//// rartypes.hpp
#if INT_MAX == 0x7FFFFFFF && UINT_MAX == 0xFFFFFFFF
typedef unsigned int uint32; //32 bits exactly
typedef int int32; //signed 32 bits exactly
#define PRESENT_INT32
#endif
typedef unsigned char byte; //8 bits
typedef unsigned short ushort; //preferably 16 bits, but can be more
typedef unsigned int uint; //32 bits or more
typedef wchar_t wchar;
#define GET_SHORT16(x) (sizeof(ushort)==2 ? (ushort)(x):((x)&0xffff))
#define GET_UINT32(x) (sizeof(uint )==4 ? (uint )(x):((x)&0xffffffff))
//// rardefs.hpp
#define Min(x,y) (((x)<(y)) ? (x):(y))
#define Max(x,y) (((x)>(y)) ? (x):(y))
#define ALIGN_VALUE(v,a) (size_t(v) + ( (~size_t(v) + 1) & (a - 1) ) )
#define ASIZE(x) (sizeof(x)/sizeof(x[0]))
//// int64.hpp
typedef unrar_long_long int64;
typedef unrar_ulong_long uint64;
#define int64to32(x) ((uint)(x))
#define int32to64(high,low) ((((int64)(high))<<31<<1)+(low))
#define is64plus(x) (x>=0)
#define INT64MAX int32to64(0x7fffffff,0)
#define INT64NDF int32to64(0x7fffffff,0x7fffffff)
//// crc.hpp
extern uint crc_tables[8][256];
void InitCRCTables();
uint CRC32(uint StartCRC,const void *Addr,size_t Size);
ushort Checksum14(ushort StartCRC,const void *Addr,size_t Size);
#define SHA256_DIGEST_SIZE 32
#include "blake2s.hpp"
#include "hash.hpp"
//// rdwrfn.hpp
class ComprDataIO
: public Rar_Error_Handler
{
public:
unrar_read_func user_read;
unrar_write_func user_write;
void* user_read_data;
void* user_write_data;
unrar_err_t write_error; // once write error occurs, no more writes are made
int64 Tell_;
bool OldFormat;
private:
int64 UnpPackedSize;
bool SkipUnpCRC;
public:
int UnpRead(byte *Addr,uint Count);
void UnpWrite(byte *Addr,uint Count);
void SetSkipUnpCRC( bool b ) { SkipUnpCRC = b; }
void SetPackedSizeToRead( int64 n ) { UnpPackedSize = n; }
uint UnpFileCRC;
void Seek(int64 Offset, int Method = 0 ) { (void)Method; Tell_ = Offset; }
int64 Tell() { return Tell_; }
int Read( void* p, int n );
DataHash PackedDataHash; // Packed write and unpack read hash.
DataHash PackHash; // Pack read hash.
DataHash UnpHash; // Unpack write hash.
};
//// secpassword.hpp
void cleandata(void *data,size_t size);
//// pathfn.hpp
wchar* GetWideName(const char *Name,const wchar *NameW,wchar *DestW,size_t DestSize);
void UnixSlashToDos(const char *SrcName, char *DestName, size_t MaxLength);
void DosSlashToUnix(const char *SrcName, char *DestName, size_t MaxLength);
void UnixSlashToDos(const wchar *SrcName, wchar *DestName, size_t MaxLength);
void DosSlashToUnix(const wchar *SrcName, wchar *DestName, size_t MaxLength);
//// rar.hpp
class Unpack;
#include "array.hpp"
#include "unicode.hpp"
#include "timefn.hpp"
#include "headers.hpp"
#include "headers5.hpp"
#include "getbits.hpp"
#include "archive.hpp"
#include "rawread.hpp"
#include "encname.hpp"
#include "compress.hpp"
#include "rarvm.hpp"
#include "model.hpp"
#include "strfn.hpp"
#include "unpack.hpp"
//// savepos.hpp
class SaveFilePos
{
private:
File *SaveFile;
int64 SavePos;
public:
SaveFilePos(File &Src)
{
SaveFile=&Src;
SavePos=Src.Tell();
}
~SaveFilePos()
{
SaveFile->Seek(SavePos,SEEK_SET);
}
};
//// extract.hpp
/** RAR archive */
struct unrar_t
: public Rar_Allocator
{
unrar_info_t info;
unrar_pos_t begin_pos;
unrar_pos_t solid_pos;
unrar_pos_t first_file_pos;
void const* data_;
void* own_data_;
void (*close_file)( void* ); // func ptr to avoid linking fclose() in unnecessarily
bool done;
long FileCount;
Unpack* Unp;
Array<byte> Buffer;
// large items last
Archive Arc;
unrar_t();
~unrar_t();
void UnstoreFile( int64 );
unrar_err_t ExtractCurrentFile( bool SkipSolid = false, bool check_compatibility_only = false );
void update_first_file_pos()
{
if ( FileCount == 0 )
first_file_pos = Arc.CurBlockPos;
}
};
typedef unrar_t CmdExtract;
#endif

1150
src/core/fex/unrar/rarvm.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,115 @@
#ifndef _RAR_VM_
#define _RAR_VM_
#define VM_STANDARDFILTERS
#ifndef SFX_MODULE
#define VM_OPTIMIZE
#endif
#define VM_MEMSIZE 0x40000
#define VM_MEMMASK (VM_MEMSIZE-1)
#define VM_GLOBALMEMADDR 0x3C000
#define VM_GLOBALMEMSIZE 0x2000
#define VM_FIXEDGLOBALSIZE 64
enum VM_Commands
{
VM_MOV, VM_CMP, VM_ADD, VM_SUB, VM_JZ, VM_JNZ, VM_INC, VM_DEC,
VM_JMP, VM_XOR, VM_AND, VM_OR, VM_TEST, VM_JS, VM_JNS, VM_JB,
VM_JBE, VM_JA, VM_JAE, VM_PUSH, VM_POP, VM_CALL, VM_RET, VM_NOT,
VM_SHL, VM_SHR, VM_SAR, VM_NEG, VM_PUSHA,VM_POPA, VM_PUSHF,VM_POPF,
VM_MOVZX,VM_MOVSX,VM_XCHG, VM_MUL, VM_DIV, VM_ADC, VM_SBB, VM_PRINT,
#ifdef VM_OPTIMIZE
VM_MOVB, VM_MOVD, VM_CMPB, VM_CMPD,
VM_ADDB, VM_ADDD, VM_SUBB, VM_SUBD, VM_INCB, VM_INCD, VM_DECB, VM_DECD,
VM_NEGB, VM_NEGD,
#endif
VM_STANDARD
};
enum VM_StandardFilters {
VMSF_NONE, VMSF_E8, VMSF_E8E9, VMSF_ITANIUM, VMSF_RGB, VMSF_AUDIO,
VMSF_DELTA
};
enum VM_Flags {VM_FC=1,VM_FZ=2,VM_FS=0x80000000};
enum VM_OpType {VM_OPREG,VM_OPINT,VM_OPREGMEM,VM_OPNONE};
struct VM_PreparedOperand
{
VM_OpType Type;
uint Data;
uint Base;
uint *Addr;
};
struct VM_PreparedCommand
{
VM_Commands OpCode;
bool ByteMode;
VM_PreparedOperand Op1,Op2;
};
struct VM_PreparedProgram
{
VM_PreparedProgram()
{
AltCmd=NULL;
FilteredDataSize=0;
CmdCount=0;
}
Array<VM_PreparedCommand> Cmd;
VM_PreparedCommand *AltCmd;
int CmdCount;
Array<byte> GlobalData;
Array<byte> StaticData; // static data contained in DB operators
uint InitR[7];
byte *FilteredData;
uint FilteredDataSize;
};
class RarVM:private BitInput
{
private:
inline uint GetValue(bool ByteMode,uint *Addr);
inline void SetValue(bool ByteMode,uint *Addr,uint Value);
inline uint* GetOperand(VM_PreparedOperand *CmdOp);
void DecodeArg(VM_PreparedOperand &Op,bool ByteMode);
#ifdef VM_OPTIMIZE
void Optimize(VM_PreparedProgram *Prg);
#endif
bool ExecuteCode(VM_PreparedCommand *PreparedCode,uint CodeSize);
#ifdef VM_STANDARDFILTERS
VM_StandardFilters IsStandardFilter(byte *Code,uint CodeSize);
void ExecuteStandardFilter(VM_StandardFilters FilterType);
unsigned int FilterItanium_GetBits(byte *Data,int BitPos,int BitCount);
void FilterItanium_SetBits(byte *Data,uint BitField,int BitPos,int BitCount);
#endif
byte *Mem;
uint R[8];
uint Flags;
public:
RarVM();
~RarVM();
void Init();
void handle_mem_error( Rar_Error_Handler& );
friend class Unpack;
void Prepare(byte *Code,uint CodeSize,VM_PreparedProgram *Prg);
void Execute(VM_PreparedProgram *Prg);
void SetLowEndianValue(uint *Addr,uint Value);
void SetMemory(size_t Pos,byte *Data,size_t DataSize);
static uint ReadData(BitInput &Inp);
};
#endif

View File

@ -0,0 +1,57 @@
// #included by rarvm.cpp
#ifdef RAR_COMMON_HPP
#define VMCF_OP0 0
#define VMCF_OP1 1
#define VMCF_OP2 2
#define VMCF_OPMASK 3
#define VMCF_BYTEMODE 4
#define VMCF_JUMP 8
#define VMCF_PROC 16
#define VMCF_USEFLAGS 32
#define VMCF_CHFLAGS 64
const
static byte VM_CmdFlags[]=
{
/* VM_MOV */ VMCF_OP2 | VMCF_BYTEMODE ,
/* VM_CMP */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_ADD */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_SUB */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_JZ */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_JNZ */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_INC */ VMCF_OP1 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_DEC */ VMCF_OP1 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_JMP */ VMCF_OP1 | VMCF_JUMP ,
/* VM_XOR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_AND */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_OR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_TEST */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_JS */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_JNS */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_JB */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_JBE */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_JA */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_JAE */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_PUSH */ VMCF_OP1 ,
/* VM_POP */ VMCF_OP1 ,
/* VM_CALL */ VMCF_OP1 | VMCF_PROC ,
/* VM_RET */ VMCF_OP0 | VMCF_PROC ,
/* VM_NOT */ VMCF_OP1 | VMCF_BYTEMODE ,
/* VM_SHL */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_SHR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_SAR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_NEG */ VMCF_OP1 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_PUSHA */ VMCF_OP0 ,
/* VM_POPA */ VMCF_OP0 ,
/* VM_PUSHF */ VMCF_OP0 | VMCF_USEFLAGS ,
/* VM_POPF */ VMCF_OP0 | VMCF_CHFLAGS ,
/* VM_MOVZX */ VMCF_OP2 ,
/* VM_MOVSX */ VMCF_OP2 ,
/* VM_XCHG */ VMCF_OP2 | VMCF_BYTEMODE ,
/* VM_MUL */ VMCF_OP2 | VMCF_BYTEMODE ,
/* VM_DIV */ VMCF_OP2 | VMCF_BYTEMODE ,
/* VM_ADC */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_USEFLAGS | VMCF_CHFLAGS ,
/* VM_SBB */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_USEFLAGS | VMCF_CHFLAGS ,
/* VM_PRINT */ VMCF_OP0
};
#endif

View File

@ -0,0 +1,159 @@
#include "rar.hpp"
RawRead::RawRead(ComprDataIO *SrcFile)
{
RawRead::SrcFile=SrcFile;
Reset();
}
void RawRead::Reset()
{
ReadPos=0;
DataSize=0;
Data.Reset();
}
size_t RawRead::Read(size_t Size)
{
size_t ReadSize=0;
// (removed decryption)
if (Size!=0)
{
Data.Add(Size);
ReadSize=SrcFile->Read(&Data[DataSize],Size);
DataSize+=ReadSize;
}
return ReadSize;
}
void RawRead::Read(byte *SrcData,size_t Size)
{
if (Size!=0)
{
Data.Add(Size);
memcpy(&Data[DataSize],SrcData,Size);
DataSize+=Size;
}
}
byte RawRead::Get1()
{
return ReadPos<DataSize ? Data[ReadPos++]:0;
}
ushort RawRead::Get2()
{
if (ReadPos+1<DataSize)
{
ushort Result=Data[ReadPos]+(Data[ReadPos+1]<<8);
ReadPos+=2;
return Result;
}
return 0;
}
uint RawRead::Get4()
{
if (ReadPos+3<DataSize)
{
uint Result=Data[ReadPos]+(Data[ReadPos+1]<<8)+(Data[ReadPos+2]<<16)+
(Data[ReadPos+3]<<24);
ReadPos+=4;
return Result;
}
return 0;
}
uint64 RawRead::Get8()
{
uint Low=Get4(),High=Get4();
return int32to64(High,Low);
}
uint64 RawRead::GetV()
{
uint64 Result=0;
for (uint Shift=0;ReadPos<DataSize;Shift+=7)
{
byte CurByte=Data[ReadPos++];
Result+=uint64(CurByte & 0x7f)<<Shift;
if ((CurByte & 0x80)==0)
return Result; // Decoded successfully.
}
return 0; // Out of buffer border.
}
// Return a number of bytes in current variable length integer.
uint RawRead::GetVSize(size_t Pos)
{
for (size_t CurPos=Pos;CurPos<DataSize;CurPos++)
if ((Data[CurPos] & 0x80)==0)
return int(CurPos-Pos+1);
return 0; // Buffer overflow.
}
size_t RawRead::GetB(void *Field,size_t Size)
{
byte *F=(byte *)Field;
size_t CopySize=Min(DataSize-ReadPos,Size);
if (CopySize>0)
memcpy(F,&Data[ReadPos],CopySize);
if (Size>CopySize)
memset(F+CopySize,0,Size-CopySize);
ReadPos+=CopySize;
return CopySize;
}
void RawRead::GetW(wchar *Field,size_t Size)
{
if (ReadPos+2*Size-1<DataSize)
{
RawToWide(&Data[ReadPos],Field,Size);
ReadPos+=sizeof(wchar)*Size;
}
else
memset(Field,0,sizeof(wchar)*Size);
}
uint RawRead::GetCRC15(bool ProcessedOnly) // RAR 1.5 block CRC.
{
if (DataSize<=2)
return 0;
uint HeaderCRC=CRC32(0xffffffff,&Data[2],(ProcessedOnly ? ReadPos:DataSize)-2);
return ~HeaderCRC & 0xffff;
}
uint RawRead::GetCRC50() // RAR 5.0 block CRC.
{
if (DataSize<=4)
return 0xffffffff;
return CRC32(0xffffffff,&Data[4],DataSize-4) ^ 0xffffffff;
}
// Read vint from arbitrary byte array.
uint64 RawGetV(const byte *Data,uint &ReadPos,uint DataSize,bool &Overflow)
{
Overflow=false;
uint64 Result=0;
for (uint Shift=0;ReadPos<DataSize;Shift+=7)
{
byte CurByte=Data[ReadPos++];
Result+=uint64(CurByte & 0x7f)<<Shift;
if ((CurByte & 0x80)==0)
return Result; // Decoded successfully.
}
Overflow=true;
return 0; // Out of buffer border.
}

View File

@ -0,0 +1,98 @@
#ifndef _RAR_RAWREAD_
#define _RAR_RAWREAD_
class RawRead
{
private:
Array<byte> Data;
File *SrcFile;
size_t DataSize;
size_t ReadPos;
public:
RawRead(File *SrcFile);
void Reset();
size_t Read(size_t Size);
void Read(byte *SrcData,size_t Size);
byte Get1();
ushort Get2();
uint Get4();
uint64 Get8();
uint64 GetV();
uint GetVSize(size_t Pos);
size_t GetB(void *Field,size_t Size);
void GetW(wchar *Field,size_t Size);
uint GetCRC15(bool ProcessedOnly);
uint GetCRC50();
byte* GetDataPtr() {return &Data[0];}
size_t Size() {return DataSize;}
size_t PaddedSize() {return Data.Size()-DataSize;}
size_t DataLeft() {return DataSize-ReadPos;}
size_t GetPos() {return ReadPos;}
void SetPos(size_t Pos) {ReadPos=Pos;}
void Skip(size_t Size) {ReadPos+=Size;}
void Rewind() {SetPos(0);}
};
uint64 RawGetV(const byte *Data,uint &ReadPos,uint DataSize,bool &Overflow);
inline uint RawGet2(const void *Data)
{
byte *D=(byte *)Data;
return D[0]+(D[1]<<8);
}
inline uint RawGet4(const void *Data)
{
byte *D=(byte *)Data;
#if defined(BIG_ENDIAN) || !defined(ALLOW_MISALIGNED) || !defined(PRESENT_INT32)
return D[0]+(D[1]<<8)+(D[2]<<16)+(D[3]<<24);
#else
return GET_UINT32(*(uint32 *)D);
#endif
}
inline uint64 RawGet8(const void *Data)
{
byte *D=(byte *)Data;
return int32to64(RawGet4(D+4),RawGet4(D));
}
// We need these "put" functions also in UnRAR code. This is why they are
// in rawread.hpp file even though they are "write" functions.
inline void RawPut2(uint Field,void *Data)
{
byte *D=(byte *)Data;
D[0]=(byte)(Field);
D[1]=(byte)(Field>>8);
}
inline void RawPut4(uint Field,void *Data)
{
byte *D=(byte *)Data;
#if defined(BIG_ENDIAN) || !defined(ALLOW_MISALIGNED) || !defined(PRESENT_INT32)
D[0]=(byte)(Field);
D[1]=(byte)(Field>>8);
D[2]=(byte)(Field>>16);
D[3]=(byte)(Field>>24);
#else
*(uint32 *)D=Field;
#endif
}
inline void RawPut8(uint64 Field,void *Data)
{
byte *D=(byte *)Data;
D[0]=(byte)(Field);
D[1]=(byte)(Field>>8);
D[2]=(byte)(Field>>16);
D[3]=(byte)(Field>>24);
D[4]=(byte)(Field>>32);
D[5]=(byte)(Field>>40);
D[6]=(byte)(Field>>48);
D[7]=(byte)(Field>>56);
}
#endif

View File

@ -0,0 +1,50 @@
Portable UnRAR version
1. General
This package includes freeware Unrar C++ source and makefile for
several Unix compilers.
Unrar source is subset of RAR and generated from RAR source automatically,
by a small program removing blocks like '#ifndef UNRAR ... #endif'.
Such method is not perfect and you may find some RAR related stuff
unnecessary in Unrar, especially in header files.
If you wish to port Unrar to a new platform, you may need to edit
'#define LITTLE_ENDIAN' in os.hpp and data type definitions
in rartypes.hpp.
if computer architecture does not allow not aligned data access,
you need to undefine ALLOW_NOT_ALIGNED_INT and define
STRICT_ALIGNMENT_REQUIRED in os.h.
UnRAR.vcproj and UnRARDll.vcproj are projects for Microsoft Visual C++.
UnRARDll.vcproj lets to build unrar.dll library.
2. Unrar binaries
If you compiled Unrar for OS, which is not present in "Downloads"
and "RAR extras" on www.rarlab.com, we will appreciate if you send
us the compiled executable to place it to our site.
3. Acknowledgements
This source includes parts of code written by other authors.
Please see acknow.txt file for details.
4. Legal stuff
Unrar source may be used in any software to handle RAR archives
without limitations free of charge, but cannot be used to re-create
the RAR compression algorithm, which is proprietary. Distribution
of modified Unrar source in separate form or as a part of other
software is permitted, provided that it is clearly stated in
the documentation and source comments that the code may not be used
to develop a RAR (WinRAR) compatible archiver.
More detailed license text is available in license.txt.

View File

@ -0,0 +1,18 @@
#include "rar.hpp"
// When we call memset in end of function to clean local variables
// for security reason, compiler optimizer can remove such call.
// So we use our own function for this purpose.
void cleandata(void *data,size_t size)
{
#if defined(_WIN_ALL) && defined(_MSC_VER)
SecureZeroMemory(data,size);
#else
// 'volatile' is required. Otherwise optimizers can remove this function
// if cleaning local variables, which are not used after that.
volatile byte *d = (volatile byte *)data;
for (size_t i=0;i<size;i++)
d[i]=0;
#endif
}

