visualboyadvance-m/src/Sound.cpp

1329 lines
30 KiB
C++
Raw Normal View History

// VisualBoyAdvance - Nintendo Gameboy/GameboyAdvance (TM) emulator.
// Copyright (C) 1999-2003 Forgotten
// Copyright (C) 2004 Forgotten and the VBA development team
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or(at your option)
// any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#include <memory.h>
#include "GBA.h"
#include "Globals.h"
#include "Sound.h"
#include "Util.h"
#include "snd_interp.h"
#include "Gb_Apu/Multi_Buffer.h"
#include "Gb_Apu/Gb_Apu.h"
#ifdef _WIN32
#include <float.h>
#endif
#define USE_TICKS_AS 380
#define SOUND_MAGIC 0x60000000
#define SOUND_MAGIC_2 0x30000000
#define NOISE_MAGIC 5
extern bool stopState;
extern bool cpuDmaHack2;
u8 soundWavePattern[4][32] = {
{0x01,0x01,0x01,0x01,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff},
{0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff},
{0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff},
{0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,
0x01,0x01,0x01,0x01,
0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff}
};
int soundFreqRatio[8] = {
1048576, // 0
524288, // 1
262144, // 2
174763, // 3
131072, // 4
104858, // 5
87381, // 6
74898 // 7
};
int soundShiftClock[16]= {
2, // 0
4, // 1
8, // 2
16, // 3
32, // 4
64, // 5
128, // 6
256, // 7
512, // 8
1024, // 9
2048, // 10
4096, // 11
8192, // 12
16384, // 13
1, // 14
1 // 15
};
int soundVolume = 0;
u8 soundBuffer[6][735];
u16 directBuffer[2][735];
u16 soundFinalWave[1470];
int soundBufferLen = 1470;
int soundBufferTotalLen = 14700;
int soundQuality = 2;
int soundInterpolation = 0;
bool soundPaused = true;
int soundPlay = 0;
int soundTicks = soundQuality * USE_TICKS_AS;
int SOUND_CLOCK_TICKS = soundQuality * USE_TICKS_AS;
u32 soundNextPosition = 0;
Multi_Buffer * apu_out = NULL;
Gb_Apu * apu = NULL;
bool apu_saved = false;
int soundLevel1 = 0;
int soundLevel2 = 0;
int soundBalance = 0;
int soundMasterOn = 0;
int soundIndex = 0;
int soundBufferIndex = 0;
int soundDebug = 0;
bool soundOffFlag = false;
int sound1On = 0;
int sound1ATL = 0;
int sound1Skip = 0;
int sound1Index = 0;
int sound1Continue = 0;
int sound1EnvelopeVolume = 0;
int sound1EnvelopeATL = 0;
int sound1EnvelopeUpDown = 0;
int sound1EnvelopeATLReload = 0;
int sound1SweepATL = 0;
int sound1SweepATLReload = 0;
int sound1SweepSteps = 0;
int sound1SweepUpDown = 0;
int sound1SweepStep = 0;
u8 *sound1Wave = soundWavePattern[2];
int sound2On = 0;
int sound2ATL = 0;
int sound2Skip = 0;
int sound2Index = 0;
int sound2Continue = 0;
int sound2EnvelopeVolume = 0;
int sound2EnvelopeATL = 0;
int sound2EnvelopeUpDown = 0;
int sound2EnvelopeATLReload = 0;
u8 *sound2Wave = soundWavePattern[2];
int sound3On = 0;
int sound3ATL = 0;
int sound3Skip = 0;
int sound3Index = 0;
int sound3Continue = 0;
int sound3OutputLevel = 0;
int sound3Last = 0;
u8 sound3WaveRam[0x20];
int sound3Bank = 0;
int sound3DataSize = 0;
int sound3ForcedOutput = 0;
int sound4On = 0;
int sound4Clock = 0;
int sound4ATL = 0;
int sound4Skip = 0;
int sound4Index = 0;
int sound4ShiftRight = 0x7f;
int sound4ShiftSkip = 0;
int sound4ShiftIndex = 0;
int sound4NSteps = 0;
int sound4CountDown = 0;
int sound4Continue = 0;
int sound4EnvelopeVolume = 0;
int sound4EnvelopeATL = 0;
int sound4EnvelopeUpDown = 0;
int sound4EnvelopeATLReload = 0;
int soundControl = 0;
int soundDSFifoAIndex = 0;
int soundDSFifoACount = 0;
int soundDSFifoAWriteIndex = 0;
bool soundDSAEnabled = false;
int soundDSATimer = 0;
u8 soundDSFifoA[32];
u8 soundDSAValue = 0;
int soundDSFifoBIndex = 0;
int soundDSFifoBCount = 0;
int soundDSFifoBWriteIndex = 0;
bool soundDSBEnabled = false;
int soundDSBTimer = 0;
u8 soundDSFifoB[32];
u8 soundDSBValue = 0;
int soundEnableFlag = 0x3ff;
s16 soundFilter[4000];
s16 soundRight[5] = { 0, 0, 0, 0, 0 };
s16 soundLeft[5] = { 0, 0, 0, 0, 0 };
int soundEchoIndex = 0;
bool soundEcho = false;
bool soundLowPass = false;
bool soundReverse = false;
variable_desc soundSaveStruct[] = {
{ &soundPaused, sizeof(int) },
{ &soundPlay, sizeof(int) },
{ &soundTicks, sizeof(int) },
{ &SOUND_CLOCK_TICKS, sizeof(int) },
{ &soundLevel1, sizeof(int) },
{ &soundLevel2, sizeof(int) },
{ &soundBalance, sizeof(int) },
{ &soundMasterOn, sizeof(int) },
{ &soundIndex, sizeof(int) },
{ &sound1On, sizeof(int) },
{ &sound1ATL, sizeof(int) },
{ &sound1Skip, sizeof(int) },
{ &sound1Index, sizeof(int) },
{ &sound1Continue, sizeof(int) },
{ &sound1EnvelopeVolume, sizeof(int) },
{ &sound1EnvelopeATL, sizeof(int) },
{ &sound1EnvelopeATLReload, sizeof(int) },
{ &sound1EnvelopeUpDown, sizeof(int) },
{ &sound1SweepATL, sizeof(int) },
{ &sound1SweepATLReload, sizeof(int) },
{ &sound1SweepSteps, sizeof(int) },
{ &sound1SweepUpDown, sizeof(int) },
{ &sound1SweepStep, sizeof(int) },
{ &sound2On, sizeof(int) },
{ &sound2ATL, sizeof(int) },
{ &sound2Skip, sizeof(int) },
{ &sound2Index, sizeof(int) },
{ &sound2Continue, sizeof(int) },
{ &sound2EnvelopeVolume, sizeof(int) },
{ &sound2EnvelopeATL, sizeof(int) },
{ &sound2EnvelopeATLReload, sizeof(int) },
{ &sound2EnvelopeUpDown, sizeof(int) },
{ &sound3On, sizeof(int) },
{ &sound3ATL, sizeof(int) },
{ &sound3Skip, sizeof(int) },
{ &sound3Index, sizeof(int) },
{ &sound3Continue, sizeof(int) },
{ &sound3OutputLevel, sizeof(int) },
{ &sound4On, sizeof(int) },
{ &sound4ATL, sizeof(int) },
{ &sound4Skip, sizeof(int) },
{ &sound4Index, sizeof(int) },
{ &sound4Clock, sizeof(int) },
{ &sound4ShiftRight, sizeof(int) },
{ &sound4ShiftSkip, sizeof(int) },
{ &sound4ShiftIndex, sizeof(int) },
{ &sound4NSteps, sizeof(int) },
{ &sound4CountDown, sizeof(int) },
{ &sound4Continue, sizeof(int) },
{ &sound4EnvelopeVolume, sizeof(int) },
{ &sound4EnvelopeATL, sizeof(int) },
{ &sound4EnvelopeATLReload, sizeof(int) },
{ &sound4EnvelopeUpDown, sizeof(int) },
{ &soundEnableFlag, sizeof(int) },
{ &soundControl, sizeof(int) },
{ &soundDSFifoAIndex, sizeof(int) },
{ &soundDSFifoACount, sizeof(int) },
{ &soundDSFifoAWriteIndex, sizeof(int) },
{ &soundDSAEnabled, sizeof(bool) },
{ &soundDSATimer, sizeof(int) },
{ &soundDSFifoA[0], 32 },
{ &soundDSAValue, sizeof(u8) },
{ &soundDSFifoBIndex, sizeof(int) },
{ &soundDSFifoBCount, sizeof(int) },
{ &soundDSFifoBWriteIndex, sizeof(int) },
{ &soundDSBEnabled, sizeof(int) },
{ &soundDSBTimer, sizeof(int) },
{ &soundDSFifoB[0], 32 },
{ &soundDSBValue, sizeof(int) },