View File

@ -0,0 +1,419 @@
#include "rar.hpp"
#include <ctype.h>
const char *NullToEmpty(const char *Str)
{
return Str==NULL ? "":Str;
}
static const wchar Empty[] = {0};
const wchar *NullToEmpty(const wchar *Str)
{
return Str==NULL ? Empty:Str;
}
void IntToExt(const char *Src,char *Dest,size_t DestSize)
{
#ifdef _WIN_ALL
OemToCharBuffA(Src,Dest,(DWORD)DestSize);
Dest[DestSize-1]=0;
#elif defined(_ANDROID)
wchar DestW[NM];
UnkToWide(Src,DestW,ASIZE(DestW));
WideToChar(DestW,Dest,DestSize);
#else
if (Dest!=Src)
strncpyz(Dest,Src,DestSize);
#endif
}
int stricomp(const char *s1,const char *s2)
{
#ifdef _WIN_ALL
return CompareStringA(LOCALE_USER_DEFAULT,NORM_IGNORECASE|SORT_STRINGSORT,s1,-1,s2,-1)-2;
#else
while (toupper(*s1)==toupper(*s2))
{
if (*s1==0)
return 0;
s1++;
s2++;
}
return s1 < s2 ? -1 : 1;
#endif
}
int strnicomp(const char *s1,const char *s2,size_t n)
{
#ifdef _WIN_ALL
// If we specify 'n' exceeding the actual string length, CompareString goes
// beyond the trailing zero and compares garbage. So we need to limit 'n'
// to real string length.
// It is important to use strnlen (or memchr(...,0)) instead of strlen,
// because data can be not zero terminated.
size_t l1=Min(strnlen(s1,n),n);
size_t l2=Min(strnlen(s2,n),n);
return CompareStringA(LOCALE_USER_DEFAULT,NORM_IGNORECASE|SORT_STRINGSORT,s1,(int)l1,s2,(int)l2)-2;
#else
if (n==0)
return 0;
while (toupper(*s1)==toupper(*s2))
{
if (*s1==0 || --n==0)
return 0;
s1++;
s2++;
}
return s1 < s2 ? -1 : 1;
#endif
}
wchar* RemoveEOL(wchar *Str)
{
for (int I=(int)my_wcslen(Str)-1;I>=0 && (Str[I]=='\r' || Str[I]=='\n' || Str[I]==' ' || Str[I]=='\t');I--)
Str[I]=0;
return Str;
}
wchar* RemoveLF(wchar *Str)
{
for (int I=(int)my_wcslen(Str)-1;I>=0 && (Str[I]=='\r' || Str[I]=='\n');I--)
Str[I]=0;
return(Str);
}
unsigned char loctolower(unsigned char ch)
{
#ifdef _WIN_ALL
// Convert to LPARAM first to avoid a warning in 64 bit mode.
return((int)(LPARAM)CharLowerA((LPSTR)ch));
#else
return(tolower(ch));
#endif
}
unsigned char loctoupper(unsigned char ch)
{
#ifdef _WIN_ALL
// Convert to LPARAM first to avoid a warning in 64 bit mode.
return((int)(LPARAM)CharUpperA((LPSTR)ch));
#else
return(toupper(ch));
#endif
}
// toupper with English only results if English input is provided.
// It avoids Turkish (small i) -> (big I with dot) conversion problem.
// We do not define 'ch' as 'int' to avoid necessity to cast all
// signed chars passed to this function to unsigned char.
unsigned char etoupper(unsigned char ch)
{
if (ch=='i')
return('I');
return(toupper(ch));
}
// Unicode version of etoupper.
wchar etoupperw(wchar ch)
{
if (ch=='i')
return('I');
#if defined(__APPLE__) || defined(_MSC_VER)
return(toupper(ch));
#else
return(toupperw(ch));
#endif
}
// We do not want to cast every signed char to unsigned when passing to
// isdigit, so we implement the replacement. Shall work for Unicode too.
// If chars are signed, conversion from char to int could generate negative
// values, resulting in undefined behavior in standard isdigit.
bool IsDigit(int ch)
{
return(ch>='0' && ch<='9');
}
// We do not want to cast every signed char to unsigned when passing to
// isspace, so we implement the replacement. Shall work for Unicode too.
// If chars are signed, conversion from char to int could generate negative
// values, resulting in undefined behavior in standard isspace.
bool IsSpace(int ch)
{
return(ch==' ' || ch=='\t');
}
// We do not want to cast every signed char to unsigned when passing to
// isalpha, so we implement the replacement. Shall work for Unicode too.
// If chars are signed, conversion from char to int could generate negative
// values, resulting in undefined behavior in standard function.
bool IsAlpha(int ch)
{
return((ch>='A' && ch<='Z') || (ch>='a' && ch<='z'));
}
void BinToHex(const byte *Bin,size_t BinSize,char *HexA,wchar *HexW,size_t HexSize)
{
uint A=0,W=0; // ASCII and Unicode hex output positions.
for (uint I=0;I<BinSize;I++)
{
uint High=Bin[I] >> 4;
uint Low=Bin[I] & 0xf;
uint HighHex=High>9 ? 'a'+High-10:'0'+High;
uint LowHex=Low>9 ? 'a'+Low-10:'0'+Low;
if (HexA!=NULL && A<HexSize-2) // Need space for 2 chars and final zero.
{
HexA[A++]=(char)HighHex;
HexA[A++]=(char)LowHex;
}
if (HexW!=NULL && W<HexSize-2) // Need space for 2 chars and final zero.
{
HexW[W++]=HighHex;
HexW[W++]=LowHex;
}
}
if (HexA!=NULL && HexSize>0)
HexA[A]=0;
if (HexW!=NULL && HexSize>0)
HexW[W]=0;
}
#ifndef SFX_MODULE
uint GetDigits(uint Number)
{
uint Digits=1;
while (Number>=10)
{
Number/=10;
Digits++;
}
return Digits;
}
#endif
bool LowAscii(const char *Str)
{
for (int I=0;Str[I]!=0;I++)
if ((byte)Str[I]<32 || (byte)Str[I]>127)
return false;
return true;
}
bool LowAscii(const wchar *Str)
{
for (int I=0;Str[I]!=0;I++)
{
// We convert wchar_t to uint just in case if some compiler
// uses signed wchar_t.
if ((uint)Str[I]<32 || (uint)Str[I]>127)
return false;
}
return true;
}
int wcsicompc(const wchar *Str1,const wchar *Str2)
{
#if defined(_UNIX) || defined(_MSC_VER) || defined(__APPLE__)
return my_wcscmp(Str1,Str2);
#else
return wcsicomp(Str1,Str2);
#endif
}
// safe strncpy: copies maxlen-1 max and always returns zero terminated dest
char* strncpyz(char *dest, const char *src, size_t maxlen)
{
if (maxlen>0)
{
#if _MSC_VER >= 1300
strcpy_s(dest,maxlen-1,src);
#else
strncpy(dest,src,maxlen-1);
#endif
dest[maxlen-1]=0;
}
return dest;
}
// Safe wcsncpy: copies maxlen-1 max and always returns zero terminated dest.
wchar* wcsncpyz(wchar *dest, const wchar *src, size_t maxlen)
{
if (maxlen>0)
{
my_wcsncpy(dest,src,maxlen-1);
dest[maxlen-1]=0;
}
return dest;
}
// Safe strncat: resulting dest length cannot exceed maxlen and dest
// is always zero terminated. Note that 'maxlen' parameter defines the entire
// dest buffer size and is not compatible with standard strncat.
char* strncatz(char* dest, const char* src, size_t maxlen)
{
size_t Length = strlen(dest);
if (Length + 1 < maxlen)
#if _MSC_VER >= 1300
strcat_s(dest, maxlen - Length - 1, src);
#else
strncat(dest, src, maxlen - Length - 1);
#endif
return dest;
}
// Safe wcsncat: resulting dest length cannot exceed maxlen and dest
// is always zero terminated. Note that 'maxlen' parameter defines the entire
// dest buffer size and is not compatible with standard wcsncat.
wchar* wcsncatz(wchar* dest, const wchar* src, size_t maxlen)
{
size_t Length = my_wcslen(dest);
if (Length + 1 < maxlen)
my_wcsncat(dest, src, maxlen - Length - 1);
return dest;
}
void itoa(int64 n,char *Str)
{
char NumStr[50];
size_t Pos=0;
do
{
NumStr[Pos++]=char(n%10)+'0';
n=n/10;
} while (n!=0);
for (size_t I=0;I<Pos;I++)
Str[I]=NumStr[Pos-I-1];
Str[Pos]=0;
}
void itoa(int64 n,wchar *Str)
{
wchar NumStr[50];
size_t Pos=0;
do
{
NumStr[Pos++]=wchar(n%10)+'0';
n=n/10;
} while (n!=0);
for (size_t I=0;I<Pos;I++)
Str[I]=NumStr[Pos-I-1];
Str[Pos]=0;
}
const wchar* GetWide(const char *Src)
{
const size_t MaxLength=NM;
static wchar StrTable[4][MaxLength];
static uint StrNum=0;
if (++StrNum >= ASIZE(StrTable))
StrNum=0;
wchar *Str=StrTable[StrNum];
CharToWide(Src,Str,MaxLength);
Str[MaxLength-1]=0;
return Str;
}
// Parse string containing parameters separated with spaces.
// Support quote marks. Param can be NULL to return the pointer to next
// parameter, which can be used to estimate the buffer size for Param.
const wchar* GetCmdParam(const wchar *CmdLine,wchar *Param,size_t MaxSize)
{
while (IsSpace(*CmdLine))
CmdLine++;
if (*CmdLine==0)
return NULL;
size_t ParamSize=0;
bool Quote=false;
while (*CmdLine!=0 && (Quote || !IsSpace(*CmdLine)))
{
if (*CmdLine=='\"')
{
if (CmdLine[1]=='\"')
{
// Insert the quote character instead of two adjoining quote characters.
if (Param!=NULL && ParamSize<MaxSize-1)
Param[ParamSize++]='\"';
CmdLine++;
}
else
Quote=!Quote;
}
else
if (Param!=NULL && ParamSize<MaxSize-1)
Param[ParamSize++]=*CmdLine;
CmdLine++;
}
if (Param!=NULL)
Param[ParamSize]=0;
return CmdLine;
}
#ifndef SILENT
// For compatibility with existing translations we use %s to print Unicode
// strings in format strings and convert them to %ls here. %s could work
// without such conversion in Windows, but not in Unix wprintf.
void PrintfPrepareFmt(const wchar *Org,wchar *Cvt,size_t MaxSize)
{
uint Src=0,Dest=0;
while (Org[Src]!=0 && Dest<MaxSize-1)
{
if (Org[Src]=='%' && (Src==0 || Org[Src-1]!='%'))
{
uint SPos=Src+1;
// Skipping a possible width specifier like %-50s.
while (IsDigit(Org[SPos]) || Org[SPos]=='-')
SPos++;
if (Org[SPos]=='s' && Dest<MaxSize-(SPos-Src+1))
{
while (Src<SPos)
Cvt[Dest++]=Org[Src++];
Cvt[Dest++]='l';
}
}
#ifdef _WIN_ALL
// Convert \n to \r\n in Windows. Important when writing to log,
// so other tools like Notebook can view resulting log properly.
if (Org[Src]=='\n' && (Src==0 || Org[Src-1]!='\r'))
Cvt[Dest++]='\r';
#endif
Cvt[Dest++]=Org[Src++];
}
Cvt[Dest]=0;
}
#endif

View File

@ -0,0 +1,45 @@
#ifndef _RAR_STRFN_
#define _RAR_STRFN_
const char* NullToEmpty(const char *Str);
const wchar* NullToEmpty(const wchar *Str);
void IntToExt(const char *Src,char *Dest,size_t DestSize);
int stricomp(const char *s1,const char *s2);
int strnicomp(const char *s1,const char *s2,size_t n);
wchar* RemoveEOL(wchar *Str);
wchar* RemoveLF(wchar *Str);
unsigned char loctolower(unsigned char ch);
unsigned char loctoupper(unsigned char ch);
char* strncpyz(char *dest, const char *src, size_t maxlen);
wchar* wcsncpyz(wchar *dest, const wchar *src, size_t maxlen);
char* strncatz(char* dest, const char* src, size_t maxlen);
wchar* wcsncatz(wchar* dest, const wchar* src, size_t maxlen);
unsigned char etoupper(unsigned char ch);
wchar etoupperw(wchar ch);
bool IsDigit(int ch);
bool IsSpace(int ch);
bool IsAlpha(int ch);
void BinToHex(const byte *Bin,size_t BinSize,char *Hex,wchar *HexW,size_t HexSize);
#ifndef SFX_MODULE
uint GetDigits(uint Number);
#endif
bool LowAscii(const char *Str);
bool LowAscii(const wchar *Str);
int wcsicompc(const wchar *Str1,const wchar *Str2);
void itoa(int64 n,char *Str);
void itoa(int64 n,wchar *Str);
const wchar* GetWide(const char *Src);
const wchar* GetCmdParam(const wchar *CmdLine,wchar *Param,size_t MaxSize);
#ifndef SILENT
void PrintfPrepareFmt(const wchar *Org,wchar *Cvt,size_t MaxSize);
#endif
#endif

View File

@ -0,0 +1,264 @@
/****************************************************************************
* This file is part of PPMd project *
* Written and distributed to public domain by Dmitry Shkarin 1997, *
* 1999-2000 *
* Contents: memory allocation routines *
****************************************************************************/
// #included by unpack.cpp
#ifdef RAR_COMMON_HPP
static const uint UNIT_SIZE=Max(sizeof(RARPPM_CONTEXT),sizeof(RARPPM_MEM_BLK));
static const uint FIXED_UNIT_SIZE=12;
SubAllocator::SubAllocator()
{
Clean();
}
void SubAllocator::Clean()
{
SubAllocatorSize=0;
}
inline void SubAllocator::InsertNode(void* p,int indx)
{
((RAR_NODE*) p)->next=FreeList[indx].next;
FreeList[indx].next=(RAR_NODE*) p;
}
inline void* SubAllocator::RemoveNode(int indx)
{
RAR_NODE* RetVal=FreeList[indx].next;
FreeList[indx].next=RetVal->next;
return RetVal;
}
inline uint SubAllocator::U2B(int NU)
{
return /*8*NU+4*NU*/UNIT_SIZE*NU;
}
/*
calculate RARPPM_MEM_BLK + Items address. Real RARPPM_MEM_BLK size must be
equal to UNIT_SIZE, so we cannot just add Items to RARPPM_MEM_BLK address
*/
inline RARPPM_MEM_BLK* SubAllocator::MBPtr(RARPPM_MEM_BLK *BasePtr,int Items)
{
return((RARPPM_MEM_BLK*)( ((byte *)(BasePtr))+U2B(Items) ));
}
inline void SubAllocator::SplitBlock(void* pv,int OldIndx,int NewIndx)
{
int i, UDiff=Indx2Units[OldIndx]-Indx2Units[NewIndx];
byte* p=((byte*) pv)+U2B(Indx2Units[NewIndx]);
if (Indx2Units[i=Units2Indx[UDiff-1]] != UDiff)
{
InsertNode(p,--i);
p += U2B(i=Indx2Units[i]);
UDiff -= i;
}
InsertNode(p,Units2Indx[UDiff-1]);
}
void SubAllocator::StopSubAllocator()
{
if ( SubAllocatorSize )
{
SubAllocatorSize=0;
rarfree(HeapStart);
}
}
bool SubAllocator::StartSubAllocator(int SASize)
{
uint t=SASize << 20;
if (SubAllocatorSize == t)
return true;
StopSubAllocator();
uint AllocSize=t/FIXED_UNIT_SIZE*UNIT_SIZE+UNIT_SIZE;
#ifdef STRICT_ALIGNMENT_REQUIRED
AllocSize+=UNIT_SIZE;
#endif
if ((HeapStart=(byte *)rarmalloc(AllocSize)) == NULL)
{
ErrHandler->MemoryError();
return false;
}
HeapEnd=HeapStart+AllocSize-UNIT_SIZE;
SubAllocatorSize=t;
return true;
}
void SubAllocator::InitSubAllocator()
{
int i, k;
memset(FreeList,0,sizeof(FreeList));
pText=HeapStart;
uint Size2=(uint)(FIXED_UNIT_SIZE*(SubAllocatorSize/8/FIXED_UNIT_SIZE*7));
uint RealSize2=Size2/FIXED_UNIT_SIZE*UNIT_SIZE;
uint Size1=(uint)(SubAllocatorSize-Size2);
uint RealSize1=Size1/FIXED_UNIT_SIZE*UNIT_SIZE+Size1%FIXED_UNIT_SIZE;
#ifdef STRICT_ALIGNMENT_REQUIRED
if (Size1%FIXED_UNIT_SIZE!=0)
RealSize1+=UNIT_SIZE-Size1%FIXED_UNIT_SIZE;
#endif
HiUnit=HeapStart+SubAllocatorSize;
LoUnit=UnitsStart=HeapStart+RealSize1;
FakeUnitsStart=HeapStart+Size1;
HiUnit=LoUnit+RealSize2;
for (i=0,k=1;i < N1 ;i++,k += 1)
Indx2Units[i]=k;
for (k++;i < N1+N2 ;i++,k += 2)
Indx2Units[i]=k;
for (k++;i < N1+N2+N3 ;i++,k += 3)
Indx2Units[i]=k;
for (k++;i < N1+N2+N3+N4;i++,k += 4)
Indx2Units[i]=k;
for (GlueCount=k=i=0;k < 128;k++)
{
i += (Indx2Units[i] < k+1);
Units2Indx[k]=i;
}
}
inline void SubAllocator::GlueFreeBlocks()
{
RARPPM_MEM_BLK s0, * p, * p1;
int i, k, sz;
if (LoUnit != HiUnit)
*LoUnit=0;
for (i=0, s0.next=s0.prev=&s0;i < N_INDEXES;i++)
while ( FreeList[i].next )
{
p=(RARPPM_MEM_BLK*)RemoveNode(i);
p->insertAt(&s0);
p->Stamp=0xFFFF;
p->NU=Indx2Units[i];
}
for (p=s0.next;p != &s0;p=p->next)
while ((p1=MBPtr(p,p->NU))->Stamp == 0xFFFF && int(p->NU)+p1->NU < 0x10000)
{
p1->remove();
p->NU += p1->NU;
}
while ((p=s0.next) != &s0)
{
for (p->remove(), sz=p->NU;sz > 128;sz -= 128, p=MBPtr(p,128))
InsertNode(p,N_INDEXES-1);
if (Indx2Units[i=Units2Indx[sz-1]] != sz)
{
k=sz-Indx2Units[--i];
InsertNode(MBPtr(p,sz-k),k-1);
}
InsertNode(p,i);
}
}
void* SubAllocator::AllocUnitsRare(int indx)
{
if ( !GlueCount )
{
GlueCount = 255;
GlueFreeBlocks();
if ( FreeList[indx].next )
return RemoveNode(indx);
}
int i=indx;
do
{
if (++i == N_INDEXES)
{
GlueCount--;
i=U2B(Indx2Units[indx]);
int j=FIXED_UNIT_SIZE*Indx2Units[indx];
if (FakeUnitsStart-pText > j)
{
FakeUnitsStart-=j;
UnitsStart -= i;
return(UnitsStart);
}
return(NULL);
}
} while ( !FreeList[i].next );
void* RetVal=RemoveNode(i);
SplitBlock(RetVal,i,indx);
return RetVal;
}
inline void* SubAllocator::AllocUnits(int NU)
{
int indx=Units2Indx[NU-1];
if ( FreeList[indx].next )
return RemoveNode(indx);
void* RetVal=LoUnit;
LoUnit += U2B(Indx2Units[indx]);
if (LoUnit <= HiUnit)
return RetVal;
LoUnit -= U2B(Indx2Units[indx]);
return AllocUnitsRare(indx);
}
void* SubAllocator::AllocContext()
{
if (HiUnit != LoUnit)
return (HiUnit -= UNIT_SIZE);
if ( FreeList->next )
return RemoveNode(0);
return AllocUnitsRare(0);
}
void* SubAllocator::ExpandUnits(void* OldPtr,int OldNU)
{
int i0=Units2Indx[OldNU-1], i1=Units2Indx[OldNU-1+1];
if (i0 == i1)
return OldPtr;
void* ptr=AllocUnits(OldNU+1);
if ( ptr )
{
memcpy(ptr,OldPtr,U2B(OldNU));
InsertNode(OldPtr,i0);
}
return ptr;
}
void* SubAllocator::ShrinkUnits(void* OldPtr,int OldNU,int NewNU)
{
int i0=Units2Indx[OldNU-1], i1=Units2Indx[NewNU-1];
if (i0 == i1)
return OldPtr;
if ( FreeList[i1].next )
{
void* ptr=RemoveNode(i1);
memcpy(ptr,OldPtr,U2B(NewNU));
InsertNode(OldPtr,i0);
return ptr;
}
else
{
SplitBlock(OldPtr,i0,i1);
return OldPtr;
}
}
void SubAllocator::FreeUnits(void* ptr,int OldNU)
{
InsertNode(ptr,Units2Indx[OldNU-1]);
}
#endif

View File

@ -0,0 +1,88 @@
/****************************************************************************
* This file is part of PPMd project *
* Written and distributed to public domain by Dmitry Shkarin 1997, *
* 1999-2000 *
* Contents: interface to memory allocation routines *
****************************************************************************/
#if !defined(_SUBALLOC_H_)
#define _SUBALLOC_H_
const int N1=4, N2=4, N3=4, N4=(128+3-1*N1-2*N2-3*N3)/4;
const int N_INDEXES=N1+N2+N3+N4;
#if defined(__GNUC__) && defined(ALLOW_MISALIGNED)
#define RARPPM_PACK_ATTR __attribute__ ((packed))
#else
#define RARPPM_PACK_ATTR
#endif /* defined(__GNUC__) */
#ifdef ALLOW_MISALIGNED
#pragma pack(1)
#endif
struct RARPPM_MEM_BLK
{
ushort Stamp, NU;
RARPPM_MEM_BLK* next, * prev;
void insertAt(RARPPM_MEM_BLK* p)
{
next=(prev=p)->next;
p->next=next->prev=this;
}
void remove()
{
prev->next=next;
next->prev=prev;
}
} RARPPM_PACK_ATTR;
#ifndef ALLOW_MISALIGNED
#ifdef _AIX
#pragma pack(pop)
#else
#pragma pack()
#endif
#endif
struct RAR_NODE
{
RAR_NODE* next;
};
class SubAllocator
{
private:
inline void InsertNode(void* p,int indx);
inline void* RemoveNode(int indx);
inline uint U2B(int NU);
inline void SplitBlock(void* pv,int OldIndx,int NewIndx);
uint GetUsedMemory();
inline void GlueFreeBlocks();
void* AllocUnitsRare(int indx);
inline RARPPM_MEM_BLK* MBPtr(RARPPM_MEM_BLK *BasePtr,int Items);
long SubAllocatorSize;
byte Indx2Units[N_INDEXES], Units2Indx[128], GlueCount;
byte *HeapStart,*LoUnit, *HiUnit;
struct RAR_NODE FreeList[N_INDEXES];
public:
Rar_Error_Handler* ErrHandler;
SubAllocator();
~SubAllocator() {StopSubAllocator();}
void Clean();
bool StartSubAllocator(int SASize);
void StopSubAllocator();
void InitSubAllocator();
inline void* AllocContext();
inline void* AllocUnits(int NU);
inline void* ExpandUnits(void* ptr,int OldNU);
inline void* ShrinkUnits(void* ptr,int OldNU,int NewNU);
inline void FreeUnits(void* ptr,int OldNU);
long GetAllocatedMemory() {return(SubAllocatorSize);};
byte *pText, *UnitsStart,*HeapEnd,*FakeUnitsStart;
};
#endif /* !defined(_SUBALLOC_H_) */

View File

@ -0,0 +1,275 @@
RAR version 3.80 - Technical information
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
THE ARCHIVE FORMAT DESCRIBED BELOW IS ONLY VALID FOR VERSIONS SINCE 1.50
==========================================================================
RAR archive file format
==========================================================================
Archive file consists of variable length blocks. The order of these
blocks may vary, but the first block must be a marker block followed by
an archive header block.
Each block begins with the following fields:
HEAD_CRC 2 bytes CRC of total block or block part
HEAD_TYPE 1 byte Block type
HEAD_FLAGS 2 bytes Block flags
HEAD_SIZE 2 bytes Block size
ADD_SIZE 4 bytes Optional field - added block size
Field ADD_SIZE present only if (HEAD_FLAGS & 0x8000) != 0
Total block size is HEAD_SIZE if (HEAD_FLAGS & 0x8000) == 0
and HEAD_SIZE+ADD_SIZE if the field ADD_SIZE is present - when
(HEAD_FLAGS & 0x8000) != 0.
In each block the followings bits in HEAD_FLAGS have the same meaning:
0x4000 - if set, older RAR versions will ignore the block
and remove it when the archive is updated.
if clear, the block is copied to the new archive
file when the archive is updated;
0x8000 - if set, ADD_SIZE field is present and the full block
size is HEAD_SIZE+ADD_SIZE.
Declared block types:
HEAD_TYPE=0x72 marker block
HEAD_TYPE=0x73 archive header
HEAD_TYPE=0x74 file header
HEAD_TYPE=0x75 old style comment header
HEAD_TYPE=0x76 old style authenticity information
HEAD_TYPE=0x77 old style subblock
HEAD_TYPE=0x78 old style recovery record
HEAD_TYPE=0x79 old style authenticity information
HEAD_TYPE=0x7a subblock
Comment block is actually used only within other blocks and doesn't
exist separately.
Archive processing is made in the following manner:
1. Read and check marker block
2. Read archive header
3. Read or skip HEAD_SIZE-sizeof(MAIN_HEAD) bytes
4. If end of archive encountered then terminate archive processing,
else read 7 bytes into fields HEAD_CRC, HEAD_TYPE, HEAD_FLAGS,
HEAD_SIZE.
5. Check HEAD_TYPE.
if HEAD_TYPE==0x74
read file header ( first 7 bytes already read )
read or skip HEAD_SIZE-sizeof(FILE_HEAD) bytes
if (HEAD_FLAGS & 0x100)
read or skip HIGH_PACK_SIZE*0x100000000+PACK_SIZE bytes
else
read or skip PACK_SIZE bytes
else
read corresponding HEAD_TYPE block:
read HEAD_SIZE-7 bytes
if (HEAD_FLAGS & 0x8000)
read ADD_SIZE bytes
6. go to 4.
==========================================================================
Block Formats
==========================================================================
Marker block ( MARK_HEAD )
HEAD_CRC Always 0x6152
2 bytes
HEAD_TYPE Header type: 0x72
1 byte
HEAD_FLAGS Always 0x1a21
2 bytes
HEAD_SIZE Block size = 0x0007
2 bytes
The marker block is actually considered as a fixed byte
sequence: 0x52 0x61 0x72 0x21 0x1a 0x07 0x00
Archive header ( MAIN_HEAD )
HEAD_CRC CRC of fields HEAD_TYPE to RESERVED2
2 bytes
HEAD_TYPE Header type: 0x73
1 byte
HEAD_FLAGS Bit flags:
2 bytes
0x0001 - Volume attribute (archive volume)
0x0002 - Archive comment present
RAR 3.x uses the separate comment block
and does not set this flag.
0x0004 - Archive lock attribute
0x0008 - Solid attribute (solid archive)
0x0010 - New volume naming scheme ('volname.partN.rar')
0x0020 - Authenticity information present
RAR 3.x does not set this flag.
0x0040 - Recovery record present
0x0080 - Block headers are encrypted
0x0100 - First volume (set only by RAR 3.0 and later)
other bits in HEAD_FLAGS are reserved for
internal use
HEAD_SIZE Archive header total size including archive comments
2 bytes
RESERVED1 Reserved
2 bytes
RESERVED2 Reserved
4 bytes
File header (File in archive)
HEAD_CRC CRC of fields from HEAD_TYPE to FILEATTR
2 bytes and file name
HEAD_TYPE Header type: 0x74
1 byte
HEAD_FLAGS Bit flags:
2 bytes
0x01 - file continued from previous volume
0x02 - file continued in next volume
0x04 - file encrypted with password
0x08 - file comment present
RAR 3.x uses the separate comment block
and does not set this flag.
0x10 - information from previous files is used (solid flag)
(for RAR 2.0 and later)
bits 7 6 5 (for RAR 2.0 and later)
0 0 0 - dictionary size 64 KB
0 0 1 - dictionary size 128 KB
0 1 0 - dictionary size 256 KB
0 1 1 - dictionary size 512 KB
1 0 0 - dictionary size 1024 KB
1 0 1 - dictionary size 2048 KB
1 1 0 - dictionary size 4096 KB
1 1 1 - file is directory
0x100 - HIGH_PACK_SIZE and HIGH_UNP_SIZE fields
are present. These fields are used to archive
only very large files (larger than 2Gb),
for smaller files these fields are absent.
0x200 - FILE_NAME contains both usual and encoded
Unicode name separated by zero. In this case
NAME_SIZE field is equal to the length
of usual name plus encoded Unicode name plus 1.
If this flag is present, but FILE_NAME does not
contain zero bytes, it means that file name
is encoded using UTF-8.
0x400 - the header contains additional 8 bytes
after the file name, which are required to
increase encryption security (so called 'salt').
0x800 - Version flag. It is an old file version,
a version number is appended to file name as ';n'.
0x1000 - Extended time field present.
0x8000 - this bit always is set, so the complete
block size is HEAD_SIZE + PACK_SIZE
(and plus HIGH_PACK_SIZE, if bit 0x100 is set)
HEAD_SIZE File header full size including file name and comments
2 bytes
PACK_SIZE Compressed file size
4 bytes
UNP_SIZE Uncompressed file size
4 bytes
HOST_OS Operating system used for archiving
1 byte 0 - MS DOS
1 - OS/2
2 - Win32
3 - Unix
4 - Mac OS
5 - BeOS
FILE_CRC File CRC
4 bytes
FTIME Date and time in standard MS DOS format
4 bytes
UNP_VER RAR version needed to extract file
1 byte
Version number is encoded as
10 * Major version + minor version.
METHOD Packing method
1 byte
0x30 - storing
0x31 - fastest compression
0x32 - fast compression
0x33 - normal compression
0x34 - good compression
0x35 - best compression
NAME_SIZE File name size
2 bytes
ATTR File attributes
4 bytes
HIGH_PACK_SIZE High 4 bytes of 64 bit value of compressed file size.
4 bytes Optional value, presents only if bit 0x100 in HEAD_FLAGS
is set.
HIGH_UNP_SIZE High 4 bytes of 64 bit value of uncompressed file size.
4 bytes Optional value, presents only if bit 0x100 in HEAD_FLAGS
is set.
FILE_NAME File name - string of NAME_SIZE bytes size
SALT present if (HEAD_FLAGS & 0x400) != 0
8 bytes
EXT_TIME present if (HEAD_FLAGS & 0x1000) != 0
variable size
other new fields may appear here.
==========================================================================
Application notes
==========================================================================
1. To process an SFX archive you need to skip the SFX module searching
for the marker block in the archive. There is no marker block sequence (0x52
0x61 0x72 0x21 0x1a 0x07 0x00) in the SFX module itself.
2. The CRC is calculated using the standard polynomial 0xEDB88320. In
case the size of the CRC is less than 4 bytes, only the low order bytes
are used.