{ &soundBuffer[0][0], 6*735 },
{ &soundFinalWave[0], 2*735 },
{ NULL, 0 }
};
variable_desc soundSaveStructV2[] = {
{ &sound3WaveRam[0], 0x20 },
{ &sound3Bank, sizeof(int) },
{ &sound3DataSize, sizeof(int) },
{ &sound3ForcedOutput, sizeof(int) },
{ NULL, 0 }
};
// *** Begin snd_interp code
// and here is the implementation specific code, in a messier state than the stuff above
extern bool timer0On;
extern int timer0Reload;
extern int timer0ClockReload;
extern bool timer1On;
extern int timer1Reload;
extern int timer1ClockReload;
extern int SOUND_CLOCK_TICKS;
extern int soundInterpolation;
inline double calc_rate(int timer)
{
if (timer ? timer1On : timer0On)
{
return double(SOUND_CLOCK_TICKS) /
double((0x10000 - (timer ? timer1Reload : timer0Reload)) *
1 << (timer ? timer1ClockReload : timer0ClockReload));
}
else
{
return 1.;
}
}
static foo_interpolate * interp[2];
class foo_interpolate_setup
{
public:
foo_interpolate_setup()
{
for (int i = 0; i < 2; i++)
{
interp[i] = get_filter(0);
}
}
~foo_interpolate_setup()
{
for (int i = 0; i < 2; i++)
{
delete interp[i];
}
}
};
static foo_interpolate_setup blah;
static int interpolation = 0;
void interp_reset(int ch)
{
setSoundFn();
interp[ch]->reset();
interp_rate();
}
void interp_switch(int which)
{
for (int i = 0; i < 2; i++)
{
delete interp[i];
interp[i] = get_filter(which);
}
interpolation = which;
interp_rate();
}
void interp_rate()
{
interp[0]->rate(calc_rate(soundDSATimer));
interp[1]->rate(calc_rate(soundDSBTimer));
}
inline void interp_push(int ch, int sample)
{
interp[ch]->push(sample);
}
inline int interp_pop(int ch)
{
return interp[ch]->pop();
}
// *** End snd_interp code
static void soundEventGB(u32 address, u8 data)
{
if ( apu )
{
int divisor = 4 * soundQuality;
int clock = (SOUND_CLOCK_TICKS - soundTicks + (divisor >> 1)) / divisor;
apu->write_register(clock, address, data);
}
else
ioMem[address] = data;
}
u8 soundRead(u32 address)
{
if (address < NR10 || address > 0x9F || !apu) return ioMem[address];
if (address == NR51) return soundBalance;
int divisor = 4 * soundQuality;
int clock = (SOUND_CLOCK_TICKS - soundTicks + (divisor >> 1)) / divisor;
switch (address)
{
case NR10:
return apu->read_register(clock, 0xFF10);
case NR11:
return apu->read_register(clock, 0xFF11);
case NR12:
return apu->read_register(clock, 0xFF12);
case NR13:
return apu->read_register(clock, 0xFF13);
case NR14:
return apu->read_register(clock, 0xFF14);
case NR21:
return apu->read_register(clock, 0xFF16);
case NR22:
return apu->read_register(clock, 0xFF17);
case NR23:
return apu->read_register(clock, 0xFF18);
case NR24:
return apu->read_register(clock, 0xFF19);
case NR30:
return apu->read_register(clock, 0xFF1A);
case NR31:
return apu->read_register(clock, 0xFF1B);
case NR32:
return apu->read_register(clock, 0xFF1C);
case NR33:
return apu->read_register(clock, 0xFF1D);
case NR34:
return apu->read_register(clock, 0xFF1E);
case NR41:
return apu->read_register(clock, 0xFF20);
case NR42:
return apu->read_register(clock, 0xFF21);
case NR43:
return apu->read_register(clock, 0xFF22);
case NR44:
return apu->read_register(clock, 0xFF23);
case NR50:
return apu->read_register(clock, 0xFF24);
case NR51:
return apu->read_register(clock, 0xFF25);
case NR52:
return apu->read_register(clock, 0xFF26);
case 0x90:
case 0x91:
case 0x92:
case 0x93:
case 0x94:
case 0x95:
case 0x96:
case 0x97:
case 0x98:
case 0x99:
case 0x9a:
case 0x9b:
case 0x9c:
case 0x9d:
case 0x9e:
case 0x9f:
return apu->read_register(clock, 0xFF30 - 0x90 + address);
}
return ioMem[address];
}
u16 soundRead16(u32 address)
{
address &= ~1;
u16 temp = soundRead(address);
temp |= soundRead(address + 1) << 8;
return temp;
}
u32 soundRead32(u32 address)
{
address &= ~3;
u32 temp = soundRead16(address);
temp |= soundRead16(address + 2) << 16;
return temp;
}
void soundEvent(u32 address, u8 data)
{
switch(address) {
case NR10:
soundEventGB(0xFF10, data);
break;
case NR11:
soundEventGB(0xFF11, data);
break;
case NR12:
soundEventGB(0xFF12, data);
break;
case NR13:
soundEventGB(0xFF13, data);
break;
case NR14:
soundEventGB(0xFF14, data);
break;
case NR21:
soundEventGB(0xFF16, data);
break;
case NR22:
soundEventGB(0xFF17, data);
break;
case NR23:
soundEventGB(0xFF18, data);
break;
case NR24:
soundEventGB(0xFF19, data);
break;
case NR30:
soundEventGB(0xFF1A, data);
break;
case NR31:
soundEventGB(0xFF1B, data);
break;
case NR32:
soundEventGB(0xFF1C, data);
break;
case NR33:
soundEventGB(0xFF1D, data);
break;
case NR34:
soundEventGB(0xFF1E, data);
break;
case NR41:
soundEventGB(0xFF20, data);
break;
case NR42:
soundEventGB(0xFF21, data);
break;
case NR43:
soundEventGB(0xFF22, data);
break;
case NR44:
soundEventGB(0xFF23, data);
break;
case NR50:
soundEventGB(0xFF24, data);
break;
case NR51:
soundBalance = data;
soundEventGB(0xFF25, data & soundEnableFlag);
break;
case NR52:
soundEventGB(0xFF26, data);
break;
case 0x90:
case 0x92:
case 0x94:
case 0x96:
case 0x98:
case 0x9a:
case 0x9c:
case 0x9e:
soundEventGB(0xFF30 + (address & 14), data);
soundEventGB(0xFF31 + (address & 14), 0); // data >> 8);
break;
}
}
void soundEvent(u32 address, u16 data)
{
switch(address) {
case SGCNT0_H:
data &= 0xFF0F;
soundControl = data & 0x770F;;
if(data & 0x0800) {
soundDSFifoAWriteIndex = 0;
soundDSFifoAIndex = 0;
soundDSFifoACount = 0;
soundDSAValue = 0;
memset(soundDSFifoA, 0, 32);
}
soundDSAEnabled = (data & 0x0300) ? true : false;
soundDSATimer = (data & 0x0400) ? 1 : 0;
if(data & 0x8000) {
soundDSFifoBWriteIndex = 0;
soundDSFifoBIndex = 0;
soundDSFifoBCount = 0;
soundDSBValue = 0;
memset(soundDSFifoB, 0, 32);
}
soundDSBEnabled = (data & 0x3000) ? true : false;
soundDSBTimer = (data & 0x4000) ? 1 : 0;
if (data & 0x8000)
{
interp_reset(0);
interp_reset(1);
}
*((u16 *)&ioMem[address]) = data;
break;
case FIFOA_L:
case FIFOA_H:
soundDSFifoA[soundDSFifoAWriteIndex++] = data & 0xFF;
soundDSFifoA[soundDSFifoAWriteIndex++] = data >> 8;
soundDSFifoACount += 2;
soundDSFifoAWriteIndex &= 31;
*((u16 *)&ioMem[address]) = data;
break;
case FIFOB_L:
case FIFOB_H:
soundDSFifoB[soundDSFifoBWriteIndex++] = data & 0xFF;
soundDSFifoB[soundDSFifoBWriteIndex++] = data >> 8;
soundDSFifoBCount += 2;
soundDSFifoBWriteIndex &= 31;
*((u16 *)&ioMem[address]) = data;
break;
case 0x88:
data &= 0xC3FF;
*((u16 *)&ioMem[address]) = data;
break;
case 0x90:
case 0x92:
case 0x94:
case 0x96:
case 0x98:
case 0x9a:
case 0x9c:
case 0x9e:
soundEventGB(0xFF30 + (address & 14), data & 0xff);
soundEventGB(0xFF31 + (address & 14), data >> 8);
break;
}
}
void soundChannel1()
{
}
void soundChannel2()
{
}
void soundChannel3()
{
}
void soundChannel4()
{
}
inline void soundDirectSoundA()
{
directBuffer[0][soundIndex] = interp_pop(0); //soundDSAValue;
}
void soundDirectSoundATimer()
{
if(soundDSAEnabled) {
if(soundDSFifoACount <= 16) {
CPUCheckDMA(3, 2);
if(soundDSFifoACount <= 16) {
soundEvent(FIFOA_L, (u16)0);
soundEvent(FIFOA_H, (u16)0);
soundEvent(FIFOA_L, (u16)0);
soundEvent(FIFOA_H, (u16)0);
soundEvent(FIFOA_L, (u16)0);
soundEvent(FIFOA_H, (u16)0);
soundEvent(FIFOA_L, (u16)0);
soundEvent(FIFOA_H, (u16)0);
}
}
soundDSAValue = (soundDSFifoA[soundDSFifoAIndex]);
interp_push(0, (s8)soundDSAValue << 8);
soundDSFifoAIndex = (++soundDSFifoAIndex) & 31;
soundDSFifoACount--;
} else
soundDSAValue = 0;
}
inline void soundDirectSoundB()
{
directBuffer[1][soundIndex] = interp_pop(1); //soundDSBValue;
}
void soundDirectSoundBTimer()
{
if(soundDSBEnabled) {
if(soundDSFifoBCount <= 16) {
//cpuDmaHack2 =
CPUCheckDMA(3, 4);
if(soundDSFifoBCount <= 16) {
soundEvent(FIFOB_L, (u16)0);
soundEvent(FIFOB_H, (u16)0);
soundEvent(FIFOB_L, (u16)0);
soundEvent(FIFOB_H, (u16)0);
soundEvent(FIFOB_L, (u16)0);
soundEvent(FIFOB_H, (u16)0);
soundEvent(FIFOB_L, (u16)0);
soundEvent(FIFOB_H, (u16)0);
}
}
soundDSBValue = (soundDSFifoB[soundDSFifoBIndex]);
interp_push(1, (s8)soundDSBValue << 8);
soundDSFifoBIndex = (++soundDSFifoBIndex) & 31;
soundDSFifoBCount--;
} else {
soundDSBValue = 0;
}
}
void soundTimerOverflow(int timer)
{
if(soundDSAEnabled && (soundDSATimer == timer)) {
soundDirectSoundATimer();
}
if(soundDSBEnabled && (soundDSBTimer == timer)) {
soundDirectSoundBTimer();
}
}
#ifndef max
#define max(a,b) (a)<(b)?(b):(a)
#endif
void soundMix()
{
int res = 0;
int cgbRes = 0;
int ratio = ioMem[0x82] & 3;
int dsaRatio = ioMem[0x82] & 4;
int dsbRatio = ioMem[0x82] & 8;
blip_sample_t out[2] = {0, 0};
if ( ! apu_out ) return;
while (!apu_out->read_samples(&out[0], 2))
{
int ticks = SOUND_CLOCK_TICKS / (4 * soundQuality);
bool was_stereo = apu->end_frame( ticks );
apu_out->end_frame( ticks, was_stereo );
}
cgbRes = out[0];
if((soundControl & 0x0200) && (soundEnableFlag & 0x100)){
if(!dsaRatio)
res = ((s16)directBuffer[0][soundIndex])>>1;
else
res = ((s16)directBuffer[0][soundIndex]);
}
if((soundControl & 0x2000) && (soundEnableFlag & 0x200)){
if(!dsbRatio)
res += ((s16)directBuffer[1][soundIndex])>>1;
else
res += ((s16)directBuffer[1][soundIndex]);
}
res = (res * 170) >> 8;
cgbRes = (cgbRes * 52 * 7) >> 8;
switch(ratio) {
case 0:
case 3: // prohibited, but 25%
cgbRes >>= 2;
break;
case 1:
cgbRes >>= 1;
break;
case 2:
break;
}
res += cgbRes;
if(soundEcho) {
res *= 2;
res += soundFilter[soundEchoIndex];
res /= 2;
soundFilter[soundEchoIndex++] = res;
}
if(soundLowPass) {
soundLeft[4] = soundLeft[3];
soundLeft[3] = soundLeft[2];
soundLeft[2] = soundLeft[1];
soundLeft[1] = soundLeft[0];
soundLeft[0] = res;
res = (soundLeft[4] + 2*soundLeft[3] + 8*soundLeft[2] + 2*soundLeft[1] +
soundLeft[0])/14;
}
switch(soundVolume) {
case 0:
case 1:
case 2:
case 3:
res *= (soundVolume+1);
break;
case 4:
res >>= 2;
break;
case 5:
res >>= 1;
break;
}
if(res > 32767)
res = 32767;
if(res < -32768)
res = -32768;
if(soundReverse)
soundFinalWave[++soundBufferIndex] = res;
else
soundFinalWave[soundBufferIndex++] = res;
res = 0;
cgbRes = out[1];
if((soundControl & 0x0100) && (soundEnableFlag & 0x100)){
if(!dsaRatio)
res = ((s16)directBuffer[0][soundIndex])>>1;
else
res = ((s16)directBuffer[0][soundIndex]);
}
if((soundControl & 0x1000) && (soundEnableFlag & 0x200)){
if(!dsbRatio)
res += ((s16)directBuffer[1][soundIndex])>>1;
else
res += ((s16)directBuffer[1][soundIndex]);
}
res = (res * 170) >> 8;
cgbRes = (cgbRes * 52 * 7) >> 8;
switch(ratio) {
case 0:
case 3: // prohibited, but 25%
cgbRes >>= 2;
break;
case 1:
cgbRes >>= 1;
break;
case 2:
break;
}
res += cgbRes;
if(soundEcho) {
res *= 2;
res += soundFilter[soundEchoIndex];
res /= 2;
soundFilter[soundEchoIndex++] = res;
if(soundEchoIndex >= 4000)
soundEchoIndex = 0;
}
if(soundLowPass) {
soundRight[4] = soundRight[3];
soundRight[3] = soundRight[2];
soundRight[2] = soundRight[1];
soundRight[1] = soundRight[0];
soundRight[0] = res;
res = (soundRight[4] + 2*soundRight[3] + 8*soundRight[2] + 2*soundRight[1] +
soundRight[0])/14;
}
switch(soundVolume) {
case 0:
case 1:
case 2:
case 3:
res *= (soundVolume+1);
break;
case 4:
res >>= 2;
break;
case 5:
res >>= 1;
break;
}
if(res > 32767)
res = 32767;
if(res < -32768)
res = -32768;
if(soundReverse)
soundFinalWave[-1+soundBufferIndex++] = res;
else
soundFinalWave[soundBufferIndex++] = res;
}
// soundTick gets called a lot
// if we are operating normally
// call normalSoundTick to avoid
// all the comparison checks.
void normalsoundTick()
{
soundDirectSoundA();
soundDirectSoundB();
soundMix();
soundIndex++;
if(2*soundBufferIndex >= soundBufferLen)
{
systemWriteDataToSoundBuffer();
soundIndex = 0;
soundBufferIndex = 0;
}
}
void soundTick()
{
if(systemSoundOn) {
if(soundMasterOn && !stopState) {
soundDirectSoundA();
soundDirectSoundB();
soundMix();
} else {
soundFinalWave[soundBufferIndex++] = 0;
soundFinalWave[soundBufferIndex++] = 0;
}
soundIndex++;
if(2*soundBufferIndex >= soundBufferLen) {
if(systemSoundOn) {
if(soundPaused) {
soundResume();
setSoundFn();
}
systemWriteDataToSoundBuffer();
}
soundIndex = 0;
soundBufferIndex = 0;
}
}
}
void (*psoundTickfn)()=soundTick;
void setSoundFn()
{
if (systemSoundOn && !soundPaused && soundMasterOn)
psoundTickfn = normalsoundTick;
else
psoundTickfn = soundTick;
if (soundInterpolation != interpolation)
interp_switch(soundInterpolation);
}
void setsystemSoundOn(bool value)
{
systemSoundOn = value;
setSoundFn();
}
void setsoundPaused(bool value)
{
soundPaused = value;
setSoundFn();
}
void setsoundMasterOn(bool value)
{
soundMasterOn = value;
setSoundFn();
}
void soundShutdown()
{
systemSoundShutdown();
int i;
u8 j;
if (apu)
{
j = soundRead(NR30);
if (!(j & 0x40)) soundEvent(NR30, u8(j | 0x40));
for (i = 0; i < 16; i++) sound3WaveRam[i] = soundRead(i + 0x90);
soundEvent(NR30, u8(j & ~0x40));
for (i = 16; i < 32; i++) sound3WaveRam[i] = soundRead(i - 16 + 0x90);
if (j & 0x40) soundEvent(NR30, j);
apu_saved = true;
delete apu; apu = NULL;
}
if (apu_out) { delete apu_out; apu_out = NULL; }
}
void soundPause()