View File

@ -0,0 +1,257 @@
#include "rar.hpp"
#ifdef _WIN_ALL
#include <Windows.h>
RarTime& RarTime::operator =(FILETIME &ft)
{
_ULARGE_INTEGER ul = {ft.dwLowDateTime, ft.dwHighDateTime};
itime=ul.QuadPart;
return *this;
}
void RarTime::GetWin32(FILETIME *ft)
{
_ULARGE_INTEGER ul;
ul.QuadPart=itime;
ft->dwLowDateTime=ul.LowPart;
ft->dwHighDateTime=ul.HighPart;
}
#endif
RarTime& RarTime::operator =(time_t ut)
{
uint64 ushift=int32to64(0x19DB1DE,0xD53E8000); // 116444736000000000.
itime=uint64(ut)*10000000+ushift;
return *this;
}
time_t RarTime::GetUnix()
{
uint64 ushift=int32to64(0x19DB1DE,0xD53E8000); // 116444736000000000.
time_t ut=(itime-ushift)/10000000;
return ut;
}
void RarTime::GetLocal(RarLocalTime *lt)
{
#ifdef _WIN_ALL
FILETIME ft;
GetWin32(&ft);
FILETIME lft;
// SystemTimeToTzSpecificLocalTime based code produces 1 hour error on XP.
FileTimeToLocalFileTime(&ft,&lft);
SYSTEMTIME st;
FileTimeToSystemTime(&lft,&st);
lt->Year=st.wYear;
lt->Month=st.wMonth;
lt->Day=st.wDay;
lt->Hour=st.wHour;
lt->Minute=st.wMinute;
lt->Second=st.wSecond;
lt->wDay=st.wDayOfWeek;
lt->yDay=lt->Day-1;
static int mdays[12]={31,28,31,30,31,30,31,31,30,31,30,31};
for (uint I=1;I<lt->Month && I<=ASIZE(mdays);I++)
lt->yDay+=mdays[I-1];
if (lt->Month>2 && IsLeapYear(lt->Year))
lt->yDay++;
st.wMilliseconds=0;
FILETIME zft;
SystemTimeToFileTime(&st,&zft);
// Calculate the time reminder, which is the part of time smaller
// than 1 second, represented in 100-nanosecond intervals.
lt->Reminder=int32to64(lft.dwHighDateTime,lft.dwLowDateTime)-
int32to64(zft.dwHighDateTime,zft.dwLowDateTime);
#else
time_t ut=GetUnix();
struct tm *t;
t=localtime(&ut);
lt->Year=t->tm_year+1900;
lt->Month=t->tm_mon+1;
lt->Day=t->tm_mday;
lt->Hour=t->tm_hour;
lt->Minute=t->tm_min;
lt->Second=t->tm_sec;
lt->Reminder=itime % 10000000;
lt->wDay=t->tm_wday;
lt->yDay=t->tm_yday;
#endif
}
void RarTime::SetLocal(RarLocalTime *lt)
{
#ifdef _WIN_ALL
SYSTEMTIME st;
st.wYear=lt->Year;
st.wMonth=lt->Month;
st.wDay=lt->Day;
st.wHour=lt->Hour;
st.wMinute=lt->Minute;
st.wSecond=lt->Second;
st.wMilliseconds=0;
FILETIME lft;
if (SystemTimeToFileTime(&st,&lft))
{
lft.dwLowDateTime+=lt->Reminder;
if (lft.dwLowDateTime<lt->Reminder)
lft.dwHighDateTime++;
FILETIME ft;
// TzSpecificLocalTimeToSystemTime based code produces 1 hour error on XP.
LocalFileTimeToFileTime(&lft,&ft);
*this=ft;
}
else
Reset();
#else
struct tm t;
t.tm_sec=lt->Second;
t.tm_min=lt->Minute;
t.tm_hour=lt->Hour;
t.tm_mday=lt->Day;
t.tm_mon=lt->Month-1;
t.tm_year=lt->Year-1900;
t.tm_isdst=-1;
*this=mktime(&t);
itime+=lt->Reminder;
#endif
}
// Return the stored time as 64-bit number of 100-nanosecond intervals since
// 01.01.1601. Actually we do not care since which date this time starts from
// as long as this date is the same for GetRaw and SetRaw. We use the value
// returned by GetRaw() for time comparisons, for relative operations
// like SetRaw(GetRaw()-C) and for compact time storage when necessary.
uint64 RarTime::GetRaw()
{
return itime;
}
void RarTime::SetRaw(uint64 RawTime)
{
itime=RawTime;
}
uint RarTime::GetDos()
{
RarLocalTime lt;
GetLocal(&lt);
uint DosTime=(lt.Second/2)|(lt.Minute<<5)|(lt.Hour<<11)|
(lt.Day<<16)|(lt.Month<<21)|((lt.Year-1980)<<25);
return DosTime;
}
void RarTime::SetDos(uint DosTime)
{
RarLocalTime lt;
lt.Second=(DosTime & 0x1f)*2;
lt.Minute=(DosTime>>5) & 0x3f;
lt.Hour=(DosTime>>11) & 0x1f;
lt.Day=(DosTime>>16) & 0x1f;
lt.Month=(DosTime>>21) & 0x0f;
lt.Year=(DosTime>>25)+1980;
lt.Reminder=0;
SetLocal(&lt);
}
#ifndef SFX_MODULE
void RarTime::SetIsoText(const wchar *TimeText)
{
int Field[6];
memset(Field,0,sizeof(Field));
for (uint DigitCount=0;*TimeText!=0;TimeText++)
if (IsDigit(*TimeText))
{
int FieldPos=DigitCount<4 ? 0:(DigitCount-4)/2+1;
if (FieldPos<ASIZE(Field))
Field[FieldPos]=Field[FieldPos]*10+*TimeText-'0';
DigitCount++;
}
RarLocalTime lt;
lt.Second=Field[5];
lt.Minute=Field[4];
lt.Hour=Field[3];
lt.Day=Field[2]==0 ? 1:Field[2];
lt.Month=Field[1]==0 ? 1:Field[1];
lt.Year=Field[0];
lt.Reminder=0;
SetLocal(&lt);
}
#endif
#ifndef SFX_MODULE
void RarTime::SetAgeText(const wchar *TimeText)
{
uint Seconds=0,Value=0;
for (int I=0;TimeText[I]!=0;I++)
{
int Ch=TimeText[I];
if (IsDigit(Ch))
Value=Value*10+Ch-'0';
else
{
switch(etoupper(Ch))
{
case 'D':
Seconds+=Value*24*3600;
break;
case 'H':
Seconds+=Value*3600;
break;
case 'M':
Seconds+=Value*60;
break;
case 'S':
Seconds+=Value;
break;
}
Value=0;
}
}
SetCurrentTime();
SetRaw(itime-uint64(Seconds)*10000000);
}
#endif
void RarTime::SetCurrentTime()
{
#ifdef _WIN_ALL
FILETIME ft;
SYSTEMTIME st;
GetSystemTime(&st);
SystemTimeToFileTime(&st,&ft);
*this=ft;
#else
time_t st;
time(&st);
*this=st;
#endif
}
bool IsLeapYear(int Year)
{
return (Year&3)==0 && (Year%100!=0 || Year%400==0);
}

View File

@ -0,0 +1,59 @@
#ifndef _RAR_TIMEFN_
#define _RAR_TIMEFN_
#include <time.h>
#ifdef _WIN_ALL
#include <Windows.h>
#endif
struct RarLocalTime
{
uint Year;
uint Month;
uint Day;
uint Hour;
uint Minute;
uint Second;
uint Reminder; // Part of time smaller than 1 second, represented in 100-nanosecond intervals.
uint wDay;
uint yDay;
};
class RarTime
{
private:
// Internal FILETIME like time representation in 100 nanoseconds
// since 01.01.1601.
uint64 itime;
public:
RarTime() {Reset();}
#ifdef _WIN_ALL
RarTime(FILETIME &ft) {*this=ft;}
RarTime& operator =(FILETIME &ft);
void GetWin32(FILETIME *ft);
#endif
RarTime(time_t ut) {*this=ut;}
RarTime& operator =(time_t ut);
time_t GetUnix();
bool operator == (RarTime &rt) {return itime==rt.itime;}
bool operator < (RarTime &rt) {return itime<rt.itime;}
bool operator <= (RarTime &rt) {return itime<rt.itime || itime==rt.itime;}
bool operator > (RarTime &rt) {return itime>rt.itime;}
bool operator >= (RarTime &rt) {return itime>rt.itime || itime==rt.itime;}
void GetLocal(RarLocalTime *lt);
void SetLocal(RarLocalTime *lt);
uint64 GetRaw();
void SetRaw(uint64 RawTime);
uint GetDos();
void SetDos(uint DosTime);
void SetIsoText(const wchar *TimeText);
void SetAgeText(const wchar *TimeText);
void SetCurrentTime();
void Reset() {itime=0;}
bool IsSet() {return itime!=0;}
};
bool IsLeapYear(int Year);
#endif

View File

@ -0,0 +1,198 @@
#include "rar.hpp"
#include "unicode.hpp"
bool CharToWide(const char *Src,wchar *Dest,int DestSize)
{
bool RetCode=true;
#ifdef _WIN_32
if (MultiByteToWideChar(CP_ACP,0,Src,-1,Dest,DestSize,NULL,NULL)==0)
RetCode=false;
#else
#ifdef _APPLE
UtfToWide(Src,Dest,DestSize);
#else
#ifdef MBFUNCTIONS
size_t ResultingSize=mbstowcs(Dest,Src,DestSize);
if (ResultingSize==(size_t)-1)
RetCode=false;
if (ResultingSize==0 && *Src!=0)
RetCode=false;
if ((!RetCode || *Dest==0 && *Src!=0) && DestSize>NM && strlen(Src)<NM)
{
/* Workaround for strange Linux Unicode functions bug.
Some of wcstombs and mbstowcs implementations in some situations
(we are yet to find out what it depends on) can return an empty
string and success code if buffer size value is too large.
*/
return(CharToWide(Src,Dest,NM));
}
#else
// TODO: convert to UTF-8? Would need conversion routine. Ugh.
for (int I=0;I<DestSize;I++)
{
Dest[I]=(wchar)Src[I];
if (Src[I]==0)
break;
}
#endif
#endif
#endif
return(RetCode);
}
bool WideToChar(const wchar *Src,char *Dest,int DestSize)
{
bool RetCode=true;
#ifdef _WIN_32
if (WideCharToMultiByte(CP_ACP,0,Src,-1,Dest,DestSize,NULL,NULL)==0)
RetCode=false;
#else
#ifdef _APPLE
WideToUtf(Src,Dest,DestSize);
#else
#ifdef MBFUNCTIONS
size_t ResultingSize=wcstombs(Dest,Src,DestSize);
if (ResultingSize==(size_t)-1)
RetCode=false;
if (ResultingSize==0 && *Src!=0)
RetCode=false;
if ((!RetCode || *Dest==0 && *Src!=0) && DestSize>NM && strlenw(Src)<NM)
{
/* Workaround for strange Linux Unicode functions bug.
Some of wcstombs and mbstowcs implementations in some situations
(we are yet to find out what it depends on) can return an empty
string and success code if buffer size value is too large.
*/
return(WideToChar(Src,Dest,NM));
}
#else
// TODO: convert to UTF-8? Would need conversion routine. Ugh.
for (int I=0;I<DestSize;I++)
{
Dest[I]=(char)Src[I];
if (Src[I]==0)
break;
}
#endif
#endif
#endif
return(RetCode);
}
void UtfToWide(const char *Src,wchar *Dest,int DestSize)
{
DestSize--;
while (*Src!=0)
{
uint c=(byte)*(Src++),d;
if (c<0x80)
d=c;
else
if ((c>>5)==6)
{
if ((*Src&0xc0)!=0x80)
break;
d=((c&0x1f)<<6)|(*Src&0x3f);
Src++;
}
else
if ((c>>4)==14)
{
if ((Src[0]&0xc0)!=0x80 || (Src[1]&0xc0)!=0x80)
break;
d=((c&0xf)<<12)|((Src[0]&0x3f)<<6)|(Src[1]&0x3f);
Src+=2;
}
else
if ((c>>3)==30)
{
if ((Src[0]&0xc0)!=0x80 || (Src[1]&0xc0)!=0x80 || (Src[2]&0xc0)!=0x80)
break;
d=((c&7)<<18)|((Src[0]&0x3f)<<12)|((Src[1]&0x3f)<<6)|(Src[2]&0x3f);
Src+=3;
}
else
break;
if (--DestSize<0)
break;
if (d>0xffff)
{
if (--DestSize<0 || d>0x10ffff)
break;
*(Dest++)=((d-0x10000)>>10)+0xd800;
*(Dest++)=(d&0x3ff)+0xdc00;
}
else
*(Dest++)=d;
}
*Dest=0;
}
wchar* RawToWide(const byte *Src,wchar *Dest,size_t DestSize)
{
for (size_t I=0;I<DestSize;I++)
if ((Dest[I]=Src[I*2]+(Src[I*2+1]<<8))==0)
break;
return Dest;
}
// strfn.cpp
void ExtToInt(const char *Src,char *Dest)
{
#if defined(_WIN_32)
CharToOem(Src,Dest);
#else
if (Dest!=Src)
strcpy(Dest,Src);
#endif
}
size_t my_wcslen(const wchar *a)
{
size_t I;
for (I=0; a[I]; ++I);
return I;
}
int my_wcsncmp(const wchar *a, const wchar *b, size_t Max)
{
for (size_t I=0; I<Max && (a[I] || b[I]); ++I)
{
if (a[I] != b[I])
return a[I] - b[I];
}
return 0;
}
int my_wcscmp(const wchar *a, const wchar *b)
{
return my_wcsncmp(a, b, ~0UL);
}
void my_wcsncpy(wchar *Dest, const wchar *Src, size_t DestSize)
{
size_t I;
for (I=0; I<DestSize && Src[I]; ++I)
Dest[I] = Src[I];
if (I<DestSize)
Dest[I] = 0;
}
void my_wcsncat(wchar *Dest, const wchar *Src, size_t DestSize)
{
size_t I, J;
for (I=0; I<DestSize && Dest[I]; ++I);
for (J=0; I<DestSize && Src[J]; ++I, ++J)
Dest[I] = Src[J];
if (I<DestSize)
Dest[I] = 0;
}

View File

@ -0,0 +1,18 @@
#ifndef _RAR_UNICODE_
#define _RAR_UNICODE_
bool CharToWide(const char *Src,wchar *Dest,int DestSize);
bool WideToChar(const wchar *Src,char *Dest,int DestSize=0x1000000);
void UtfToWide(const char *Src,wchar *Dest,int DestSize);
wchar* RawToWide(const byte *Src,wchar *Dest,size_t DestSize);
// strfn.cpp
void ExtToInt(const char *Src,char *Dest);
size_t my_wcslen(const wchar *a);
int my_wcscmp(const wchar *a, const wchar *b);
int my_wcsncmp(const wchar *a, const wchar *b, size_t DestSize);
void my_wcsncpy(wchar *Dest, const wchar *Src, size_t DestSize);
void my_wcsncat(wchar *Dest, const wchar *Src, size_t DestSize);
#endif

View File

@ -0,0 +1,321 @@
#include "rar.hpp"
#define _RAR_UNPACK_CPP_
#include "coder.cpp"
#include "suballoc.cpp"
#include "model.cpp"
#include "unpackinline.cpp"
#ifndef SFX_MODULE
#include "unpack15.cpp"
#include "unpack20.cpp"
#endif
#include "unpack30.cpp"
#include "unpack50.cpp"
#include "unpack50frag.cpp"
Unpack::Unpack(ComprDataIO *DataIO)
: Inp(true), VMCodeInp(true)
{
LastFilter = 0;
UnpIO=DataIO;
Window=NULL;
Fragmented=false;
Suspended=false;
UnpAllBuf=false;
UnpSomeRead=false;
MaxWinSize=0;
MaxWinMask=0;
}
void Unpack::init_tables()
{
ComprDataIO IOTemp;
Unpack Temp(&IOTemp);
// Perform initialization, which should be done only once for all files.
// It prevents crash if first DoUnpack call is later made with wrong
// (true) 'Solid' value.
Temp.UnpInitData(false);
#ifndef SFX_MODULE
// RAR 1.5 decompression initialization
Temp.UnpInitData15(false);
Temp.InitHuff();
#endif
}
Unpack::~Unpack()
{
if (Window!=NULL)
rarfree( Window );
InitFilters30();
}
void Unpack::Init(size_t WinSize,bool Solid)
{
// If 32-bit RAR unpacks an archive with 4 GB dictionary, the window size
// will be 0 because of size_t overflow. Let's issue the memory error.
if (WinSize==0)
throw std::bad_alloc();
// Minimum window size must be at least twice more than maximum possible
// size of filter block, which is 0x10000 in RAR now. If window size is
// smaller, we can have a block with never cleared flt->NextWindow flag
// in UnpWriteBuf(). Minimum window size 0x20000 would be enough, but let's
// use 0x40000 for extra safety and possible filter area size expansion.
const size_t MinAllocSize=0x40000;
if (WinSize<MinAllocSize)
WinSize=MinAllocSize;
if (WinSize<=MaxWinSize) // Use the already allocated window.
return;
if ((WinSize>>16)>0x10000) // Window size must not exceed 4 GB.
return;
// Archiving code guarantees that window size does not grow in the same
// solid stream. So if we are here, we are either creating a new window
// or increasing the size of non-solid window. So we could safely reject
// current window data without copying them to a new window, though being
// extra cautious, we still handle the solid window grow case below.
bool Grow=Solid && (Window!=NULL || Fragmented);
// We do not handle growth for existing fragmented window.
if (Grow && Fragmented)
throw std::bad_alloc();
byte *NewWindow=Fragmented ? NULL : (byte *)malloc(WinSize);
if (NewWindow==NULL) {
if (Grow || WinSize<0x1000000)
{
// We do not support growth for new fragmented window.
// Also exclude RAR4 and small dictionaries.
throw std::bad_alloc();
}
else
{
if (Window!=NULL) // If allocated by preceding files.
{
free(Window);
Window=NULL;
}
FragWindow.Init(WinSize);
Fragmented=true;
}
}
if (!Fragmented)
{
// Clean the window to generate the same output when unpacking corrupt
// RAR files, which may access to unused areas of sliding dictionary.
memset(NewWindow,0,WinSize);
// If Window is not NULL, it means that window size has grown.
// In solid streams we need to copy data to a new window in such case.
// RAR archiving code does not allow it in solid streams now,
// but let's implement it anyway just in case we'll change it sometimes.
if (Grow)
for (size_t I=1;I<MaxWinSize;I++)
NewWindow[(UnpPtr-I)&(WinSize-1)]=Window[(UnpPtr-I)&(MaxWinSize-1)];
if (Window!=NULL)
free(Window);
Window=NewWindow;
}
MaxWinSize=WinSize;
MaxWinMask=MaxWinSize-1;
}
void Unpack::DoUnpack(int Method,bool Solid)
{
switch(Method)
{
#ifndef SFX_MODULE
case 15: // rar 1.5 compression
Unpack15(Solid);
break;
case 20: // rar 2.x compression
case 26: // files larger than 2GB
Unpack20(Solid);
break;
#endif
case 29: // rar 3.x compression
Unpack29(Solid);
break;
case 0: // RAR 5.0 compression algorithm 0.
Unpack5(Solid);
break;
}
}
void Unpack::UnpInitData(bool Solid)
{
if (!Solid)
{
memset(OldDist,0,sizeof(OldDist));
OldDistPtr=0;
LastDist=LastLength=0;
// memset(Window,0,MaxWinSize);
memset(&BlockTables,0,sizeof(BlockTables));
UnpPtr=WrPtr=0;
WriteBorder=Min(MaxWinSize,UNPACK_MAX_WRITE)&MaxWinMask;
InitFilters();
}
Inp.InitBitInput();
WrittenFileSize=0;
ReadTop=0;
ReadBorder=0;
memset(&BlockHeader,0,sizeof(BlockHeader));
BlockHeader.BlockSize=-1; // '-1' means not defined yet.
#ifndef SFX_MODULE
UnpInitData20(Solid);
#endif
UnpInitData30(Solid);
}
// LengthTable contains the length in bits for every element of alphabet.
// Dec is the structure to decode Huffman code/
// Size is size of length table and DecodeNum field in Dec structure,
void Unpack::MakeDecodeTables(byte *LengthTable,DecodeTable *Dec,uint Size)
{
// Size of alphabet and DecodePos array.
Dec->MaxNum=Size;
// Calculate how many entries for every bit length in LengthTable we have.
uint LengthCount[16];
memset(LengthCount,0,sizeof(LengthCount));
for (size_t I=0;I<Size;I++)
LengthCount[LengthTable[I] & 0xf]++;
// We must not calculate the number of zero length codes.
LengthCount[0]=0;
// Set the entire DecodeNum to zero.
memset(Dec->DecodeNum,0,Size*sizeof(*Dec->DecodeNum));
// Initialize not really used entry for zero length code.
Dec->DecodePos[0]=0;
// Start code for bit length 1 is 0.
Dec->DecodeLen[0]=0;
// Right aligned upper limit code for current bit length.
uint UpperLimit=0;
for (size_t I=1;I<16;I++)
{
// Adjust the upper limit code.
UpperLimit+=LengthCount[I];
// Left aligned upper limit code.
uint LeftAligned=UpperLimit<<(16-I);
// Prepare the upper limit code for next bit length.
UpperLimit*=2;
// Store the left aligned upper limit code.
Dec->DecodeLen[I]=(uint)LeftAligned;
// Every item of this array contains the sum of all preceding items.
// So it contains the start position in code list for every bit length.
Dec->DecodePos[I]=Dec->DecodePos[I-1]+LengthCount[I-1];
}
// Prepare the copy of DecodePos. We'll modify this copy below,
// so we cannot use the original DecodePos.
uint CopyDecodePos[16];
memcpy(CopyDecodePos,Dec->DecodePos,sizeof(CopyDecodePos));
// For every bit length in the bit length table and so for every item
// of alphabet.
for (uint I=0;I<Size;I++)
{
// Get the current bit length.
byte CurBitLength=LengthTable[I] & 0xf;
if (CurBitLength!=0)
{
// Last position in code list for current bit length.
uint LastPos=CopyDecodePos[CurBitLength];
// Prepare the decode table, so this position in code list will be
// decoded to current alphabet item number.
Dec->DecodeNum[LastPos]=(ushort)I;
// We'll use next position number for this bit length next time.
// So we pass through the entire range of positions available
// for every bit length.
CopyDecodePos[CurBitLength]++;
}
}
// Define the number of bits to process in quick mode. We use more bits
// for larger alphabets. More bits means that more codes will be processed
// in quick mode, but also that more time will be spent to preparation
// of tables for quick decode.
switch (Size)
{
case NC:
case NC20:
case NC30:
Dec->QuickBits=MAX_QUICK_DECODE_BITS;
break;
default:
Dec->QuickBits=MAX_QUICK_DECODE_BITS-3;
break;
}
// Size of tables for quick mode.
uint QuickDataSize=1<<Dec->QuickBits;
// Bit length for current code, start from 1 bit codes. It is important
// to use 1 bit instead of 0 for minimum code length, so we are moving
// forward even when processing a corrupt archive.
uint CurBitLength=1;
// For every right aligned bit string which supports the quick decoding.
for (uint Code=0;Code<QuickDataSize;Code++)
{
// Left align the current code, so it will be in usual bit field format.
uint BitField=Code<<(16-Dec->QuickBits);
// Prepare the table for quick decoding of bit lengths.
// Find the upper limit for current bit field and adjust the bit length
// accordingly if necessary.
while (BitField>=Dec->DecodeLen[CurBitLength] && CurBitLength<ASIZE(Dec->DecodeLen))
CurBitLength++;
// Translation of right aligned bit string to bit length.
Dec->QuickLen[Code]=CurBitLength;
// Prepare the table for quick translation of position in code list
// to position in alphabet.
// Calculate the distance from the start code for current bit length.
uint Dist=BitField-Dec->DecodeLen[CurBitLength-1];
// Right align the distance.
Dist>>=(16-CurBitLength);
// Now we can calculate the position in the code list. It is the sum
// of first position for current bit length and right aligned distance
// between our bit field and start code for current bit length.
uint Pos=Dec->DecodePos[CurBitLength]+Dist;
if (Pos<Size) // Safety check for damaged archives.
{
// Define the code to alphabet number translation.
Dec->QuickNum[Code]=Dec->DecodeNum[Pos];
}
else
Dec->QuickNum[Code]=0;
}
}

View File

@ -0,0 +1,369 @@
#ifndef _RAR_UNPACK_
#define _RAR_UNPACK_
// Maximum allowed number of compressed bits processed in quick mode.
#define MAX_QUICK_DECODE_BITS 10
// Maximum number of filters per entire data block.
#define MAX_UNPACK_FILTERS 8192
// Maximum number of filters per entire data block for RAR3 unpack.
#define MAX3_FILTERS 1024
// Write data in 4 MB or smaller blocks.
#define UNPACK_MAX_WRITE 0x400000
// Decode compressed bit fields to alphabet numbers.
struct DecodeTable:PackDef
{
// Real size of DecodeNum table.
uint MaxNum;
// Left aligned start and upper limit codes defining code space
// ranges for bit lengths. DecodeLen[BitLength-1] defines the start of
// range for bit length and DecodeLen[BitLength] defines next code
// after the end of range or in other words the upper limit code
// for specified bit length.
uint DecodeLen[16];
// Every item of this array contains the sum of all preceding items.
// So it contains the start position in code list for every bit length.
uint DecodePos[16];
// Number of compressed bits processed in quick mode.
// Must not exceed MAX_QUICK_DECODE_BITS.
uint QuickBits;
// Translates compressed bits (up to QuickBits length)
// to bit length in quick mode.
byte QuickLen[1<<MAX_QUICK_DECODE_BITS];
// Translates compressed bits (up to QuickBits length)
// to position in alphabet in quick mode.
// 'ushort' saves some memory and even provides a little speed gain
// comparting to 'uint' here.
ushort QuickNum[1<<MAX_QUICK_DECODE_BITS];
// Translate the position in code list to position in alphabet.
// We do not allocate it dynamically to avoid performance overhead
// introduced by pointer, so we use the largest possible table size
// as array dimension. Real size of this array is defined in MaxNum.
// We use this array if compressed bit field is too lengthy
// for QuickLen based translation.
// 'ushort' saves some memory and even provides a little speed gain
// comparting to 'uint' here.
ushort DecodeNum[LARGEST_TABLE_SIZE];
};
struct UnpackBlockHeader
{
int BlockSize;
int BlockBitSize;
int BlockStart;
int HeaderSize;
bool LastBlockInFile;
bool TablePresent;
};
struct UnpackBlockTables
{
DecodeTable LD; // Decode literals.
DecodeTable DD; // Decode distances.
DecodeTable LDD; // Decode lower bits of distances.
DecodeTable RD; // Decode repeating distances.
DecodeTable BD; // Decode bit lengths in Huffman table.
};
#ifdef RAR_SMP
enum UNP_DEC_TYPE {
UNPDT_LITERAL,UNPDT_MATCH,UNPDT_FULLREP,UNPDT_REP,UNPDT_FILTER
};
struct UnpackDecodedItem
{
UNP_DEC_TYPE Type;
ushort Length;
union
{
uint Distance;
byte Literal[4];
};
};
struct UnpackThreadData
{
Unpack *UnpackPtr;
BitInput Inp;
bool HeaderRead;
UnpackBlockHeader BlockHeader;
bool TableRead;
UnpackBlockTables BlockTables;
int DataSize; // Data left in buffer. Can be less than block size.
bool DamagedData;
bool LargeBlock;
bool NoDataLeft; // 'true' if file is read completely.
bool Incomplete; // Not entire block was processed, need to read more data.
UnpackDecodedItem *Decoded;
uint DecodedSize;
uint DecodedAllocated;
uint ThreadNumber; // For debugging.
UnpackThreadData()
:Inp(false)
{
Decoded=NULL;
}
~UnpackThreadData()
{
if (Decoded!=NULL)
free(Decoded);
}
};
#endif
struct UnpackFilter
{
byte Type;
uint BlockStart;
uint BlockLength;
byte Channels;
// uint Width;
// byte PosR;
bool NextWindow;
};
struct UnpackFilter30
{
unsigned int BlockStart;
unsigned int BlockLength;
unsigned int ExecCount;
bool NextWindow;
// position of parent filter in Filters array used as prototype for filter
// in PrgStack array. Not defined for filters in Filters array.
unsigned int ParentFilter;
VM_PreparedProgram Prg;
};
struct AudioVariables // For RAR 2.0 archives only.
{
int K1,K2,K3,K4,K5;
int D1,D2,D3,D4;
int LastDelta;
unsigned int Dif[11];
unsigned int ByteCount;
int LastChar;
};
// We can use the fragmented dictionary in case heap does not have the single
// large enough memory block. It is slower than normal dictionary.
class FragmentedWindow
{
private:
enum {MAX_MEM_BLOCKS=32};
void Reset();
byte *Mem[MAX_MEM_BLOCKS];
size_t MemSize[MAX_MEM_BLOCKS];
public:
FragmentedWindow();
~FragmentedWindow();
void Init(size_t WinSize);
byte& operator [](size_t Item);
void CopyString(uint Length,uint Distance,size_t &UnpPtr,size_t MaxWinMask);
void CopyData(byte *Dest,size_t WinPos,size_t Size);
size_t GetBlockSize(size_t StartPos,size_t RequiredSize);
};
class Unpack:PackDef
{
public:
static void init_tables();
private:
void Unpack5(bool Solid);
void Unpack5MT(bool Solid);
bool UnpReadBuf();
void UnpWriteBuf();
byte* ApplyFilter(byte *Data,uint DataSize,UnpackFilter *Flt);
void UnpWriteArea(size_t StartPtr,size_t EndPtr);
void UnpWriteData(byte *Data,size_t Size);
uint SlotToLength(BitInput &Inp,uint Slot);
bool ReadBlockHeader(BitInput &Inp,UnpackBlockHeader &Header);
bool ReadTables(BitInput &Inp,UnpackBlockHeader &Header,UnpackBlockTables &Tables);
void MakeDecodeTables(byte *LengthTable,DecodeTable *Dec,uint Size);
uint DecodeNumber(BitInput &Inp,DecodeTable *Dec);
void CopyString();
inline void InsertOldDist(unsigned int Distance);
void UnpInitData(bool Solid);
void CopyString(uint Length,uint Distance);
uint ReadFilterData(BitInput &Inp);
bool ReadFilter(BitInput &Inp,UnpackFilter &Filter);
bool AddFilter(UnpackFilter &Filter);
bool AddFilter();
void InitFilters();
ComprDataIO *UnpIO;
BitInput Inp;
Array<byte> FilterSrcMemory;
Array<byte> FilterDstMemory;
// Filters code, one entry per filter.
Array<UnpackFilter> Filters;
uint OldDist[4],OldDistPtr;
uint LastLength;
// LastDist is necessary only for RAR2 and older with circular OldDist
// array. In RAR3 last distance is always stored in OldDist[0].
uint LastDist;
size_t UnpPtr,WrPtr;
// Top border of read packed data.
int ReadTop;
// Border to call UnpReadBuf. We use it instead of (ReadTop-C)
// for optimization reasons. Ensures that we have C bytes in buffer
// unless we are at the end of file.
int ReadBorder;
UnpackBlockHeader BlockHeader;
UnpackBlockTables BlockTables;
size_t WriteBorder;
byte *Window;
FragmentedWindow FragWindow;
bool Fragmented;
int64 DestUnpSize;
bool Suspended;
bool UnpAllBuf;
bool UnpSomeRead;
int64 WrittenFileSize;
bool FileExtracted;
/***************************** Unpack v 1.5 *********************************/
void Unpack15(bool Solid);
void ShortLZ();
void LongLZ();
void HuffDecode();
void GetFlagsBuf();
void UnpInitData15(int Solid);
void InitHuff();
void CorrHuff(ushort *CharSet,byte *NumToPlace);
void CopyString15(uint Distance,uint Length);
uint DecodeNum(uint Num,uint StartPos,uint *DecTab,uint *PosTab);
ushort ChSet[256],ChSetA[256],ChSetB[256],ChSetC[256];
byte NToPl[256],NToPlB[256],NToPlC[256];
uint FlagBuf,AvrPlc,AvrPlcB,AvrLn1,AvrLn2,AvrLn3;
int Buf60,NumHuf,StMode,LCount,FlagsCnt;
uint Nhfb,Nlzb,MaxDist3;
/***************************** Unpack v 1.5 *********************************/
/***************************** Unpack v 2.0 *********************************/
void Unpack20(bool Solid);
DecodeTable MD[4]; // Decode multimedia data, up to 4 channels.
unsigned char UnpOldTable20[MC20*4];
uint UnpAudioBlock,UnpChannels,UnpCurChannel;
int UnpChannelDelta;
void CopyString20(uint Length,uint Distance);
bool ReadTables20();
void UnpWriteBuf20();
void UnpInitData20(int Solid);
void ReadLastTables();
byte DecodeAudio(int Delta);
struct AudioVariables AudV[4];
/***************************** Unpack v 2.0 *********************************/
/***************************** Unpack v 3.0 *********************************/
enum BLOCK_TYPES {BLOCK_LZ,BLOCK_PPM};
void UnpInitData30(bool Solid);
void Unpack29(bool Solid);
void InitFilters30();
bool ReadEndOfBlock();
bool ReadVMCode();
bool ReadVMCodePPM();
bool AddVMCode(uint FirstByte,byte *Code,int CodeSize);
int SafePPMDecodeChar();
bool ReadTables30();
bool UnpReadBuf30();
void UnpWriteBuf30();
void ExecuteCode(VM_PreparedProgram *Prg);
int PrevLowDist,LowDistRepCount;
ModelPPM PPM;
int PPMEscChar;
byte UnpOldTable[HUFF_TABLE_SIZE30];
int UnpBlockType;
bool TablesRead;
// Virtual machine to execute filters code.
RarVM VM;
// Buffer to read VM filters code. We moved it here from AddVMCode
// function to reduce time spent in BitInput constructor.
BitInput VMCodeInp;
// Filters code, one entry per filter.
Array<UnpackFilter30 *> Filters30;
// Filters stack, several entrances of same filter are possible.
Array<UnpackFilter30 *> PrgStack;
// Lengths of preceding data blocks, one length of one last block
// for every filter. Used to reduce the size required to write
// the data block length if lengths are repeating.
Array<int> OldFilterLengths;
int LastFilter;
/***************************** Unpack v 3.0 *********************************/
public:
Unpack(ComprDataIO *DataIO);
~Unpack();
void Init(size_t WinSize,bool Solid);
void DoUnpack(int Method,bool Solid);
bool IsFileExtracted() {return(FileExtracted);}
void SetDestSize(int64 DestSize) {DestUnpSize=DestSize;FileExtracted=false;}
void SetSuspended(bool Suspended) {Unpack::Suspended=Suspended;}
byte const* window_wrptr() const { return &Window [WrPtr & MaxWinMask]; }
size_t MaxWinSize;
size_t MaxWinMask;
uint GetChar()
{
if (Inp.InAddr>BitInput::MAX_SIZE-30)
UnpReadBuf();
return(Inp.InBuf[Inp.InAddr++]);
}
};
#endif

View File

@ -0,0 +1,487 @@
#ifdef RAR_COMMON_HPP
#define STARTL1 2
static unsigned int DecL1[]={0x8000,0xa000,0xc000,0xd000,0xe000,0xea00,
0xee00,0xf000,0xf200,0xf200,0xffff};
static unsigned int PosL1[]={0,0,0,2,3,5,7,11,16,20,24,32,32};
#define STARTL2 3
static unsigned int DecL2[]={0xa000,0xc000,0xd000,0xe000,0xea00,0xee00,
0xf000,0xf200,0xf240,0xffff};
static unsigned int PosL2[]={0,0,0,0,5,7,9,13,18,22,26,34,36};
#define STARTHF0 4
static unsigned int DecHf0[]={0x8000,0xc000,0xe000,0xf200,0xf200,0xf200,
0xf200,0xf200,0xffff};
static unsigned int PosHf0[]={0,0,0,0,0,8,16,24,33,33,33,33,33};
#define STARTHF1 5
static unsigned int DecHf1[]={0x2000,0xc000,0xe000,0xf000,0xf200,0xf200,
0xf7e0,0xffff};
static unsigned int PosHf1[]={0,0,0,0,0,0,4,44,60,76,80,80,127};
#define STARTHF2 5
static unsigned int DecHf2[]={0x1000,0x2400,0x8000,0xc000,0xfa00,0xffff,
0xffff,0xffff};
static unsigned int PosHf2[]={0,0,0,0,0,0,2,7,53,117,233,0,0};
#define STARTHF3 6
static unsigned int DecHf3[]={0x800,0x2400,0xee00,0xfe80,0xffff,0xffff,
0xffff};
static unsigned int PosHf3[]={0,0,0,0,0,0,0,2,16,218,251,0,0};
#define STARTHF4 8
static unsigned int DecHf4[]={0xff00,0xffff,0xffff,0xffff,0xffff,0xffff};
static unsigned int PosHf4[]={0,0,0,0,0,0,0,0,0,255,0,0,0};
void Unpack::Unpack15(bool Solid)
{
UnpInitData(Solid);
UnpInitData15(Solid);
UnpReadBuf();
if (!Solid)
{
InitHuff();
UnpPtr=0;
}
else
UnpPtr=WrPtr;
--DestUnpSize;
if (DestUnpSize>=0)
{
GetFlagsBuf();
FlagsCnt=8;
}
while (DestUnpSize>=0)
{
UnpPtr&=MaxWinMask;
if (Inp.InAddr>ReadTop-30 && !UnpReadBuf())
break;
if (((WrPtr-UnpPtr) & MaxWinMask)<270 && WrPtr!=UnpPtr)
UnpWriteBuf20();
if (StMode)
{
HuffDecode();
continue;
}
if (--FlagsCnt < 0)
{
GetFlagsBuf();
FlagsCnt=7;
}
if (FlagBuf & 0x80)
{
FlagBuf<<=1;
if (Nlzb > Nhfb)
LongLZ();
else
HuffDecode();
}
else
{
FlagBuf<<=1;
if (--FlagsCnt < 0)
{
GetFlagsBuf();
FlagsCnt=7;
}
if (FlagBuf & 0x80)
{
FlagBuf<<=1;
if (Nlzb > Nhfb)
HuffDecode();
else
LongLZ();
}
else
{
FlagBuf<<=1;
ShortLZ();
}
}
}
UnpWriteBuf20();
}
#define GetShortLen1(pos) ((pos)==1 ? Buf60+3:ShortLen1[pos])
#define GetShortLen2(pos) ((pos)==3 ? Buf60+3:ShortLen2[pos])
void Unpack::ShortLZ()
{
static unsigned int ShortLen1[]={1,3,4,4,5,6,7,8,8,4,4,5,6,6,4,0};
static unsigned int ShortXor1[]={0,0xa0,0xd0,0xe0,0xf0,0xf8,0xfc,0xfe,
0xff,0xc0,0x80,0x90,0x98,0x9c,0xb0};
static unsigned int ShortLen2[]={2,3,3,3,4,4,5,6,6,4,4,5,6,6,4,0};
static unsigned int ShortXor2[]={0,0x40,0x60,0xa0,0xd0,0xe0,0xf0,0xf8,
0xfc,0xc0,0x80,0x90,0x98,0x9c,0xb0};
unsigned int Length,SaveLength;
unsigned int LastDistance;
unsigned int Distance;
int DistancePlace;
NumHuf=0;
unsigned int BitField=Inp.fgetbits();
if (LCount==2)
{
Inp.faddbits(1);
if (BitField >= 0x8000)
{
CopyString15((unsigned int)LastDist,LastLength);
return;
}
BitField <<= 1;
LCount=0;
}
BitField>>=8;
// not thread safe, replaced by GetShortLen1 and GetShortLen2 macro
// ShortLen1[1]=ShortLen2[3]=Buf60+3;
if (AvrLn1<37)
{
for (Length=0;;Length++)
if (((BitField^ShortXor1[Length]) & (~(0xff>>GetShortLen1(Length))))==0)
break;
Inp.faddbits(GetShortLen1(Length));
}
else
{
for (Length=0;;Length++)
if (((BitField^ShortXor2[Length]) & (~(0xff>>GetShortLen2(Length))))==0)
break;
Inp.faddbits(GetShortLen2(Length));
}
if (Length >= 9)
{
if (Length == 9)
{
LCount++;
CopyString15((unsigned int)LastDist,LastLength);
return;
}
if (Length == 14)
{
LCount=0;
Length=DecodeNum(Inp.fgetbits(),STARTL2,DecL2,PosL2)+5;
Distance=(Inp.fgetbits()>>1) | 0x8000;
Inp.faddbits(15);
LastLength=Length;
LastDist=Distance;
CopyString15(Distance,Length);
return;
}
LCount=0;
SaveLength=Length;
Distance=OldDist[(OldDistPtr-(Length-9)) & 3];
Length=DecodeNum(Inp.fgetbits(),STARTL1,DecL1,PosL1)+2;
if (Length==0x101 && SaveLength==10)
{
Buf60 ^= 1;
return;
}
if (Distance > 256)
Length++;
if (Distance >= MaxDist3)
Length++;
OldDist[OldDistPtr++]=Distance;
OldDistPtr = OldDistPtr & 3;
LastLength=Length;
LastDist=Distance;
CopyString15(Distance,Length);
return;
}
LCount=0;
AvrLn1 += Length;
AvrLn1 -= AvrLn1 >> 4;
DistancePlace=DecodeNum(Inp.fgetbits(),STARTHF2,DecHf2,PosHf2) & 0xff;
Distance=ChSetA[DistancePlace];
if (--DistancePlace != -1)
{
LastDistance=ChSetA[DistancePlace];
ChSetA[DistancePlace+1]=LastDistance;
ChSetA[DistancePlace]=Distance;
}
Length+=2;
OldDist[OldDistPtr++] = ++Distance;
OldDistPtr = OldDistPtr & 3;
LastLength=Length;
LastDist=Distance;
CopyString15(Distance,Length);
}
void Unpack::LongLZ()
{
unsigned int Length;
unsigned int Distance;
unsigned int DistancePlace,NewDistancePlace;
unsigned int OldAvr2,OldAvr3;
NumHuf=0;
Nlzb+=16;
if (Nlzb > 0xff)
{
Nlzb=0x90;
Nhfb >>= 1;
}
OldAvr2=AvrLn2;
unsigned int BitField=Inp.fgetbits();
if (AvrLn2 >= 122)
Length=DecodeNum(BitField,STARTL2,DecL2,PosL2);
else
if (AvrLn2 >= 64)
Length=DecodeNum(BitField,STARTL1,DecL1,PosL1);
else
if (BitField < 0x100)
{
Length=BitField;
Inp.faddbits(16);
}
else
{
for (Length=0;((BitField<<Length)&0x8000)==0;Length++)
;
Inp.faddbits(Length+1);
}
AvrLn2 += Length;
AvrLn2 -= AvrLn2 >> 5;
BitField=Inp.fgetbits();
if (AvrPlcB > 0x28ff)
DistancePlace=DecodeNum(BitField,STARTHF2,DecHf2,PosHf2);
else
if (AvrPlcB > 0x6ff)
DistancePlace=DecodeNum(BitField,STARTHF1,DecHf1,PosHf1);
else
DistancePlace=DecodeNum(BitField,STARTHF0,DecHf0,PosHf0);
AvrPlcB += DistancePlace;
AvrPlcB -= AvrPlcB >> 8;
while (1)
{
Distance = ChSetB[DistancePlace & 0xff];
NewDistancePlace = NToPlB[Distance++ & 0xff]++;
if (!(Distance & 0xff))
CorrHuff(ChSetB,NToPlB);
else
break;
}
ChSetB[DistancePlace]=ChSetB[NewDistancePlace];
ChSetB[NewDistancePlace]=Distance;
Distance=((Distance & 0xff00) | (Inp.fgetbits() >> 8)) >> 1;
Inp.faddbits(7);
OldAvr3=AvrLn3;
if (Length!=1 && Length!=4) {
if (Length==0 && Distance <= MaxDist3)
{
AvrLn3++;
AvrLn3 -= AvrLn3 >> 8;
} else {
if (AvrLn3 > 0) {
AvrLn3--;
}
}
}
Length+=3;
if (Distance >= MaxDist3)
Length++;
if (Distance <= 256)
Length+=8;
if (OldAvr3 > 0xb0 || (AvrPlc >= 0x2a00 && OldAvr2 < 0x40))
MaxDist3=0x7f00;
else
MaxDist3=0x2001;
OldDist[OldDistPtr++]=Distance;
OldDistPtr = OldDistPtr & 3;
LastLength=Length;
LastDist=Distance;
CopyString15(Distance,Length);
}
void Unpack::HuffDecode()
{
unsigned int CurByte,NewBytePlace;
unsigned int Length;
unsigned int Distance;
int BytePlace;
unsigned int BitField=Inp.fgetbits();
if (AvrPlc > 0x75ff)
BytePlace=DecodeNum(BitField,STARTHF4,DecHf4,PosHf4);
else
if (AvrPlc > 0x5dff)
BytePlace=DecodeNum(BitField,STARTHF3,DecHf3,PosHf3);
else
if (AvrPlc > 0x35ff)
BytePlace=DecodeNum(BitField,STARTHF2,DecHf2,PosHf2);
else
if (AvrPlc > 0x0dff)
BytePlace=DecodeNum(BitField,STARTHF1,DecHf1,PosHf1);
else
BytePlace=DecodeNum(BitField,STARTHF0,DecHf0,PosHf0);
BytePlace&=0xff;
if (StMode)
{
if (BytePlace==0 && BitField > 0xfff)
BytePlace=0x100;
if (--BytePlace==-1)
{
BitField=Inp.fgetbits();
Inp.faddbits(1);
if (BitField & 0x8000)
{
NumHuf=StMode=0;
return;
}
else
{
Length = (BitField & 0x4000) ? 4 : 3;
Inp.faddbits(1);
Distance=DecodeNum(Inp.fgetbits(),STARTHF2,DecHf2,PosHf2);
Distance = (Distance << 5) | (Inp.fgetbits() >> 11);
Inp.faddbits(5);
CopyString15(Distance,Length);
return;
}
}
}
else
if (NumHuf++ >= 16 && FlagsCnt==0)
StMode=1;
AvrPlc += BytePlace;
AvrPlc -= AvrPlc >> 8;
Nhfb+=16;
if (Nhfb > 0xff)
{
Nhfb=0x90;
Nlzb >>= 1;
}
Window[UnpPtr++]=(byte)(ChSet[BytePlace]>>8);
--DestUnpSize;
while (1)
{
CurByte=ChSet[BytePlace];
NewBytePlace=NToPl[CurByte++ & 0xff]++;
if ((CurByte & 0xff) > 0xa1)
CorrHuff(ChSet,NToPl);
else
break;
}
ChSet[BytePlace]=ChSet[NewBytePlace];
ChSet[NewBytePlace]=CurByte;
}
void Unpack::GetFlagsBuf()
{
unsigned int Flags,NewFlagsPlace;
unsigned int FlagsPlace=DecodeNum(Inp.fgetbits(),STARTHF2,DecHf2,PosHf2);
while (1)
{
Flags=ChSetC[FlagsPlace];
FlagBuf=Flags>>8;
NewFlagsPlace=NToPlC[Flags++ & 0xff]++;
if ((Flags & 0xff) != 0)
break;
CorrHuff(ChSetC,NToPlC);
}
ChSetC[FlagsPlace]=ChSetC[NewFlagsPlace];
ChSetC[NewFlagsPlace]=Flags;
}
void Unpack::UnpInitData15(int Solid)
{
if (!Solid)
{
AvrPlcB=AvrLn1=AvrLn2=AvrLn3=NumHuf=Buf60=0;
AvrPlc=0x3500;
MaxDist3=0x2001;
Nhfb=Nlzb=0x80;
}
FlagsCnt=0;
FlagBuf=0;
StMode=0;
LCount=0;
ReadTop=0;
}
void Unpack::InitHuff()
{
for (unsigned int I=0;I<256;I++)
{
ChSet[I]=ChSetB[I]=I<<8;
ChSetA[I]=I;
ChSetC[I]=((~I+1) & 0xff)<<8;
}
memset(NToPl,0,sizeof(NToPl));
memset(NToPlB,0,sizeof(NToPlB));
memset(NToPlC,0,sizeof(NToPlC));
CorrHuff(ChSetB,NToPlB);
}
void Unpack::CorrHuff(ushort *CharSet,byte *NumToPlace)
{
int I,J;
for (I=7;I>=0;I--)
for (J=0;J<32;J++,CharSet++)
*CharSet=(*CharSet & ~0xff) | I;
memset(NumToPlace,0,sizeof(NToPl));
for (I=6;I>=0;I--)
NumToPlace[I]=(7-I)*32;
}
void Unpack::CopyString15(uint Distance,uint Length)
{
DestUnpSize-=Length;
while (Length--)
{
Window[UnpPtr]=Window[(UnpPtr-Distance) & MaxWinMask];
UnpPtr=(UnpPtr+1) & MaxWinMask;
}
}
uint Unpack::DecodeNum(uint Num,uint StartPos,uint *DecTab,uint *PosTab)
{
int I;
for (Num&=0xfff0,I=0;DecTab[I]<=Num;I++)
StartPos++;
Inp.faddbits(StartPos);
return(((Num-(I ? DecTab[I-1]:0))>>(16-StartPos))+PosTab[StartPos]);
}
#endif