{
systemSoundPause();
setsoundPaused(true);
}
void soundResume()
{
systemSoundResume();
setsoundPaused(false);
}
void soundEnable(int channels)
{
int c = channels & 0x0f;
soundEnableFlag |= ((channels & 0x30f) |c | (c << 4));
if(apu)
soundEventGB(0xFF25, soundBalance & soundEnableFlag);
}
void soundDisable(int channels)
{
int c = channels & 0x0f;
soundEnableFlag &= (~((channels & 0x30f)|c|(c<<4)));
if(apu)
soundEventGB(0xFF25, soundBalance & soundEnableFlag);
}
int soundGetEnable()
{
return (soundEnableFlag & 0x30f);
}
const BOOST::uint8_t sound_data [Gb_Apu::register_count] = {
0x80, 0xbf, 0x00, 0x00, 0xbf, // square 1
0x00, 0x3f, 0x00, 0x00, 0xbf, // square 2
0x40, 0xff, 0x9f, 0x00, 0xbf, // wave
0x00, 0xff, 0x00, 0x00, 0xbf, // noise
0x77, 0xf3, 0xf1, // vin/volume, status, power mode
0, 0, 0, 0, 0, 0, 0, 0, 0, // unused
0xac, 0xdd, 0xda, 0x48, 0x36, 0x02, 0xcf, 0x16, // waveform data
0x2c, 0x04, 0xe5, 0x2c, 0xac, 0xdd, 0xda, 0x48
};
void soundReset()
{
systemSoundReset();
setsoundPaused(true);
soundPlay = 0;
SOUND_CLOCK_TICKS = soundQuality * USE_TICKS_AS;
soundTicks = SOUND_CLOCK_TICKS;
soundNextPosition = 0;
setsoundMasterOn(true);
soundIndex = 0;
soundBufferIndex = 0;
soundLevel1 = 7;
soundLevel2 = 7;
/*
sound1On = 0;
sound1ATL = 0;
sound1Skip = 0;
sound1Index = 0;
sound1Continue = 0;
sound1EnvelopeVolume = 0;
sound1EnvelopeATL = 0;
sound1EnvelopeUpDown = 0;
sound1EnvelopeATLReload = 0;
sound1SweepATL = 0;
sound1SweepATLReload = 0;
sound1SweepSteps = 0;
sound1SweepUpDown = 0;
sound1SweepStep = 0;
sound1Wave = soundWavePattern[2];
sound2On = 0;
sound2ATL = 0;
sound2Skip = 0;
sound2Index = 0;
sound2Continue = 0;
sound2EnvelopeVolume = 0;
sound2EnvelopeATL = 0;
sound2EnvelopeUpDown = 0;
sound2EnvelopeATLReload = 0;
sound2Wave = soundWavePattern[2];
sound3On = 0;
sound3ATL = 0;
sound3Skip = 0;
sound3Index = 0;
sound3Continue = 0;
sound3OutputLevel = 0;
sound3Last = 0;
sound3Bank = 0;
sound3DataSize = 0;
sound3ForcedOutput = 0;
sound4On = 0;
sound4Clock = 0;
sound4ATL = 0;
sound4Skip = 0;
sound4Index = 0;
sound4ShiftRight = 0x7f;
sound4NSteps = 0;
sound4CountDown = 0;
sound4Continue = 0;
sound4EnvelopeVolume = 0;
sound4EnvelopeATL = 0;
sound4EnvelopeUpDown = 0;
sound4EnvelopeATLReload = 0;
sound1On = 0;
sound2On = 0;
sound3On = 0;
sound4On = 0;
*/
apu_out->clear();
apu->reset(true);
int addr = 0;
while (addr < 0x30) {
switch (addr)
{
case 4:
case 9:
case 14:
case 19:
apu->write_register( 0, 0xFF10 + addr, 0 );
break;
default:
apu->write_register( 0, 0xFF10 + addr, sound_data [ addr ] );
break;
}
addr++;
}
apu->write_register( 0, 0xFF1A, 0 );
addr = 0x20;
while (addr < 0x30) {
apu->write_register( 0, 0xFF10 + addr, sound_data [ addr ] );
addr++;
}
/*addr = 0x90;
while(addr < 0xA0) {
ioMem[addr++] = 0x00;
ioMem[addr++] = 0xff;
}
addr = 0;
while(addr < 0x20) {
sound3WaveRam[addr++] = 0x00;
sound3WaveRam[addr++] = 0xff;
}
*/
memset(soundFinalWave, 0, soundBufferLen);
memset(soundFilter, 0, sizeof(soundFilter));
soundEchoIndex = 0;
}
bool soundInit(bool gba)
{
if(systemSoundInit()) {
memset(soundBuffer[0], 0, 735);
memset(soundBuffer[1], 0, 735);
memset(soundBuffer[2], 0, 735);
memset(soundBuffer[3], 0, 735);