View File

@ -0,0 +1,373 @@
#ifdef RAR_COMMON_HPP
void Unpack::CopyString20(uint Length,uint Distance)
{
LastDist=OldDist[OldDistPtr++ & 3]=Distance;
LastLength=Length;
DestUnpSize-=Length;
CopyString(Length,Distance);
}
void Unpack::Unpack20(bool Solid)
{
static unsigned char LDecode[]={0,1,2,3,4,5,6,7,8,10,12,14,16,20,24,28,32,40,48,56,64,80,96,112,128,160,192,224};
static unsigned char LBits[]= {0,0,0,0,0,0,0,0,1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5};
static int DDecode[]={0,1,2,3,4,6,8,12,16,24,32,48,64,96,128,192,256,384,512,768,1024,1536,2048,3072,4096,6144,8192,12288,16384,24576,32768U,49152U,65536,98304,131072,196608,262144,327680,393216,458752,524288,589824,655360,720896,786432,851968,917504,983040};
static unsigned char DBits[]= {0,0,0,0,1,1,2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16};
static unsigned char SDDecode[]={0,4,8,16,32,64,128,192};
static unsigned char SDBits[]= {2,2,3, 4, 5, 6, 6, 6};
unsigned int Bits;
if (Suspended)
UnpPtr=WrPtr;
else
{
UnpInitData(Solid);
if (!UnpReadBuf())
return;
if (!Solid)
if (!ReadTables20())
return;
--DestUnpSize;
}
while (DestUnpSize>=0)
{
UnpPtr&=MaxWinMask;
if (Inp.InAddr>ReadTop-30)
if (!UnpReadBuf())
break;
if (((WrPtr-UnpPtr) & MaxWinMask)<270 && WrPtr!=UnpPtr)
{
UnpWriteBuf20();
if (Suspended)
return;
}
if (UnpAudioBlock)
{
int AudioNumber=DecodeNumber(Inp,&MD[UnpCurChannel]);
if (AudioNumber==256)
{
if (!ReadTables20())
break;
continue;
}
Window[UnpPtr++]=DecodeAudio(AudioNumber);
if (++UnpCurChannel==UnpChannels)
UnpCurChannel=0;
--DestUnpSize;
continue;
}
int Number=DecodeNumber(Inp,&BlockTables.LD);
if (Number<256)
{
Window[UnpPtr++]=(byte)Number;
--DestUnpSize;
continue;
}
if (Number>269)
{
int Length=LDecode[Number-=270]+3;
if ((Bits=LBits[Number])>0)
{
Length+=Inp.getbits()>>(16-Bits);
Inp.addbits(Bits);
}
int DistNumber=DecodeNumber(Inp,&BlockTables.DD);
unsigned int Distance=DDecode[DistNumber]+1;
if ((Bits=DBits[DistNumber])>0)
{
Distance+=Inp.getbits()>>(16-Bits);
Inp.addbits(Bits);
}
if (Distance>=0x2000)
{
Length++;
if (Distance>=0x40000L)
Length++;
}
CopyString20(Length,Distance);
continue;
}
if (Number==269)
{
if (!ReadTables20())
break;
continue;
}
if (Number==256)
{
CopyString20(LastLength,LastDist);
continue;
}
if (Number<261)
{
unsigned int Distance=OldDist[(OldDistPtr-(Number-256)) & 3];
int LengthNumber=DecodeNumber(Inp,&BlockTables.RD);
int Length=LDecode[LengthNumber]+2;
if ((Bits=LBits[LengthNumber])>0)
{
Length+=Inp.getbits()>>(16-Bits);
Inp.addbits(Bits);
}
if (Distance>=0x101)
{
Length++;
if (Distance>=0x2000)
{
Length++;
if (Distance>=0x40000)
Length++;
}
}
CopyString20(Length,Distance);
continue;
}
if (Number<270)
{
unsigned int Distance=SDDecode[Number-=261]+1;
if ((Bits=SDBits[Number])>0)
{
Distance+=Inp.getbits()>>(16-Bits);
Inp.addbits(Bits);
}
CopyString20(2,Distance);
continue;
}
}
ReadLastTables();
UnpWriteBuf20();
}
void Unpack::UnpWriteBuf20()
{
if (UnpPtr!=WrPtr)
UnpSomeRead=true;
if (UnpPtr<WrPtr)
{
UnpIO->UnpWrite(&Window[WrPtr],-(int)WrPtr & MaxWinMask);
UnpIO->UnpWrite(Window,UnpPtr);
UnpAllBuf=true;
}
else
UnpIO->UnpWrite(&Window[WrPtr],UnpPtr-WrPtr);
WrPtr=UnpPtr;
}
bool Unpack::ReadTables20()
{
byte BitLength[BC20];
byte Table[MC20*4];
int TableSize,N,I;
if (Inp.InAddr>ReadTop-25)
if (!UnpReadBuf())
return(false);
uint BitField=Inp.getbits();
UnpAudioBlock=(BitField & 0x8000);
if (!(BitField & 0x4000))
memset(UnpOldTable20,0,sizeof(UnpOldTable20));
Inp.addbits(2);
if (UnpAudioBlock)
{
UnpChannels=((BitField>>12) & 3)+1;
if (UnpCurChannel>=UnpChannels)
UnpCurChannel=0;
Inp.addbits(2);
TableSize=MC20*UnpChannels;
}
else
TableSize=NC20+DC20+RC20;
for (I=0;I<BC20;I++)
{
BitLength[I]=(byte)(Inp.getbits() >> 12);
Inp.addbits(4);
}
MakeDecodeTables(BitLength,&BlockTables.BD,BC20);
I=0;
while (I<TableSize)
{
if (Inp.InAddr>ReadTop-5)
if (!UnpReadBuf())
return false;
int Number=DecodeNumber(Inp,&BlockTables.BD);
if (Number<16)
{
Table[I]=(Number+UnpOldTable20[I]) & 0xf;
I++;
}
else
if (Number==16)
{
N=(Inp.getbits() >> 14)+3;
Inp.addbits(2);
if (I>0)
while (N-- > 0 && I<TableSize)
{
Table[I]=Table[I-1];
I++;
}
}
else
{
if (Number==17)
{
N=(Inp.getbits() >> 13)+3;
Inp.addbits(3);
}
else
{
N=(Inp.getbits() >> 9)+11;
Inp.addbits(7);
}
while (N-- > 0 && I<TableSize)
Table[I++]=0;
}
}
if (Inp.InAddr>ReadTop)
return(true);
if (UnpAudioBlock)
for (I=0;I<UnpChannels;I++)
MakeDecodeTables(&Table[I*MC20],&MD[I],MC20);
else
{
MakeDecodeTables(&Table[0],&BlockTables.LD,NC20);
MakeDecodeTables(&Table[NC20],&BlockTables.DD,DC20);
MakeDecodeTables(&Table[NC20+DC20],&BlockTables.RD,RC20);
}
memcpy(UnpOldTable20,Table,sizeof(UnpOldTable20));
return(true);
}
void Unpack::ReadLastTables()
{
if (ReadTop>=Inp.InAddr+5) {
if (UnpAudioBlock)
{
if (DecodeNumber(Inp,&MD[UnpCurChannel])==256)
ReadTables20();
} else {
if (DecodeNumber(Inp,&BlockTables.LD)==269)
ReadTables20();
}
}
}
void Unpack::UnpInitData20(int Solid)
{
if (!Solid)
{
UnpAudioBlock=UnpChannelDelta=UnpCurChannel=0;
UnpChannels=1;
memset(AudV,0,sizeof(AudV));
memset(UnpOldTable20,0,sizeof(UnpOldTable20));
memset(MD,0,sizeof(MD));
}
}
byte Unpack::DecodeAudio(int Delta)
{
struct AudioVariables *V=&AudV[UnpCurChannel];
V->ByteCount++;
V->D4=V->D3;
V->D3=V->D2;
V->D2=V->LastDelta-V->D1;
V->D1=V->LastDelta;
int PCh=8*V->LastChar+V->K1*V->D1+V->K2*V->D2+V->K3*V->D3+V->K4*V->D4+V->K5*UnpChannelDelta;
PCh=(PCh>>3) & 0xFF;
unsigned int Ch=PCh-Delta;
int D=((signed char)Delta)<<3;
V->Dif[0]+=abs(D);
V->Dif[1]+=abs(D-V->D1);
V->Dif[2]+=abs(D+V->D1);
V->Dif[3]+=abs(D-V->D2);
V->Dif[4]+=abs(D+V->D2);
V->Dif[5]+=abs(D-V->D3);
V->Dif[6]+=abs(D+V->D3);
V->Dif[7]+=abs(D-V->D4);
V->Dif[8]+=abs(D+V->D4);
V->Dif[9]+=abs(D-UnpChannelDelta);
V->Dif[10]+=abs(D+UnpChannelDelta);
UnpChannelDelta=V->LastDelta=(signed char)(Ch-V->LastChar);
V->LastChar=Ch;
if ((V->ByteCount & 0x1F)==0)
{
unsigned int MinDif=V->Dif[0],NumMinDif=0;
V->Dif[0]=0;
for (int I=1;I<sizeof(V->Dif)/sizeof(V->Dif[0]);I++)
{
if (V->Dif[I]<MinDif)
{
MinDif=V->Dif[I];
NumMinDif=I;
}
V->Dif[I]=0;
}
switch(NumMinDif)
{
case 1:
if (V->K1>=-16)
V->K1--;
break;
case 2:
if (V->K1<16)
V->K1++;
break;
case 3:
if (V->K2>=-16)
V->K2--;
break;
case 4:
if (V->K2<16)
V->K2++;
break;
case 5:
if (V->K3>=-16)
V->K3--;
break;
case 6:
if (V->K3<16)
V->K3++;
break;
case 7:
if (V->K4>=-16)
V->K4--;
break;
case 8:
if (V->K4<16)
V->K4++;
break;
case 9:
if (V->K5>=-16)
V->K5--;
break;
case 10:
if (V->K5<16)
V->K5++;
break;
}
}
return((byte)Ch);
}
#endif

View File

@ -0,0 +1,840 @@
#ifdef RAR_COMMON_HPP
// We use it instead of direct PPM.DecodeChar call to be sure that
// we reset PPM structures in case of corrupt data. It is important,
// because these structures can be invalid after PPM.DecodeChar returned -1.
inline int Unpack::SafePPMDecodeChar()
{
int Ch=PPM.DecodeChar();
if (Ch==-1) // Corrupt PPM data found.
{
PPM.CleanUp(); // Reset possibly corrupt PPM data structures.
UnpBlockType=BLOCK_LZ; // Set faster and more fail proof LZ mode.
}
return(Ch);
}
void Unpack::Unpack29(bool Solid)
{
static unsigned char LDecode[]={0,1,2,3,4,5,6,7,8,10,12,14,16,20,24,28,32,40,48,56,64,80,96,112,128,160,192,224};
static unsigned char LBits[]= {0,0,0,0,0,0,0,0,1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5};
static int DDecode[DC];
static byte DBits[DC];
static int DBitLengthCounts[]= {4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,14,0,12};
static unsigned char SDDecode[]={0,4,8,16,32,64,128,192};
static unsigned char SDBits[]= {2,2,3, 4, 5, 6, 6, 6};
unsigned int Bits;
if (DDecode[1]==0)
{
int Dist=0,BitLength=0,Slot=0;
for (int I=0;I<ASIZE(DBitLengthCounts);I++,BitLength++)
for (int J=0;J<DBitLengthCounts[I];J++,Slot++,Dist+=(1<<BitLength))
{
DDecode[Slot]=Dist;
DBits[Slot]=BitLength;
}
}
FileExtracted=true;
if (!Suspended)
{
UnpInitData(Solid);
if (!UnpReadBuf30())
return;
if ((!Solid || !TablesRead) && !ReadTables30())
return;
}
while (true)
{
UnpPtr&=MaxWinMask;
if (Inp.InAddr>ReadBorder)
{
if (!UnpReadBuf30())
break;
}
if (((WrPtr-UnpPtr) & MaxWinMask)<260 && WrPtr!=UnpPtr)
{
UnpWriteBuf30();
if (WrittenFileSize>DestUnpSize)
return;
if (Suspended)
{
FileExtracted=false;
return;
}
}
if (UnpBlockType==BLOCK_PPM)
{
// Here speed is critical, so we do not use SafePPMDecodeChar,
// because sometimes even the inline function can introduce
// some additional penalty.
int Ch=PPM.DecodeChar();
if (Ch==-1) // Corrupt PPM data found.
{
PPM.CleanUp(); // Reset possibly corrupt PPM data structures.
UnpBlockType=BLOCK_LZ; // Set faster and more fail proof LZ mode.
break;
}
if (Ch==PPMEscChar)
{
int NextCh=SafePPMDecodeChar();
if (NextCh==0) // End of PPM encoding.
{
if (!ReadTables30())
break;
continue;
}
if (NextCh==-1) // Corrupt PPM data found.
break;
if (NextCh==2) // End of file in PPM mode.
break;
if (NextCh==3) // Read VM code.
{
if (!ReadVMCodePPM())
break;
continue;
}
if (NextCh==4) // LZ inside of PPM.
{
unsigned int Distance=0,Length;
bool Failed=false;
for (int I=0;I<4 && !Failed;I++)
{
int Ch=SafePPMDecodeChar();
if (Ch==-1)
Failed=true;
else
if (I==3)
Length=(byte)Ch;
else
Distance=(Distance<<8)+(byte)Ch;
}
if (Failed)
break;
CopyString(Length+32,Distance+2);
continue;
}
if (NextCh==5) // One byte distance match (RLE) inside of PPM.
{
int Length=SafePPMDecodeChar();
if (Length==-1)
break;
CopyString(Length+4,1);
continue;
}
// If we are here, NextCh must be 1, what means that current byte
// is equal to our 'escape' byte, so we just store it to Window.
}
Window[UnpPtr++]=Ch;
continue;
}
int Number=DecodeNumber(Inp,&BlockTables.LD);
if (Number<256)
{
Window[UnpPtr++]=(byte)Number;
continue;
}
if (Number>=271)
{
int Length=LDecode[Number-=271]+3;
if ((Bits=LBits[Number])>0)
{
Length+=Inp.getbits()>>(16-Bits);
Inp.addbits(Bits);
}
int DistNumber=DecodeNumber(Inp,&BlockTables.DD);
unsigned int Distance=DDecode[DistNumber]+1;
if ((Bits=DBits[DistNumber])>0)
{
if (DistNumber>9)
{
if (Bits>4)
{
Distance+=((Inp.getbits()>>(20-Bits))<<4);
Inp.addbits(Bits-4);
}
if (LowDistRepCount>0)
{
LowDistRepCount--;
Distance+=PrevLowDist;
}
else
{
int LowDist=DecodeNumber(Inp,&BlockTables.LDD);
if (LowDist==16)
{
LowDistRepCount=LOW_DIST_REP_COUNT-1;
Distance+=PrevLowDist;
}
else
{
Distance+=LowDist;
PrevLowDist=LowDist;
}
}
}
else
{
Distance+=Inp.getbits()>>(16-Bits);
Inp.addbits(Bits);
}
}
if (Distance>=0x2000)
{
Length++;
if (Distance>=0x40000L)
Length++;
}
InsertOldDist(Distance);
LastLength=Length;
CopyString(Length,Distance);
continue;
}
if (Number==256)
{
if (!ReadEndOfBlock())
break;
continue;
}
if (Number==257)
{
if (!ReadVMCode())
break;
continue;
}
if (Number==258)
{
if (LastLength!=0)
CopyString(LastLength,OldDist[0]);
continue;
}
if (Number<263)
{
int DistNum=Number-259;
unsigned int Distance=OldDist[DistNum];
for (int I=DistNum;I>0;I--)
OldDist[I]=OldDist[I-1];
OldDist[0]=Distance;
int LengthNumber=DecodeNumber(Inp,&BlockTables.RD);
int Length=LDecode[LengthNumber]+2;
if ((Bits=LBits[LengthNumber])>0)
{
Length+=Inp.getbits()>>(16-Bits);
Inp.addbits(Bits);
}
LastLength=Length;
CopyString(Length,Distance);
continue;
}
if (Number<272)
{
unsigned int Distance=SDDecode[Number-=263]+1;
if ((Bits=SDBits[Number])>0)
{
Distance+=Inp.getbits()>>(16-Bits);
Inp.addbits(Bits);
}
InsertOldDist(Distance);
LastLength=2;
CopyString(2,Distance);
continue;
}
}
UnpWriteBuf30();
}
// Return 'false' to quit unpacking the current file or 'true' to continue.
bool Unpack::ReadEndOfBlock()
{
uint BitField=Inp.getbits();
bool NewTable,NewFile=false;
// "1" - no new file, new table just here.
// "00" - new file, no new table.
// "01" - new file, new table (in beginning of next file).
if ((BitField & 0x8000)!=0)
{
NewTable=true;
Inp.addbits(1);
}
else
{
NewFile=true;
NewTable=(BitField & 0x4000)!=0;
Inp.addbits(2);
}
TablesRead=!NewTable;
// Quit immediately if "new file" flag is set. If "new table" flag
// is present, we'll read the table in beginning of next file
// based on 'TablesRead' 'false' value.
if (NewFile)
return false;
return ReadTables30(); // Quit only if we failed to read tables.
}
bool Unpack::ReadVMCode()
{
// Entire VM code is guaranteed to fully present in block defined
// by current Huffman table. Compressor checks that VM code does not cross
// Huffman block boundaries.
unsigned int FirstByte=Inp.getbits()>>8;
Inp.addbits(8);
int Length=(FirstByte & 7)+1;
if (Length==7)
{
Length=(Inp.getbits()>>8)+7;
Inp.addbits(8);
}
else
if (Length==8)
{
Length=Inp.getbits();
Inp.addbits(16);
}
Array<byte> VMCode(Length);
for (int I=0;I<Length;I++)
{
// Try to read the new buffer if only one byte is left.
// But if we read all bytes except the last, one byte is enough.
if (Inp.InAddr>=ReadTop-1 && !UnpReadBuf30() && I<Length-1)
return(false);
VMCode[I]=Inp.getbits()>>8;
Inp.addbits(8);
}
return(AddVMCode(FirstByte,&VMCode[0],Length));
}
bool Unpack::ReadVMCodePPM()
{
unsigned int FirstByte=SafePPMDecodeChar();
if ((int)FirstByte==-1)
return(false);
int Length=(FirstByte & 7)+1;
if (Length==7)
{
int B1=SafePPMDecodeChar();
if (B1==-1)
return(false);
Length=B1+7;
}
else
if (Length==8)
{
int B1=SafePPMDecodeChar();
if (B1==-1)
return(false);
int B2=SafePPMDecodeChar();
if (B2==-1)
return(false);
Length=B1*256+B2;
}
Array<byte> VMCode(Length);
for (int I=0;I<Length;I++)
{
int Ch=SafePPMDecodeChar();
if (Ch==-1)
return(false);
VMCode[I]=Ch;
}
return(AddVMCode(FirstByte,&VMCode[0],Length));
}
bool Unpack::AddVMCode(uint FirstByte,byte *Code,int CodeSize)
{
VMCodeInp.InitBitInput();
memcpy(VMCodeInp.InBuf,Code,Min(BitInput::MAX_SIZE,CodeSize));
VM.Init();
uint FiltPos;
if (FirstByte & 0x80)
{
FiltPos=RarVM::ReadData(VMCodeInp);
if (FiltPos==0)
InitFilters30();
else
FiltPos--;
}
else
FiltPos=LastFilter; // Use the same filter as last time.
if (FiltPos>Filters30.Size() || FiltPos>OldFilterLengths.Size())
return(false);
LastFilter=FiltPos;
bool NewFilter=(FiltPos==Filters30.Size());
UnpackFilter30 *StackFilter=new UnpackFilter30; // New filter for PrgStack.
UnpackFilter30 *Filter;
if (NewFilter) // New filter code, never used before since VM reset.
{
if (FiltPos>MAX3_FILTERS)
{
// Too many different filters, corrupt archive.
delete StackFilter;
return false;
}
Filters30.Add(1);
Filters30[Filters30.Size()-1]=Filter=new UnpackFilter30;
StackFilter->ParentFilter=(uint)(Filters30.Size()-1);
// Reserve one item, where we store the data block length of our new
// filter entry. We'll set it to real block length below, after reading
// it. But we need to initialize it now, because when processing corrupt
// data, we can access this item even before we set it to real value.
OldFilterLengths.Push(0);
Filter->ExecCount=0;
}
else // Filter was used in the past.
{
Filter=Filters30[FiltPos];
StackFilter->ParentFilter=FiltPos;
Filter->ExecCount++;
}
int EmptyCount=0;
for (uint I=0;I<PrgStack.Size();I++)
{
PrgStack[I-EmptyCount]=PrgStack[I];
if (PrgStack[I]==NULL)
EmptyCount++;
if (EmptyCount>0)
PrgStack[I]=NULL;
}
if (EmptyCount==0)
{
PrgStack.Add(1);
EmptyCount=1;
}
int StackPos=(int)(PrgStack.Size()-EmptyCount);
PrgStack[StackPos]=StackFilter;
StackFilter->ExecCount=Filter->ExecCount;
uint BlockStart=RarVM::ReadData(VMCodeInp);
if (FirstByte & 0x40)
BlockStart+=258;
StackFilter->BlockStart=(uint)((BlockStart+UnpPtr)&MaxWinMask);
if (FirstByte & 0x20)
{
StackFilter->BlockLength=RarVM::ReadData(VMCodeInp);
// Store the last data block length for current filter.
OldFilterLengths[FiltPos]=StackFilter->BlockLength;
}
else
{
// Set the data block size to same value as the previous block size
// for same filter. It is possible on corrupt data to access here a new
// and not filled yet item of OldFilterLengths array. This is why above
// we set new OldFilterLengths items to zero.
StackFilter->BlockLength=FiltPos<OldFilterLengths.Size() ? OldFilterLengths[FiltPos]:0;
}
StackFilter->NextWindow=WrPtr!=UnpPtr && ((WrPtr-UnpPtr)&MaxWinMask)<=BlockStart;
// DebugLog("\nNextWindow: UnpPtr=%08x WrPtr=%08x BlockStart=%08x",UnpPtr,WrPtr,BlockStart);
memset(StackFilter->Prg.InitR,0,sizeof(StackFilter->Prg.InitR));
StackFilter->Prg.InitR[3]=VM_GLOBALMEMADDR;
StackFilter->Prg.InitR[4]=StackFilter->BlockLength;
StackFilter->Prg.InitR[5]=StackFilter->ExecCount;
if (FirstByte & 0x10) // set registers to optional parameters if any
{
unsigned int InitMask=VMCodeInp.fgetbits()>>9;
VMCodeInp.faddbits(7);
for (int I=0;I<7;I++)
if (InitMask & (1<<I))
StackFilter->Prg.InitR[I]=RarVM::ReadData(VMCodeInp);
}
if (NewFilter)
{
uint VMCodeSize=RarVM::ReadData(VMCodeInp);
if (VMCodeSize>=0x10000 || VMCodeSize==0)
return(false);
Array<byte> VMCode(VMCodeSize);
for (uint I=0;I<VMCodeSize;I++)
{
if (VMCodeInp.Overflow(3))
return(false);
VMCode[I]=VMCodeInp.fgetbits()>>8;
VMCodeInp.faddbits(8);
}
VM.Prepare(&VMCode[0],VMCodeSize,&Filter->Prg);
}
StackFilter->Prg.AltCmd=&Filter->Prg.Cmd[0];
StackFilter->Prg.CmdCount=Filter->Prg.CmdCount;
size_t StaticDataSize=Filter->Prg.StaticData.Size();
if (StaticDataSize>0 && StaticDataSize<VM_GLOBALMEMSIZE)
{
// read statically defined data contained in DB commands
StackFilter->Prg.StaticData.Add(StaticDataSize);
memcpy(&StackFilter->Prg.StaticData[0],&Filter->Prg.StaticData[0],StaticDataSize);
}
if (StackFilter->Prg.GlobalData.Size()<VM_FIXEDGLOBALSIZE)
{
StackFilter->Prg.GlobalData.Reset();
StackFilter->Prg.GlobalData.Add(VM_FIXEDGLOBALSIZE);
}
byte *GlobalData=&StackFilter->Prg.GlobalData[0];
for (int I=0;I<7;I++)
VM.SetLowEndianValue((uint *)&GlobalData[I*4],StackFilter->Prg.InitR[I]);
VM.SetLowEndianValue((uint *)&GlobalData[0x1c],StackFilter->BlockLength);
VM.SetLowEndianValue((uint *)&GlobalData[0x20],0);
VM.SetLowEndianValue((uint *)&GlobalData[0x2c],StackFilter->ExecCount);
memset(&GlobalData[0x30],0,16);
if (FirstByte & 8) // Put the data block passed as parameter if any.
{
if (VMCodeInp.Overflow(3))
return(false);
uint DataSize=RarVM::ReadData(VMCodeInp);
if (DataSize>VM_GLOBALMEMSIZE-VM_FIXEDGLOBALSIZE)
return(false);
size_t CurSize=StackFilter->Prg.GlobalData.Size();
if (CurSize<DataSize+VM_FIXEDGLOBALSIZE)
StackFilter->Prg.GlobalData.Add(DataSize+VM_FIXEDGLOBALSIZE-CurSize);
byte *GlobalData=&StackFilter->Prg.GlobalData[VM_FIXEDGLOBALSIZE];
for (uint I=0;I<DataSize;I++)
{
if (VMCodeInp.Overflow(3))
return(false);
GlobalData[I]=VMCodeInp.fgetbits()>>8;
VMCodeInp.faddbits(8);
}
}
return(true);
}
bool Unpack::UnpReadBuf30()
{
int DataSize=ReadTop-Inp.InAddr; // Data left to process.
if (DataSize<0)
return(false);
if (Inp.InAddr>BitInput::MAX_SIZE/2)
{
// If we already processed more than half of buffer, let's move
// remaining data into beginning to free more space for new data
// and ensure that calling function does not cross the buffer border
// even if we did not read anything here. Also it ensures that read size
// is not less than CRYPT_BLOCK_SIZE, so we can align it without risk
// to make it zero.
if (DataSize>0)
memmove(Inp.InBuf,Inp.InBuf+Inp.InAddr,DataSize);
Inp.InAddr=0;
ReadTop=DataSize;
}
else
DataSize=ReadTop;
int ReadCode=UnpIO->UnpRead(Inp.InBuf+DataSize,BitInput::MAX_SIZE-DataSize);
if (ReadCode>0)
ReadTop+=ReadCode;
ReadBorder=ReadTop-30;
return(ReadCode!=-1);
}
void Unpack::UnpWriteBuf30()
{
uint WrittenBorder=(uint)WrPtr;
uint WriteSize=(uint)((UnpPtr-WrittenBorder)&MaxWinMask);
for (size_t I=0;I<PrgStack.Size();I++)
{
// Here we apply filters to data which we need to write.
// We always copy data to virtual machine memory before processing.
// We cannot process them just in place in Window buffer, because
// these data can be used for future string matches, so we must
// preserve them in original form.
UnpackFilter30 *flt=PrgStack[I];
if (flt==NULL)
continue;
if (flt->NextWindow)
{
flt->NextWindow=false;
continue;
}
unsigned int BlockStart=flt->BlockStart;
unsigned int BlockLength=flt->BlockLength;
if (((BlockStart-WrittenBorder)&MaxWinMask)<WriteSize)
{
if (WrittenBorder!=BlockStart)
{
UnpWriteArea(WrittenBorder,BlockStart);
WrittenBorder=BlockStart;
WriteSize=(uint)((UnpPtr-WrittenBorder)&MaxWinMask);
}
if (BlockLength<=WriteSize)
{
uint BlockEnd=(BlockStart+BlockLength)&MaxWinMask;
if (BlockStart<BlockEnd || BlockEnd==0)
VM.SetMemory(0,Window+BlockStart,BlockLength);
else
{
uint FirstPartLength=uint(MaxWinSize-BlockStart);
VM.SetMemory(0,Window+BlockStart,FirstPartLength);
VM.SetMemory(FirstPartLength,Window,BlockEnd);
}
VM_PreparedProgram *ParentPrg=&Filters30[flt->ParentFilter]->Prg;
VM_PreparedProgram *Prg=&flt->Prg;
if (ParentPrg->GlobalData.Size()>VM_FIXEDGLOBALSIZE)
{
// Copy global data from previous script execution if any.
Prg->GlobalData.Alloc(ParentPrg->GlobalData.Size());
memcpy(&Prg->GlobalData[VM_FIXEDGLOBALSIZE],&ParentPrg->GlobalData[VM_FIXEDGLOBALSIZE],ParentPrg->GlobalData.Size()-VM_FIXEDGLOBALSIZE);
}
ExecuteCode(Prg);
if (Prg->GlobalData.Size()>VM_FIXEDGLOBALSIZE)
{
// Save global data for next script execution.
if (ParentPrg->GlobalData.Size()<Prg->GlobalData.Size())
ParentPrg->GlobalData.Alloc(Prg->GlobalData.Size());
memcpy(&ParentPrg->GlobalData[VM_FIXEDGLOBALSIZE],&Prg->GlobalData[VM_FIXEDGLOBALSIZE],Prg->GlobalData.Size()-VM_FIXEDGLOBALSIZE);
}
else
ParentPrg->GlobalData.Reset();
byte *FilteredData=Prg->FilteredData;
unsigned int FilteredDataSize=Prg->FilteredDataSize;
delete PrgStack[I];
PrgStack[I]=NULL;
while (I+1<PrgStack.Size())
{
UnpackFilter30 *NextFilter=PrgStack[I+1];
if (NextFilter==NULL || NextFilter->BlockStart!=BlockStart ||
NextFilter->BlockLength!=FilteredDataSize || NextFilter->NextWindow)
break;
// Apply several filters to same data block.
VM.SetMemory(0,FilteredData,FilteredDataSize);
VM_PreparedProgram *ParentPrg=&Filters30[NextFilter->ParentFilter]->Prg;
VM_PreparedProgram *NextPrg=&NextFilter->Prg;
if (ParentPrg->GlobalData.Size()>VM_FIXEDGLOBALSIZE)
{
// Copy global data from previous script execution if any.
NextPrg->GlobalData.Alloc(ParentPrg->GlobalData.Size());
memcpy(&NextPrg->GlobalData[VM_FIXEDGLOBALSIZE],&ParentPrg->GlobalData[VM_FIXEDGLOBALSIZE],ParentPrg->GlobalData.Size()-VM_FIXEDGLOBALSIZE);
}
ExecuteCode(NextPrg);
if (NextPrg->GlobalData.Size()>VM_FIXEDGLOBALSIZE)
{
// Save global data for next script execution.
if (ParentPrg->GlobalData.Size()<NextPrg->GlobalData.Size())
ParentPrg->GlobalData.Alloc(NextPrg->GlobalData.Size());
memcpy(&ParentPrg->GlobalData[VM_FIXEDGLOBALSIZE],&NextPrg->GlobalData[VM_FIXEDGLOBALSIZE],NextPrg->GlobalData.Size()-VM_FIXEDGLOBALSIZE);
}
else
ParentPrg->GlobalData.Reset();
FilteredData=NextPrg->FilteredData;
FilteredDataSize=NextPrg->FilteredDataSize;
I++;
delete PrgStack[I];
PrgStack[I]=NULL;
}
UnpIO->UnpWrite(FilteredData,FilteredDataSize);
UnpSomeRead=true;
WrittenFileSize+=FilteredDataSize;
WrittenBorder=BlockEnd;
WriteSize=uint((UnpPtr-WrittenBorder)&MaxWinMask);
}
else
{
// Current filter intersects the window write border, so we adjust
// the window border to process this filter next time, not now.
for (size_t J=I;J<PrgStack.Size();J++)
{
UnpackFilter30 *flt=PrgStack[J];
if (flt!=NULL && flt->NextWindow)
flt->NextWindow=false;
}
WrPtr=WrittenBorder;
return;
}
}
}
UnpWriteArea(WrittenBorder,UnpPtr);
WrPtr=UnpPtr;
}
void Unpack::ExecuteCode(VM_PreparedProgram *Prg)
{
if (Prg->GlobalData.Size()>0)
{
Prg->InitR[6]=(uint)WrittenFileSize;
VM.SetLowEndianValue((uint *)&Prg->GlobalData[0x24],(uint)WrittenFileSize);
VM.SetLowEndianValue((uint *)&Prg->GlobalData[0x28],(uint)(WrittenFileSize>>32));
VM.Execute(Prg);
}
}
bool Unpack::ReadTables30()
{
byte BitLength[BC];
byte Table[HUFF_TABLE_SIZE30];
if (Inp.InAddr>ReadTop-25)
if (!UnpReadBuf30())
return(false);
Inp.faddbits((8-Inp.InBit)&7);
uint BitField=Inp.fgetbits();
if (BitField & 0x8000)
{
UnpBlockType=BLOCK_PPM;
return(PPM.DecodeInit(this,PPMEscChar));
}
UnpBlockType=BLOCK_LZ;
PrevLowDist=0;
LowDistRepCount=0;
if (!(BitField & 0x4000))
memset(UnpOldTable,0,sizeof(UnpOldTable));
Inp.faddbits(2);
for (int I=0;I<BC;I++)
{
int Length=(byte)(Inp.fgetbits() >> 12);
Inp.faddbits(4);
if (Length==15)
{
int ZeroCount=(byte)(Inp.fgetbits() >> 12);
Inp.faddbits(4);
if (ZeroCount==0)
BitLength[I]=15;
else
{
ZeroCount+=2;
while (ZeroCount-- > 0 && I<ASIZE(BitLength))
BitLength[I++]=0;
I--;
}
}
else
BitLength[I]=Length;
}
MakeDecodeTables(BitLength,&BlockTables.BD,BC30);
const int TableSize=HUFF_TABLE_SIZE30;
for (int I=0;I<TableSize;)
{
if (Inp.InAddr>ReadTop-5)
if (!UnpReadBuf30())
return(false);
int Number=DecodeNumber(Inp,&BlockTables.BD);
if (Number<16)
{
Table[I]=(Number+UnpOldTable[I]) & 0xf;
I++;
}
else
if (Number<18)
{
int N;
if (Number==16)
{
N=(Inp.fgetbits() >> 13)+3;
Inp.faddbits(3);
}
else
{
N=(Inp.fgetbits() >> 9)+11;
Inp.faddbits(7);
}
if (I>0)
while (N-- > 0 && I<TableSize)
{
Table[I]=Table[I-1];
I++;
}
}
else
{
int N;
if (Number==18)
{
N=(Inp.fgetbits() >> 13)+3;
Inp.faddbits(3);
}
else
{
N=(Inp.fgetbits() >> 9)+11;
Inp.faddbits(7);
}
while (N-- > 0 && I<TableSize)
Table[I++]=0;
}
}
TablesRead=true;
if (Inp.InAddr>ReadTop)
return false;
MakeDecodeTables(&Table[0],&BlockTables.LD,NC30);
MakeDecodeTables(&Table[NC30],&BlockTables.DD,DC30);
MakeDecodeTables(&Table[NC30+DC30],&BlockTables.LDD,LDC30);
MakeDecodeTables(&Table[NC30+DC30+LDC30],&BlockTables.RD,RC30);
memcpy(UnpOldTable,Table,sizeof(UnpOldTable));
return true;
}
void Unpack::UnpInitData30(bool Solid)
{
if (!Solid)
{
TablesRead=false;
memset(UnpOldTable,0,sizeof(UnpOldTable));
PPMEscChar=2;
UnpBlockType=BLOCK_LZ;
InitFilters30();
}
}
void Unpack::InitFilters30()
{
OldFilterLengths.Reset();
LastFilter=0;
for (size_t I=0;I<Filters30.Size();I++)
delete Filters30[I];
Filters30.Reset();
for (size_t I=0;I<PrgStack.Size();I++)
delete PrgStack[I];
PrgStack.Reset();
}
#endif