memset(soundFinalWave, 0, soundBufferLen);
#if defined(_WIN32) && 0
_fpreset(); // FUCKO, Direct3D display code does something dirty to FPU
#endif
Stereo_Buffer * buf = new Stereo_Buffer;
apu = new Gb_Apu;
buf->clock_rate( 4194304 );
buf->set_sample_rate( 44100 / soundQuality , 1000 / 20 );
buf->bass_freq( 120 );
buf->set_channel_count(Gb_Apu::osc_count);
buf->clear();
apu_out = buf;
apu->treble_eq( blip_eq_t( -1.0, 0, 44100 / soundQuality ) );
apu->reset( gba );
apu->volume( 1.0 );
for ( int i = apu->osc_count; i--; )
{
Multi_Buffer::channel_t ch = apu_out->channel( i );
apu->osc_output( i, ch.center, ch.left, ch.right );
}
int addr = 0;
while (addr < 0x30) {
apu->write_register( 0, 0xFF10 + addr, sound_data [ addr ] );
addr++;
}
if (apu_saved)
{
int i;
apu->write_register( 0, 0xFF1A, 0x40);
for (i = 0; i < 16; i++) apu->write_register( 0, 0xFF30 + i, sound3WaveRam[i]);
apu->write_register( 0, 0xFF1A, 0);
for (i = 16; i < 32; i++) apu->write_register( 0, 0xFF30 - 16 + i, sound3WaveRam[i]);
apu->write_register( 0, 0xFF1A, 0x40);
}
else
{
apu->write_register( 0, 0xFF1A, 0 );
addr = 0x20;
while (addr < 0x30) {
apu->write_register( 0, 0xFF10 + addr, sound_data [ addr ] );
addr++;
}
}
setsoundPaused(true);
return true;
}
return false;
}
void soundSetQuality(int quality)
{
if(soundQuality != quality && systemCanChangeSoundQuality()) {
if(!soundOffFlag)
soundShutdown();
soundQuality = quality;
soundNextPosition = 0;
if(!soundOffFlag)
soundInit();
SOUND_CLOCK_TICKS = USE_TICKS_AS * soundQuality;
soundIndex = 0;
soundBufferIndex = 0;
} else if(soundQuality != quality) {
soundNextPosition = 0;
SOUND_CLOCK_TICKS = USE_TICKS_AS * soundQuality;
soundIndex = 0;
soundBufferIndex = 0;
}
}
void soundSaveGame(gzFile gzFile)
{
int i;
u8 j;
j = soundRead(NR30);
if (!(j & 0x40)) soundEvent(NR30, u8(j | 0x40));
for (i = 0; i < 16; i++) sound3WaveRam[i] = soundRead(i + 0x90);
soundEvent(NR30, u8(j & ~0x40));
for (i = 16; i < 32; i++) sound3WaveRam[i] = soundRead(i - 16 + 0x90);
if (j & 0x40) soundEvent(NR30, j);
utilWriteData(gzFile, soundSaveStruct);
utilWriteData(gzFile, soundSaveStructV2);
utilGzWrite(gzFile, &soundQuality, sizeof(int));
}
void soundReadGame(gzFile gzFile, int version)
{
utilReadData(gzFile, soundSaveStruct);
if(version >= SAVE_GAME_VERSION_3) {
utilReadData(gzFile, soundSaveStructV2);
} else {
/* sound3Bank = (ioMem[NR30] >> 6) & 1;
sound3DataSize = (ioMem[NR30] >> 5) & 1;
sound3ForcedOutput = (ioMem[NR32] >> 7) & 1;*/
// nothing better to do here...
memcpy(&sound3WaveRam[0x00], &ioMem[0x90], 0x10);
memcpy(&sound3WaveRam[0x10], &ioMem[0x90], 0x10);
}
soundBufferIndex = soundIndex * 2;
int quality = 1;
utilGzRead(gzFile, &quality, sizeof(int));
soundSetQuality(quality);
apu->reset(true);
int i;
u8 j = ioMem[NR30];
for (i = NR10; i <= NR52; i++) soundEvent(i, ioMem[i]);
if (!(j & 0x40)) soundEventGB(0xFF1A, j | 0x40);
for (i = 0; i < 16; i++) soundEventGB(0xFF30 + i, sound3WaveRam[i]);
soundEventGB(0xFF1A, j & ~0x40);
for (i = 16; i < 32; i++) soundEventGB(0xFF30 - 16 + i, sound3WaveRam[i]);
if (j & 0x40) soundEventGB(0xFF1A, j);
//sound1Wave = soundWavePattern[ioMem[NR11] >> 6];
//sound2Wave = soundWavePattern[ioMem[NR21] >> 6];
}