View File

@ -0,0 +1,654 @@
#ifdef RAR_COMMON_HPP
void Unpack::Unpack5(bool Solid)
{
FileExtracted=true;
if (!Suspended)
{
UnpInitData(Solid);
if (!UnpReadBuf())
return;
if (!ReadBlockHeader(Inp,BlockHeader) || !ReadTables(Inp,BlockHeader,BlockTables))
return;
}
while (true)
{
UnpPtr&=MaxWinMask;
if (Inp.InAddr>=ReadBorder)
{
bool FileDone=false;
// We use 'while', because for empty block containing only Huffman table,
// we'll be on the block border once again just after reading the table.
while (Inp.InAddr>BlockHeader.BlockStart+BlockHeader.BlockSize-1 ||
Inp.InAddr==BlockHeader.BlockStart+BlockHeader.BlockSize-1 &&
Inp.InBit>=BlockHeader.BlockBitSize)
{
if (BlockHeader.LastBlockInFile)
{
FileDone=true;
break;
}
if (!ReadBlockHeader(Inp,BlockHeader) || !ReadTables(Inp,BlockHeader,BlockTables))
return;
}
if (FileDone || !UnpReadBuf())
break;
}
if (((WriteBorder-UnpPtr) & MaxWinMask)<MAX_LZ_MATCH+3 && WriteBorder!=UnpPtr)
{
UnpWriteBuf();
if (WrittenFileSize>DestUnpSize)
return;
if (Suspended)
{
FileExtracted=false;
return;
}
}
uint MainSlot=DecodeNumber(Inp,&BlockTables.LD);
if (MainSlot<256)
{
if (Fragmented)
FragWindow[UnpPtr++]=(byte)MainSlot;
else
Window[UnpPtr++]=(byte)MainSlot;
continue;
}
if (MainSlot>=262)
{
uint Length=SlotToLength(Inp,MainSlot-262);
uint DBits,Distance=1,DistSlot=DecodeNumber(Inp,&BlockTables.DD);
if (DistSlot<4)
{
DBits=0;
Distance+=DistSlot;
}
else
{
DBits=DistSlot/2 - 1;
Distance+=(2 | (DistSlot & 1)) << DBits;
}
if (DBits>0)
{
if (DBits>=4)
{
if (DBits>4)
{
Distance+=((Inp.getbits32()>>(36-DBits))<<4);
Inp.addbits(DBits-4);
}
uint LowDist=DecodeNumber(Inp,&BlockTables.LDD);
Distance+=LowDist;
}
else
{
Distance+=Inp.getbits32()>>(32-DBits);
Inp.addbits(DBits);
}
}
if (Distance>0x100)
{
Length++;
if (Distance>0x2000)
{
Length++;
if (Distance>0x40000)
Length++;
}
}
InsertOldDist(Distance);
LastLength=Length;
if (Fragmented)
FragWindow.CopyString(Length,Distance,UnpPtr,MaxWinMask);
else
CopyString(Length,Distance);
continue;
}
if (MainSlot==256)
{
UnpackFilter Filter;
if (!ReadFilter(Inp,Filter) || !AddFilter(Filter))
break;
continue;
}
if (MainSlot==257)
{
if (LastLength!=0) {
if (Fragmented) {
FragWindow.CopyString(LastLength,OldDist[0],UnpPtr,MaxWinMask);
} else {
CopyString(LastLength,OldDist[0]);
}
}
continue;
}
if (MainSlot<262)
{
uint DistNum=MainSlot-258;
uint Distance=OldDist[DistNum];
for (uint I=DistNum;I>0;I--)
OldDist[I]=OldDist[I-1];
OldDist[0]=Distance;
uint LengthSlot=DecodeNumber(Inp,&BlockTables.RD);
uint Length=SlotToLength(Inp,LengthSlot);
LastLength=Length;
if (Fragmented)
FragWindow.CopyString(Length,Distance,UnpPtr,MaxWinMask);
else
CopyString(Length,Distance);
continue;
}
}
UnpWriteBuf();
}
uint Unpack::ReadFilterData(BitInput &Inp)
{
uint ByteCount=(Inp.fgetbits()>>14)+1;
Inp.addbits(2);
uint Data=0;
for (uint I=0;I<ByteCount;I++)
{
Data+=(Inp.fgetbits()>>8)<<(I*8);
Inp.addbits(8);
}
return Data;
}
bool Unpack::ReadFilter(BitInput &Inp,UnpackFilter &Filter)
{
if (!Inp.ExternalBuffer && Inp.InAddr>ReadTop-16)
if (!UnpReadBuf())
return false;
Filter.BlockStart=ReadFilterData(Inp);
Filter.BlockLength=ReadFilterData(Inp);
Filter.Type=Inp.fgetbits()>>13;
Inp.faddbits(3);
if (Filter.Type==FILTER_DELTA)
{
Filter.Channels=(Inp.fgetbits()>>11)+1;
Inp.faddbits(5);
}
return true;
}
bool Unpack::AddFilter(UnpackFilter &Filter)
{
if (Filters.Size()>=MAX_UNPACK_FILTERS-1)
UnpWriteBuf(); // Write data, apply and flush filters.
// If distance to filter start is that large that due to circular dictionary
// mode it points to old not written yet data, then we set 'NextWindow'
// flag and process this filter only after processing that older data.
Filter.NextWindow=WrPtr!=UnpPtr && ((WrPtr-UnpPtr)&MaxWinMask)<=Filter.BlockStart;
Filter.BlockStart=uint((Filter.BlockStart+UnpPtr)&MaxWinMask);
Filters.Push(Filter);
return true;
}
bool Unpack::UnpReadBuf()
{
int DataSize=ReadTop-Inp.InAddr; // Data left to process.
if (DataSize<0)
return false;
BlockHeader.BlockSize-=Inp.InAddr-BlockHeader.BlockStart;
if (Inp.InAddr>BitInput::MAX_SIZE/2)
{
// If we already processed more than half of buffer, let's move
// remaining data into beginning to free more space for new data
// and ensure that calling function does not cross the buffer border
// even if we did not read anything here. Also it ensures that read size
// is not less than CRYPT_BLOCK_SIZE, so we can align it without risk
// to make it zero.
if (DataSize>0)
memmove(Inp.InBuf,Inp.InBuf+Inp.InAddr,DataSize);
Inp.InAddr=0;
ReadTop=DataSize;
}
else
DataSize=ReadTop;
int ReadCode=0;
if (BitInput::MAX_SIZE!=DataSize)
ReadCode=UnpIO->UnpRead(Inp.InBuf+DataSize,BitInput::MAX_SIZE-DataSize);
if (ReadCode>0) // Can be also -1.
ReadTop+=ReadCode;
ReadBorder=ReadTop-30;
BlockHeader.BlockStart=Inp.InAddr;
if (BlockHeader.BlockSize!=-1) // '-1' means not defined yet.
{
// We may need to quit from main extraction loop and read new block header
// and trees earlier than data in input buffer ends.
ReadBorder=Min(ReadBorder,BlockHeader.BlockStart+BlockHeader.BlockSize-1);
}
return ReadCode!=-1;
}
void Unpack::UnpWriteBuf()
{
size_t WrittenBorder=WrPtr;
size_t FullWriteSize=(UnpPtr-WrittenBorder)&MaxWinMask;
size_t WriteSizeLeft=FullWriteSize;
bool NotAllFiltersProcessed=false;
for (size_t I=0;I<Filters.Size();I++)
{
// Here we apply filters to data which we need to write.
// We always copy data to virtual machine memory before processing.
// We cannot process them just in place in Window buffer, because
// these data can be used for future string matches, so we must
// preserve them in original form.
UnpackFilter *flt=&Filters[I];
if (flt->Type==FILTER_NONE)
continue;
if (flt->NextWindow)
{
// Here we skip filters which have block start in current data range
// due to address warp around in circular dictionary, but actually
// belong to next dictionary block. If such filter start position
// is included to current write range, then we reset 'NextWindow' flag.
// In fact we can reset it even without such check, because current
// implementation seems to guarantee 'NextWindow' flag reset after
// buffer writing for all existing filters. But let's keep this check
// just in case. Compressor guarantees that distance between
// filter block start and filter storing position cannot exceed
// the dictionary size. So if we covered the filter block start with
// our write here, we can safely assume that filter is applicable
// to next block on no further wrap arounds is possible.
if (((flt->BlockStart-WrPtr)&MaxWinMask)<=FullWriteSize)
flt->NextWindow=false;
continue;
}
uint BlockStart=flt->BlockStart;
uint BlockLength=flt->BlockLength;
if (((BlockStart-WrittenBorder)&MaxWinMask)<WriteSizeLeft)
{
if (WrittenBorder!=BlockStart)
{
UnpWriteArea(WrittenBorder,BlockStart);
WrittenBorder=BlockStart;
WriteSizeLeft=(UnpPtr-WrittenBorder)&MaxWinMask;
}
if (BlockLength<=WriteSizeLeft)
{
if (BlockLength>0)
{
uint BlockEnd=(BlockStart+BlockLength)&MaxWinMask;
FilterSrcMemory.Alloc(BlockLength);
byte *Mem=&FilterSrcMemory[0];
if (BlockStart<BlockEnd || BlockEnd==0)
{
if (Fragmented)
FragWindow.CopyData(Mem,BlockStart,BlockLength);
else
memcpy(Mem,Window+BlockStart,BlockLength);
}
else
{
size_t FirstPartLength=size_t(MaxWinSize-BlockStart);
if (Fragmented)
{
FragWindow.CopyData(Mem,BlockStart,FirstPartLength);
FragWindow.CopyData(Mem+FirstPartLength,0,BlockEnd);
}
else
{
memcpy(Mem,Window+BlockStart,FirstPartLength);
memcpy(Mem+FirstPartLength,Window,BlockEnd);
}
}
byte *OutMem=ApplyFilter(Mem,BlockLength,flt);
Filters[I].Type=FILTER_NONE;
if (OutMem!=NULL)
UnpIO->UnpWrite(OutMem,BlockLength);
UnpSomeRead=true;
WrittenFileSize+=BlockLength;
WrittenBorder=BlockEnd;
WriteSizeLeft=(UnpPtr-WrittenBorder)&MaxWinMask;
}
}
else
{
// Current filter intersects the window write border, so we adjust
// the window border to process this filter next time, not now.
WrPtr=WrittenBorder;
// Since Filter start position can only increase, we quit processing
// all following filters for this data block and reset 'NextWindow'
// flag for them.
for (size_t J=I;J<Filters.Size();J++)
{
UnpackFilter *flt=&Filters[J];
if (flt->Type!=FILTER_NONE)
flt->NextWindow=false;
}
// Do not write data left after current filter now.
NotAllFiltersProcessed=true;
break;
}
}
}
// Remove processed filters from queue.
size_t EmptyCount=0;
for (size_t I=0;I<Filters.Size();I++)
{
if (EmptyCount>0)
Filters[I-EmptyCount]=Filters[I];
if (Filters[I].Type==FILTER_NONE)
EmptyCount++;
}
if (EmptyCount>0)
Filters.Alloc(Filters.Size()-EmptyCount);
if (!NotAllFiltersProcessed) // Only if all filters are processed.
{
// Write data left after last filter.
UnpWriteArea(WrittenBorder,UnpPtr);
WrPtr=UnpPtr;
}
// We prefer to write data in blocks not exceeding UNPACK_MAX_WRITE
// instead of potentially huge MaxWinSize blocks.
WriteBorder=(UnpPtr+Min(MaxWinSize,UNPACK_MAX_WRITE))&MaxWinMask;
// Choose the nearest among WriteBorder and WrPtr actual written border.
// If border is equal to UnpPtr, it means that we have MaxWinSize data ahead.
if (WriteBorder==UnpPtr ||
WrPtr!=UnpPtr && ((WrPtr-UnpPtr)&MaxWinMask)<((WriteBorder-UnpPtr)&MaxWinMask))
WriteBorder=WrPtr;
}
byte* Unpack::ApplyFilter(byte *Data,uint DataSize,UnpackFilter *Flt)
{
byte *SrcData=Data;
switch(Flt->Type)
{
case FILTER_E8:
case FILTER_E8E9:
{
uint FileOffset=(uint)WrittenFileSize;
const int FileSize=0x1000000;
byte CmpByte2=Flt->Type==FILTER_E8E9 ? 0xe9:0xe8;
for (uint CurPos=0;(int)CurPos<(int)DataSize-4;)
{
byte CurByte=*(Data++);
CurPos++;
if (CurByte==0xe8 || CurByte==CmpByte2)
{
uint Offset=(CurPos+FileOffset)%FileSize;
uint Addr=RawGet4(Data);
// We check 0x80000000 bit instead of '< 0' comparison
// not assuming int32 presence or uint size and endianness.
if ((Addr & 0x80000000)!=0) // Addr<0
{
if (((Addr+Offset) & 0x80000000)==0) // Addr+Offset>=0
RawPut4(Addr+FileSize,Data);
}
else
if (((Addr-FileSize) & 0x80000000)!=0) // Addr<FileSize
RawPut4(Addr-Offset,Data);
Data+=4;
CurPos+=4;
}
}
}
return SrcData;
case FILTER_ARM:
{
uint FileOffset=(uint)WrittenFileSize;
for (uint CurPos=0;(int)CurPos<(int)DataSize-3;CurPos+=4)
{
byte *D=Data+CurPos;
if (D[3]==0xeb) // BL command with '1110' (Always) condition.
{
uint Offset=D[0]+uint(D[1])*0x100+uint(D[2])*0x10000;
Offset-=(FileOffset+CurPos)/4;
D[0]=(byte)Offset;
D[1]=(byte)(Offset>>8);
D[2]=(byte)(Offset>>16);
}
}
}
return SrcData;
case FILTER_DELTA:
{
uint Channels=Flt->Channels,SrcPos=0;
FilterDstMemory.Alloc(DataSize);
byte *DstData=&FilterDstMemory[0];
// Bytes from same channels are grouped to continual data blocks,
// so we need to place them back to their interleaving positions.
for (uint CurChannel=0;CurChannel<Channels;CurChannel++)
{
byte PrevByte=0;
for (uint DestPos=CurChannel;DestPos<DataSize;DestPos+=Channels)
DstData[DestPos]=(PrevByte-=Data[SrcPos++]);
}
return DstData;
}
}
return NULL;
}
void Unpack::UnpWriteArea(size_t StartPtr,size_t EndPtr)
{
if (EndPtr!=StartPtr)
UnpSomeRead=true;
if (EndPtr<StartPtr)
UnpAllBuf=true;
if (Fragmented)
{
size_t SizeToWrite=(EndPtr-StartPtr) & MaxWinMask;
while (SizeToWrite>0)
{
size_t BlockSize=FragWindow.GetBlockSize(StartPtr,SizeToWrite);
UnpWriteData(&FragWindow[StartPtr],BlockSize);
SizeToWrite-=BlockSize;
StartPtr=(StartPtr+BlockSize) & MaxWinMask;
}
}
else
if (EndPtr<StartPtr)
{
UnpWriteData(Window+StartPtr,MaxWinSize-StartPtr);
UnpWriteData(Window,EndPtr);
}
else
UnpWriteData(Window+StartPtr,EndPtr-StartPtr);
}
void Unpack::UnpWriteData(byte *Data,size_t Size)
{
if (WrittenFileSize>=DestUnpSize)
return;
size_t WriteSize=Size;
int64 LeftToWrite=DestUnpSize-WrittenFileSize;
if ((int64)WriteSize>LeftToWrite)
WriteSize=(size_t)LeftToWrite;
UnpIO->UnpWrite(Data,WriteSize);
WrittenFileSize+=Size;
}
bool Unpack::ReadBlockHeader(BitInput &Inp,UnpackBlockHeader &Header)
{
Header.HeaderSize=0;
if (!Inp.ExternalBuffer && Inp.InAddr>ReadTop-7)
if (!UnpReadBuf())
return false;
Inp.faddbits((8-Inp.InBit)&7);
byte BlockFlags=Inp.fgetbits()>>8;
Inp.faddbits(8);
uint ByteCount=((BlockFlags>>3)&3)+1; // Block size byte count.
if (ByteCount==4)
return false;
Header.HeaderSize=2+ByteCount;
Header.BlockBitSize=(BlockFlags&7)+1;
byte SavedCheckSum=Inp.fgetbits()>>8;
Inp.faddbits(8);
int BlockSize=0;
for (uint I=0;I<ByteCount;I++)
{
BlockSize+=(Inp.fgetbits()>>8)<<(I*8);
Inp.addbits(8);
}
Header.BlockSize=BlockSize;
byte CheckSum=byte(0x5a^BlockFlags^BlockSize^(BlockSize>>8)^(BlockSize>>16));
if (CheckSum!=SavedCheckSum)
return false;
Header.BlockStart=Inp.InAddr;
ReadBorder=Min(ReadBorder,Header.BlockStart+Header.BlockSize-1);
Header.LastBlockInFile=(BlockFlags & 0x40)!=0;
Header.TablePresent=(BlockFlags & 0x80)!=0;
return true;
}
bool Unpack::ReadTables(BitInput &Inp,UnpackBlockHeader &Header,UnpackBlockTables &Tables)
{
if (!Header.TablePresent)
return true;
if (!Inp.ExternalBuffer && Inp.InAddr>ReadTop-25)
if (!UnpReadBuf())
return false;
byte BitLength[BC];
for (int I=0;I<BC;I++)
{
int Length=(byte)(Inp.fgetbits() >> 12);
Inp.faddbits(4);
if (Length==15)
{
int ZeroCount=(byte)(Inp.fgetbits() >> 12);
Inp.faddbits(4);
if (ZeroCount==0)
BitLength[I]=15;
else
{
ZeroCount+=2;
while (ZeroCount-- > 0 && I<sizeof(BitLength)/sizeof(BitLength[0]))
BitLength[I++]=0;
I--;
}
}
else
BitLength[I]=Length;
}
MakeDecodeTables(BitLength,&Tables.BD,BC);
byte Table[HUFF_TABLE_SIZE];
const int TableSize=HUFF_TABLE_SIZE;
for (int I=0;I<TableSize;)
{
if (!Inp.ExternalBuffer && Inp.InAddr>ReadTop-5)
if (!UnpReadBuf())
return(false);
int Number=DecodeNumber(Inp,&Tables.BD);
if (Number<16)
{
Table[I]=Number;
I++;
}
else
if (Number<18)
{
int N;
if (Number==16)
{
N=(Inp.fgetbits() >> 13)+3;
Inp.faddbits(3);
}
else
{
N=(Inp.fgetbits() >> 9)+11;
Inp.faddbits(7);
}
if (I>0)
while (N-- > 0 && I<TableSize)
{
Table[I]=Table[I-1];
I++;
}
}
else
{
int N;
if (Number==18)
{
N=(Inp.fgetbits() >> 13)+3;
Inp.faddbits(3);
}
else
{
N=(Inp.fgetbits() >> 9)+11;
Inp.faddbits(7);
}
while (N-- > 0 && I<TableSize)
Table[I++]=0;
}
}
if (!Inp.ExternalBuffer && Inp.InAddr>ReadTop)
return(false);
MakeDecodeTables(&Table[0],&Tables.LD,NC);
MakeDecodeTables(&Table[NC],&Tables.DD,DC);
MakeDecodeTables(&Table[NC+DC],&Tables.LDD,LDC);
MakeDecodeTables(&Table[NC+DC+LDC],&Tables.RD,RC);
return(true);
}
void Unpack::InitFilters()
{
Filters.Reset();
}
#endif

View File

@ -0,0 +1,107 @@
#ifdef RAR_COMMON_HPP
FragmentedWindow::FragmentedWindow()
{
memset(Mem,0,sizeof(Mem));
memset(MemSize,0,sizeof(MemSize));
}
FragmentedWindow::~FragmentedWindow()
{
Reset();
}
void FragmentedWindow::Reset()
{
for (uint I=0;I<ASIZE(Mem);I++)
if (Mem[I]!=NULL)
{
free(Mem[I]);
Mem[I]=NULL;
}
}
void FragmentedWindow::Init(size_t WinSize)
{
Reset();
uint BlockNum=0;
size_t TotalSize=0; // Already allocated.
while (TotalSize<WinSize && BlockNum<ASIZE(Mem))
{
size_t Size=WinSize-TotalSize; // Size needed to allocate.
// Minimum still acceptable block size. Next allocations cannot be larger
// than current, so we do not need blocks if they are smaller than
// "size left / attempts left". Also we do not waste time to blocks
// smaller than some arbitrary constant.
size_t MinSize=Max(Size/(ASIZE(Mem)-BlockNum), 0x400000);
byte *NewMem=NULL;
while (Size>=MinSize)
{
NewMem=(byte *)malloc(Size);
if (NewMem!=NULL)
break;
Size-=Size/32;
}
if (NewMem==NULL)
throw std::bad_alloc();
// Clean the window to generate the same output when unpacking corrupt
// RAR files, which may access to unused areas of sliding dictionary.
memset(NewMem,0,Size);
Mem[BlockNum]=NewMem;
TotalSize+=Size;
MemSize[BlockNum]=TotalSize;
BlockNum++;
}
if (TotalSize<WinSize) // Not found enough free blocks.
throw std::bad_alloc();
}
byte& FragmentedWindow::operator [](size_t Item)
{
if (Item<MemSize[0])
return Mem[0][Item];
for (uint I=1;I<ASIZE(MemSize);I++)
if (Item<MemSize[I])
return Mem[I][Item-MemSize[I-1]];
return Mem[0][0]; // Must never happen;
}
void FragmentedWindow::CopyString(uint Length,uint Distance,size_t &UnpPtr,size_t MaxWinMask)
{
size_t SrcPtr=UnpPtr-Distance;
while (Length-- > 0)
{
(*this)[UnpPtr]=(*this)[SrcPtr++ & MaxWinMask];
// We need to have masked UnpPtr after quit from loop, so it must not
// be replaced with '(*this)[UnpPtr++ & MaxWinMask]'
UnpPtr=(UnpPtr+1) & MaxWinMask;
}
}
void FragmentedWindow::CopyData(byte *Dest,size_t WinPos,size_t Size)
{
for (size_t I=0;I<Size;I++)
Dest[I]=(*this)[WinPos+I];
}
size_t FragmentedWindow::GetBlockSize(size_t StartPos,size_t RequiredSize)
{
for (uint I=0;I<ASIZE(MemSize);I++)
if (StartPos<MemSize[I])
return Min(MemSize[I]-StartPos,RequiredSize);
return 0; // Must never be here.
}
#endif

View File

@ -0,0 +1,146 @@
#ifdef RAR_COMMON_HPP
inline void Unpack::InsertOldDist(uint Distance)
{
OldDist[3]=OldDist[2];
OldDist[2]=OldDist[1];
OldDist[1]=OldDist[0];
OldDist[0]=Distance;
}
#ifdef _MSC_VER
#define FAST_MEMCPY
#endif
inline void Unpack::CopyString(uint Length,uint Distance)
{
size_t SrcPtr=UnpPtr-Distance;
if (SrcPtr<MaxWinSize-MAX_LZ_MATCH && UnpPtr<MaxWinSize-MAX_LZ_MATCH)
{
// If we are not close to end of window, we do not need to waste time
// to "& MaxWinMask" pointer protection.
byte *Src=Window+SrcPtr;
byte *Dest=Window+UnpPtr;
UnpPtr+=Length;
#ifdef FAST_MEMCPY
if (Distance<Length) // Overlapping strings
#endif
while (Length>=8)
{
Dest[0]=Src[0];
Dest[1]=Src[1];
Dest[2]=Src[2];
Dest[3]=Src[3];
Dest[4]=Src[4];
Dest[5]=Src[5];
Dest[6]=Src[6];
Dest[7]=Src[7];
Src+=8;
Dest+=8;
Length-=8;
}
#ifdef FAST_MEMCPY
else
while (Length>=8)
{
// This memcpy expanded inline by MSVC. We could also use uint64
// assignment, which seems to provide about the same speed.
memcpy(Dest,Src,8);
Src+=8;
Dest+=8;
Length-=8;
}
#endif
// Unroll the loop for 0 - 7 bytes left. Note that we use nested "if"s.
if (Length>0) { Dest[0]=Src[0];
if (Length>1) { Dest[1]=Src[1];
if (Length>2) { Dest[2]=Src[2];
if (Length>3) { Dest[3]=Src[3];
if (Length>4) { Dest[4]=Src[4];
if (Length>5) { Dest[5]=Src[5];
if (Length>6) { Dest[6]=Src[6]; } } } } } } } // Close all nested "if"s.
}
else
while (Length-- > 0) // Slow copying with all possible precautions.
{
Window[UnpPtr]=Window[SrcPtr++ & MaxWinMask];
// We need to have masked UnpPtr after quit from loop, so it must not
// be replaced with 'Window[UnpPtr++ & MaxWinMask]'
UnpPtr=(UnpPtr+1) & MaxWinMask;
}
}
inline uint Unpack::DecodeNumber(BitInput &Inp,DecodeTable *Dec)
{
// Left aligned 15 bit length raw bit field.
uint BitField=Inp.getbits() & 0xfffe;
if (BitField<Dec->DecodeLen[Dec->QuickBits])
{
uint Code=BitField>>(16-Dec->QuickBits);
Inp.addbits(Dec->QuickLen[Code]);
return Dec->QuickNum[Code];
}
// Detect the real bit length for current code.
uint Bits=15;
for (uint I=Dec->QuickBits+1;I<15;I++)
if (BitField<Dec->DecodeLen[I])
{
Bits=I;
break;
}
Inp.addbits(Bits);
// Calculate the distance from the start code for current bit length.
uint Dist=BitField-Dec->DecodeLen[Bits-1];
// Start codes are left aligned, but we need the normal right aligned
// number. So we shift the distance to the right.
Dist>>=(16-Bits);
// Now we can calculate the position in the code list. It is the sum
// of first position for current bit length and right aligned distance
// between our bit field and start code for current bit length.
uint Pos=Dec->DecodePos[Bits]+Dist;
// Out of bounds safety check required for damaged archives.
if (Pos>=Dec->MaxNum)
Pos=0;
// Convert the position in the code list to position in alphabet
// and return it.
return(Dec->DecodeNum[Pos]);
}
inline uint Unpack::SlotToLength(BitInput &Inp,uint Slot)
{
uint LBits,Length=2;
if (Slot<8)
{
LBits=0;
Length+=Slot;
}
else
{
LBits=Slot/4-1;
Length+=(4 | (Slot & 3)) << LBits;
}
if (LBits>0)
{
Length+=Inp.getbits()>>(16-LBits);
Inp.addbits(LBits);
}
return Length;
}
#endif

View File

@ -0,0 +1,352 @@
// unrar_core 3.8.5. http://www.slack.net/~ant/
#include "unrar.h"
#include "rar.hpp"
#include <assert.h>
// This source code is a heavily modified version based on the unrar package.
// It may not be used to develop a RAR (WinRAR) compatible archiver.
// See unrar/license.txt for copyright and licensing.
// Same as printf when debugging, otherwise 0
#ifndef debug_printf
#define debug_printf 1 ? (void)0 : (void)
#endif
// If expr != unrar_ok, returns its value
#define RETURN_ERR( expr ) \
do {\
unrar_err_t err_;\
if ( (err_ = (expr)) != unrar_ok )\
return err_;\
} while ( 0 )
// Receives errors reported from deep within library.
// MUST be macro.
#define NONLOCAL_ERROR( p ) \
setjmp( p->Arc.jmp_env )
void Rar_Error_Handler::ReportError( unrar_err_t err )
{
if ( err )
longjmp( jmp_env, err );
}
void Rar_Error_Handler::MemoryError()
{
ReportError( unrar_err_memory );
}
//// Internal
unrar_t::unrar_t()
{
Arc.user_read = NULL;
Arc.user_write = NULL;
Arc.Tell_ = 0;
Arc.write_error = unrar_ok;
data_ = NULL;
own_data_ = NULL;
close_file = NULL;
FileCount = 0;
Unp = NULL;
unrar_init();
}
unrar_t::~unrar_t()
{
if ( Arc.write_error ) { }
if ( close_file )
close_file( Arc.user_read_data );
delete Unp;
free( own_data_ );
}
// True if current file is compressed in way that affects solid extraction state
static inline bool solid_file( const unrar_t* p )
{
return p->Arc.Solid &&
p->Arc.FileHead.Method != 0 &&
p->Arc.FileHead.PackSize != 0;
}
static void update_solid_pos( unrar_t* p )
{
if ( p->solid_pos == p->Arc.CurBlockPos )
p->solid_pos = p->Arc.NextBlockPos;
}
static unrar_err_t extract_( unrar_t* p, unrar_write_func user_write, void* user_data )
{
assert( !p->done );
assert( !solid_file( p ) || p->solid_pos == p->Arc.CurBlockPos );
if ( p->Arc.write_error ) { }
p->Arc.write_error = unrar_ok;
p->Arc.user_write = user_write;
p->Arc.user_write_data = user_data;
RETURN_ERR( p->ExtractCurrentFile( user_write == NULL ) );
p->Arc.user_write = NULL;
RETURN_ERR( p->Arc.write_error );
update_solid_pos( p );
return unrar_ok;
}
static unrar_err_t skip_solid( unrar_t* p )
{
if ( !solid_file( p ) )
{
update_solid_pos( p );
return unrar_ok;
}
return extract_( p, NULL, NULL );
}
static inline bool IsLink(uint Attr)
{
return((Attr & 0xF000)==0xA000);
}
static unrar_err_t next_( unrar_t* p, bool skipping_solid )
{
if ( p->done )
return unrar_err_arc_eof;
free( p->own_data_ );
p->own_data_ = NULL;
p->data_ = NULL;
for (;;)
{
size_t ReadSize;
p->Arc.SeekToNext();
unrar_err_t const err = p->Arc.ReadHeader(&ReadSize);
if ( err != unrar_err_arc_eof )
RETURN_ERR( err );
//else
// debug_printf( "unrar: Didn't end with ENDARC_HEAD\n" ); // rar -en causes this
HEADER_TYPE const type = (HEADER_TYPE) p->Arc.GetHeaderType();
if ( err != unrar_ok || type == HEAD_ENDARC )
{
p->done = true;
break;
}
if ( type != HEAD_FILE )
{
// Skip non-files
#if 0
if ( type != HEAD_SERVICE && type != HEAD_CRYPT && type != HEAD_MARK )
debug_printf( "unrar: Skipping unknown block type: %X\n", (unsigned) type );
#endif
update_solid_pos( p );
}
else
{
// Update even for non-solid files, in case it's not extracted
if ( !solid_file( p ) )
update_solid_pos( p );
if ( p->Arc.IsArcLabel() )
{
// Ignore labels
}
else if ( IsLink( p->Arc.FileHead.FileAttr ) )
{
// Ignore links
p->update_first_file_pos();
p->FileCount++; // Links are treated as files
}
else if ( p->Arc.IsArcDir() )
{
// Ignore directories
}
else
{
p->info.size = p->Arc.FileHead.UnpSize;
p->info.name_w = p->Arc.FileHead.FileName;
WideToChar(p->info.name_w, p->info.name);
p->info.is_unicode = (p->Arc.FileHead.Flags & LHD_UNICODE) != 0;
p->info.dos_date = p->Arc.FileHead.mtime.GetDos();
p->info.crc = p->Arc.FileHead.FileHash.CRC32;
p->info.is_crc32 = !p->Arc.OldFormat;
// Stop for files
break;
}
// Original code assumed that non-file items were never solid compressed
check( !solid_file( p ) );
// Skip non-file solid-compressed items (original code assumed there were none)
if ( skipping_solid )
RETURN_ERR( skip_solid( p ) );
}
}
return unrar_ok;
}
static unrar_err_t open_( unrar_t* p, unrar_read_func read, void* user_data )
{
p->Arc.user_read = read;
p->Arc.user_read_data = user_data;
RETURN_ERR( p->Arc.IsArchive() );
p->begin_pos = p->Arc.NextBlockPos;
p->solid_pos = p->Arc.NextBlockPos;
p->first_file_pos = INT_MAX;
p->done = false;
return unrar_ok;
}
//// Interface
// Needed when user read throws exception
struct unrar_ptr {
unrar_t* p;
unrar_ptr() { p = NULL; }
~unrar_ptr() { delete p; }
};
unrar_err_t unrar_open_custom( unrar_t** impl_out, unrar_read_func read, void* user_data )
{
*impl_out = NULL;
unrar_ptr ptr;
ptr.p = new unrar_t;
if ( !ptr.p )
return unrar_err_memory;
RETURN_ERR( NONLOCAL_ERROR( ptr.p ) );
RETURN_ERR( open_( ptr.p, read, user_data ) );
RETURN_ERR( next_( ptr.p, false ) );
*impl_out = ptr.p;
ptr.p = NULL;
//delete ptr.p; // done automatically at end of function
return unrar_ok;
}
void unrar_close( unrar_t* ar )
{
delete ar;
}
unrar_bool unrar_done( const unrar_t* p )
{
return p->done;
}
unrar_err_t unrar_next( unrar_t* p )
{
assert( !unrar_done( p ) );
RETURN_ERR( NONLOCAL_ERROR( p ) );
return next_( p, false );
}
const unrar_info_t* unrar_info( unrar_t const* p )
{
assert( !unrar_done( p ) );
return &p->info;
}
unrar_pos_t unrar_tell( const unrar_t* p )
{
return p->Arc.CurBlockPos;
}
unrar_err_t unrar_seek( unrar_t* p, unrar_pos_t n )
{
p->Arc.NextBlockPos = n;
p->done = false;
p->FileCount = (n <= p->first_file_pos ? 0 : 1);
return unrar_next( p );
}
unrar_err_t unrar_rewind( unrar_t* p )
{
return unrar_seek( p, p->begin_pos );
}
unrar_err_t unrar_try_extract( const unrar_t* p )
{
assert( !unrar_done( p ) );
return ((unrar_t*) p)->ExtractCurrentFile( true, true );
}
static unrar_err_t reopen( unrar_t* p )
{
// Save and restore archive reader
unrar_read_func read = p->Arc.user_read;
void* user_data = p->Arc.user_read_data;
void (*close_file)( void* ) = p->close_file;
p->close_file = NULL;
p->~unrar_t();
new (p) unrar_t;
p->close_file = close_file;
return open_( p, read, user_data );
}
unrar_err_t unrar_extract_custom( unrar_t* p, unrar_write_func user_write, void* user_data )
{
assert( !unrar_done( p ) );
RETURN_ERR( NONLOCAL_ERROR( p ) );
if ( solid_file( p ) )
{
unrar_pos_t pos = p->Arc.CurBlockPos;
if ( p->solid_pos != pos )
{
// Next file to solid extract isn't current one
if ( p->solid_pos > pos )
RETURN_ERR( reopen( p ) );
else
p->Arc.NextBlockPos = p->solid_pos;
RETURN_ERR( next_( p, true ) );
// Keep extracting until solid position is at desired file
while ( !p->done && p->solid_pos < pos )
{
RETURN_ERR( skip_solid( p ) );
RETURN_ERR( next_( p, true ) );
}
// Be sure we're at right file
if ( p->solid_pos != pos || p->Arc.CurBlockPos != pos )
return unrar_err_corrupt;
}
}
return extract_( p, user_write, user_data );
}

168
src/core/fex/unrar/unrar.h Normal file
View File

@ -0,0 +1,168 @@
/** RAR archive scanning and extraction \file */
/* unrar_core 3.8.5 */
#ifndef UNRAR_H
#define UNRAR_H
#include <stddef.h>
#include <limits.h>
#include "../fex/blargg_common.h"
#if !defined (UNRAR_NO_LONG_LONG) && defined (LLONG_MAX)
typedef long long unrar_long_long;
typedef unsigned long long unrar_ulong_long;
#else
typedef long unrar_long_long;
typedef unsigned long unrar_ulong_long;
#endif
#ifdef __cplusplus
extern "C" {
#endif
/** Error code, or 0 if function was successful. See Errors for more. Except
where noted, once an operation returns an error, that archive should not be
used any further, other than with unrar_close(). */
#ifndef unrar_err_t /* (#ifndef allows better testing of library) */
typedef int unrar_err_t;
#endif
/** First parameter of most functions is unrar_t*, or const unrar_t* if nothing
is changed. */
typedef struct unrar_t unrar_t;
/** File position */
typedef unrar_long_long unrar_pos_t;
/** Boolean, where 0 is false and 1 is true */
typedef int unrar_bool;
/******** Open/close ********/
/** Initializes static tables used by library. Automatically called by
unrar_open(). OK to call more than once. */
void unrar_init( void );
/** Opens archive and points *out at it. If error, sets *out to NULL. */
unrar_err_t unrar_open( unrar_t** out, const char path [] );
/** User archive read callback. When called, user_data is a copy of that passed
to unrar_open_custom(). Callback must do the following: Read avail bytes from
file at offset pos and set *count to avail, where avail is the lesser of *count
and file_size-pos. Put read bytes into *out and return unrar_ok. If fewer than
avail bytes could be read successfully, return a non-zero error code. */
typedef unrar_err_t (*unrar_read_func)( void* user_data,
void* out, int* count, unrar_pos_t pos );
/** Same as unrar_open(), except data is read using supplied function rather
than from file. */
unrar_err_t unrar_open_custom( unrar_t** unrar_out,
unrar_read_func, void* user_data );
/** Closes archive and frees memory. OK to pass NULL. */
void unrar_close( unrar_t* );
/******** Scanning ********/
/** True if at end of archive. Must be called after unrar_open() or
unrar_rewind(), as an archive might contain no files. */
unrar_bool unrar_done( const unrar_t* );
/** Goes to next file in archive. If there are no more files, unrar_done() will
now return true. */
unrar_err_t unrar_next( unrar_t* );
/** Goes back to first file in archive, as if it were just opened with
unrar_open(). */
unrar_err_t unrar_rewind( unrar_t* );
/** Position of current file in archive. Will never return zero. */
unrar_pos_t unrar_tell( const unrar_t* );
/** Returns to file at previously-saved position. */
unrar_err_t unrar_seek( unrar_t*, unrar_pos_t );
/**** Info ****/
/** Information about current file */
typedef struct unrar_info_t
{
unrar_pos_t size; /**< Uncompressed size */
char name[32767]; /**< Name, in Unicode if is_unicode is true */
const wchar_t* name_w; /**< Name in Unicode, "" if unavailable */
unrar_bool is_unicode; /**< True if name is Unicode (UTF-8) */
unsigned int dos_date; /**< Date in DOS-style format, 0 if unavailable */
unsigned int crc; /**< Checksum; algorithm depends on archive */
unrar_bool is_crc32; /**< True if crc is CRC-32 */
} unrar_info_t;
/** Information about current file. Pointer is valid until unrar_next(),
unrar_rewind(), unrar_seek(), or unrar_close(). */
const unrar_info_t* unrar_info( const unrar_t* );
/**** Extraction ****/
/** Returns unrar_ok if current file can be extracted, otherwise error
indicating why it can't be extracted (too new/old compression algorithm,
encrypted, segmented). Archive is still usable if this returns error,
just the current file can't be extracted. */
unrar_err_t unrar_try_extract( const unrar_t* );
/** Extracts at most size bytes from current file into out. If file is larger,
discards excess bytes. If file is smaller, only writes unrar_size() bytes. */
unrar_err_t unrar_extract( unrar_t*, void* out, unrar_pos_t size );
/** Extracts data to memory and returns pointer to it in *out. Pointer is
valid until unrar_next(), unrar_rewind(), unrar_seek(), or unrar_close(). OK to
call more than once for same file. Optimized to avoid allocating memory when
entire file will already be kept in internal window. */
unrar_err_t unrar_extract_mem( unrar_t* p, void const** out );
/** User extracted data write callback. When called, user_data is a copy of
that passed to unrar_extract_custom(). Callback must do the following: Write
count bytes from *in to wherever extracted data goes and return unrar_ok. If
data cannot be written successfully, return a non-zero error code. */
typedef unrar_err_t (*unrar_write_func)( void* user_data,
const void* in, int count );
/** Extracts current file and writes data using supplied function. Any error
it returns will be returned by this function, and archive will still be
usable. */
unrar_err_t unrar_extract_custom( unrar_t*,
unrar_write_func, void* user_data );
/******** Errors ********/
/** Error string associated with unrar error code. Always returns valid
pointer to a C string; never returns NULL. Returns "" for unrar_ok. */
const char* unrar_err_str( unrar_err_t );
enum {
unrar_ok = 0,/**< No error; success. Guaranteed to be zero. */
unrar_err_memory = 1,/**< Out of memory */
unrar_err_open = 2,/**< Couldn't open file (not found/permissions) */
unrar_err_not_arc = 3,/**< Not a RAR archive */
unrar_err_corrupt = 4,/**< Archive is corrupt */
unrar_err_io = 5,/**< Read failed */
unrar_err_arc_eof = 6,/**< At end of archive; no more files */
unrar_err_encrypted = 7,/**< Encryption not supported */
unrar_err_segmented = 8,/**< Segmentation not supported */
unrar_err_huge = 9,/**< Huge (2GB+) archives not supported */
unrar_err_old_algo = 10,/**< Compressed with unsupported old algorithm */
unrar_err_new_algo = 11,/**< Compressed with unsupported new algorithm */
unrar_next_err = 100/**< Errors range from 0 to unrar_next_err-1 */
};
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,167 @@
// Misc functions outside the core interface
#include "unrar.h"
#include "rar.hpp"
#include <assert.h>
// This source code is a heavily modified version based on the unrar package.
// It may not be used to develop a RAR (WinRAR) compatible archiver.
// See unrar/license.txt for copyright and licensing.
void unrar_init()
{
if (crc_tables[0][1]==0)
InitCRCTables();
Unpack::init_tables();
}
struct unrar_extract_mem_t
{
char* out;
char* end;
};
extern "C" {
static unrar_err_t extract_write( void* user_data, const void* in, int count )
{
unrar_extract_mem_t* p = (unrar_extract_mem_t*) user_data;
unrar_pos_t remain = p->end - p->out;
if ( remain > 0 )
{
if ( count > remain )
count = (int)remain;
memcpy( p->out, in, count );
p->out += count;
}
return unrar_ok;
}
}
unrar_err_t unrar_extract( unrar_t* p, void* out, unrar_pos_t size )
{
assert( !unrar_done( p ) );
unrar_extract_mem_t m;
m.out = (char*) out;
m.end = m.out + size;
return unrar_extract_custom( p, &extract_write, &m );
}
inline
static bool is_entire_file( const unrar_t* p, const void* in, int count )
{
return (count == p->Arc.SubHead.UnpSize && p->Unp && in == p->Unp->window_wrptr());
}
extern "C" {
static unrar_err_t extract_mem( void* data, void const* in, int count )
{
unrar_t* p = (unrar_t*) data;
// We might have pointer to entire file
if ( !p->data_ && is_entire_file( p, in, count ) )
{
p->data_ = in;
return unrar_ok;
}
// We don't have it, so allocate memory to read entire file into
if ( !p->own_data_ )
{
assert( !p->data_ );
unrar_pos_t size = unrar_info( p )->size;
p->own_data_ = malloc( size ? (size_t)size : 1 );
if ( !p->own_data_ )
return unrar_err_memory;
p->data_ = p->own_data_;
}
memcpy( (void*) p->data_, in, count );
p->data_ = (char*) p->data_ + count;
return unrar_ok;
}
}
unrar_err_t unrar_extract_mem( unrar_t* p, void const** out )
{
assert( !unrar_done( p ) );
*out = NULL;
if ( !p->data_ )
{
unrar_err_t err = unrar_extract_custom( p, &extract_mem, p );
if ( err )
return err;
}
*out = (p->own_data_ ? p->own_data_ : p->data_);
return unrar_ok;
}
const char* unrar_err_str( unrar_err_t err )
{
switch ( err )
{
case unrar_ok: return "";
case unrar_err_memory: return "out of memory";
case unrar_err_open: return "couldn't open RAR archive";
case unrar_err_not_arc: return "not a RAR archive";
case unrar_err_corrupt: return "RAR archive is corrupt";
case unrar_err_io: return "couldn't read/write";
case unrar_err_arc_eof: return "unexpected end of archive";
case unrar_err_encrypted: return "encryption not supported";
case unrar_err_segmented: return "segmentation not supported";
case unrar_err_huge: return "huge (2GB+) archives are not supported";
case unrar_err_old_algo: return "compressed using older algorithm than supported";
case unrar_err_new_algo: return "compressed using newer algorithm than supported";
}
assert( false );
return "problem with RAR";
}
int ComprDataIO::Read( void* p, int n )
{
unrar_err_t err = user_read( user_read_data, p, &n, Tell_ );
if ( err )
ReportError( err );
Tell_ += n;
if ( Tell_ < 0 )
ReportError( unrar_err_huge );
return n;
}
void ComprDataIO::UnpWrite( byte* out, uint count )
{
if ( !SkipUnpCRC )
{
if ( write_error == unrar_ok )
write_error = user_write( user_write_data, out, count );
UnpHash.Update(out,count);
}
}
int ComprDataIO::UnpRead( byte* out, uint count )
{
if ( count <= 0 )
return 0;
if ( count > (uint) UnpPackedSize )
count = (uint) UnpPackedSize;
int result = Read( out, count );
UnpPackedSize -= result;
return result;
}

View File

@ -0,0 +1,50 @@
// Separate file to avoid linking to f* functions unless user calls unrar_open_file()
#include "unrar.h"
#include "rar.hpp"
#include <stdio.h>
extern "C" {
static unrar_err_t unrar_read_file( void* user_data, void* out, int* count, unrar_pos_t pos )
{
FILE* file = (FILE*) user_data;
// most of the time, seeking won't be necessary
if ( pos != ftell( file ) && fseek( file, (long)pos, SEEK_SET ) != 0 )
return unrar_err_corrupt;
*count = (int) fread( out, 1, *count, file );
if ( ferror( file ) != 0 )
return unrar_err_io;
return unrar_ok;
}
}
static void unrar_close_file( void* user_data )
{
fclose( (FILE*) user_data );
}
unrar_err_t unrar_open( unrar_t** arc_out, const char path [] )
{
*arc_out = NULL;
#if _MSC_VER >= 1300
FILE* file = NULL;
fopen_s(&file, path, "rb");
#else
FILE* file = fopen( path, "rb" );
#endif
if ( file == NULL )
return unrar_err_open;
unrar_err_t err = unrar_open_custom( arc_out, &unrar_read_file, file );
if ( err != unrar_ok )
fclose( file );
else
(*arc_out)->close_file = &unrar_close_file;
return err;
}

View File

@ -0,0 +1,267 @@
WinRAR - What's new in the latest version
Version 3.80
1. Added support for ZIP archives containing Unicode file names
in UTF-8 format. When creating ZIP archive, WinRAR stores
names in Unicode only if they cannot be stored correctly using
the current single byte character set.
2. Added decompression support for WinZip AES encrypted ZIP archives.
3. Improved Unicode support for RAR and ZIP archive names.
4. "Ask before overwrite" and "Skip existing files" update modes
are now available in archiving dialog. They allow to specify
WinRAR behavior when updating already existing files in archive.
Unlike already available "Fresh existing files only" and
"Add and update files", these new modes ignore file date
and compare only file names.
Command line equivalents of these modes are:
a) switch -o enables "Ask before overwrite" archiving mode;
b) switch -o- enables "Skip existing files" archiving mode;
c) switch -o+ enables "Overwrite all" mode (default for archiving).
5. New "Add to context menu" option in "Profile parameters" dialog.
If this option is on, the profile name will be displayed in Explorer
context menus allowing to activate a profile from context menu.
6. New -cp<profile name> switch allows to select a compression profile
in command line mode. It is supported only by GUI WinRAR.exe,
not by rar.exe.
7. New "Options" page of archiving dialog contains the group of
settings modifying the behavior of "Delete files after archiving"
option from "General" page:
a) Delete files. Delete files normally like in previous WinRAR
versions.
b) Move files to Recycle Bin. Deleted files are placed to
Recycle Bin.
Command line equivalent of this option is -dr switch.
c) Wipe files. Before deleting file data are overwritten by
zero bytes to prevent recovery of deleted files.
Command line equivalent of this option is -dw switch.
All these options have an effect only if "Delete files
after archiving" is on. You can enable any of these options
in the default compression profile to change the default
behavior of "Delete files after archiving".
8. WinRAR "Extraction path and options" dialog is now resizable.
You can use the mouse to drag its border to the desired size
and provide more space for folder tree pane. WinRAR will store
new dimensions of this dialog.
9. New "Update" SFX script command and "Update mode" group
of options in "Update" page of "Advanced SFX options" dialog.
These command and options allow to check time and implement
file time based updating;
10. SFX script "Shortcut" command and "Add shortcut..." command
in "Advanced SFX options" dialog now allow to specify
an icon file containing an icon associated with shortcut.
11. New "Wipe temporary files" option in "Settings/Security" dialog
provides more secure, though slower, way to delete temporary
WinRAR files.
12. WinRAR and RAR display the total progress bar when unpacking
a multivolume RAR archive if all volumes are present
in the same folder.
13. WinRAR and RAR automatically expand names of environment
variables in list files. For example, a list file can contain
lines like:
%windir%\*.exe
%USERPROFILE%\Desktop
This feature is available only in Windows RAR version.
14. Added support of TAR archives with non-zero "extra field" data.
15. Added support of TAR archives, which does not contain
the end of archive entry consisting of 512 zero bytes.
16. Improved Unicode support when dragging files from WinRAR window.
17. Shift+Tab key combination can be used in main WinRAR window to
switch the input focus between interface elements (files, comment,
tree, address) in reverse order. In previous versions Shift+Tab
used the same order as Tab.
18. Corrected a possible WinRAR crash when opening truncated
UDF ISO files.
Version 3.71
1. Archive names in rar.log error log file always include
the full path.
2. WinRAR tray icon is compatible with high DPI display modes.
3. If you modified a file in archive with encrypted names using
an external editor, WinRAR will not ask for archive password again
when prompting to update a file. It will use a password which
you entered when opening an archive,
4. Bugs fixed:
a) switch -tl and "Set archive time to latest file time" option
could fail in previous version. Sometimes they set archive time
to current system time instead of latest file time;
b) if -ag switch mask contained archive number, month and minute
characters, WinRAR placed 'I' character instead of minute value
into generated archive name for archive numbers exceeding 1;
c) high ASCII names in ISO files using ISO 9660 format without
Joliet format extension were displayed incorrectly;
d) WinRAR could crash when decompressing some of corrupt RAR archives;
e) if "Turn PC off when done" option was set in "Convert archives"
command, WinRAR turned PC off after converting the first archive
in selected group instead of after converting the entire group;
f) if user specified a non-existent destination path in SFX archive
in Vista, SFX could enter into infinite "create new SFX window"
loop;
g) WinRAR could fail to unpack an individual file from subfolder
of ACE archive using the drag and drop.
Version 3.70
1. Numerous Windows Vista compatibility changes:
a) help format changed from old HLP to newer HTML based CHM;
b) GUI self-extracting modules attempt to request for
administrator permissions if they cannot create destination
folder under current user account;
c) Log file rar.log and WinRAR theme files are stored
in %APPDATA%\WinRAR folder instead of WinRAR program files folder.
Exported settings file settings.reg is also stored
in %APPDATA%\WinRAR folder by default, but it is possible to
select another folder in "Save WinRAR settings" and "Load WinRAR
settings" dialogs.
WinRAR searches for registration key and settings.reg
both in its program files folder and in %APPDATA%\WinRAR;
It is possible to set the string value "AppData" in Registry key
HKEY_CURRENT_USER\Software\WinRAR\Paths to override the default
%appdata%\WinRAR path for WinRAR settings.
For example, if you wish to store theme files in WinRAR folder,
set this value to "c:\Program Files\WinRAR".
d) Vista compatibility changes in WinRAR shell integration;
e) New "Request administrative access" option in "Advanced" page
of "Advanced SFX options" allows to create SFX archive,
which will request the administrative access when started
in Windows Vista.
Command line equivalent of this option is -iadm switch.
2. Added support for ISO 13346 (UDF) file format. This format
is frequently used in ISO images of DVD disks.
3. Added Unicode support for ISO 9660 files, so WinRAR should
handle non-English file names in .iso files better.
4. Design changes in window displaying archiving and extraction
progress:
a) it provides more space for file names, allowing lengthy names;
b) it displays the current archive name in separate line,
allowing much longer archive names than before;
c) when archiving, it displays the current compression ratio
in separate line;
d) it can use both standard Windows and classic WinRAR progress bars.
Turn on "Windows progress bars" option in WinRAR "Settings/General"
dialog to use standard progress bars. By default this option is
on if some Windows visual style is active and off if Windows Classic
theme is selected.
Windows progress bars are two color only, so they do not indicate
the current compression ratio. But now the ratio is displayed
in separate line;
e) "Mode..." button moved to bottom of window.
5. GUI self-extracting modules support following command line
switches:
-d<path> set the destination path
-p<pwd> specify a password
-s silent mode, hide all
-s1 same as -s
-s2 silent mode, hide start dialog
-sp<par> specify parameters for setup program
6. GUI self-extracting modules do not pass the entire command line
to setup program like they did in previous versions.
If you need to get access to entire command line of SFX archive,
parse sfxcmd environment variable which contains this command line.
7. New switch -sc<charset>[objects] allowing to select character
sets for archive comments and list files. It replaces -fcu switch
introduced in RAR 3.60, which was removed from list of supported
switches. Now you need to specify -scuc instead of -fcu to use
Unicode comments. Unlike -fcu, -sc also supports OEM and ANSI charset.
8. New "Save archive copy as..." command in "File" menu.
This command may be useful if you opened an archive from Internet
directly in WinRAR and then decided to save it on local disk.
9. "Word wrap" command added to "View" menu of WinRAR internal viewer,
so you can change the wrapping mode of already opened viewer window.
State of this option is not stored between viewing sessions.
If you need to change the default word wrap mode, use WinRAR
"Settings/Viewer" dialog.
10. Buttons "Up" and "Down" added to "Organize profiles" dialog.
Using these buttons you can change position of selected profile
in the list.
11. Operation progress is displayed when adding the recovery record.
12. If WinRAR is minimized to tray and mouse is over its icon,
WinRAR diplays a message about the current operation progress.
In previous versions it included only percent done, now it also
contains the time left information.
13. Console RAR displays "Calculating the control sum" message
when calculating CRC32 control sum for newly created RAR volume.
Previous versions also calculated the volume control sum,
but did it silently.
14. Archives history list in "File" menu allows Unicode names,
providing more reliable support for non-English archive names.
15. Stack overflow vulnerability has been corrected in password
processing module of console RAR and UnRAR. GUI WinRAR is not
affected. We are thankful to the iDEFENSE LABS for reporting this bug.