stella/src/emucore/CartCDF.cxx

669 lines
18 KiB
C++

//============================================================================
//
// SSSS tt lll lll
// SS SS tt ll ll
// SS tttttt eeee ll ll aaaa
// SSSS tt ee ee ll ll aa
// SS tt eeeeee ll ll aaaaa -- "An Atari 2600 VCS Emulator"
// SS SS tt ee ll ll aa aa
// SSSS ttt eeeee llll llll aaaaa
//
// Copyright (c) 1995-2018 by Bradford W. Mott, Stephen Anthony
// and the Stella Team
//
// See the file "License.txt" for information on usage and redistribution of
// this file, and for a DISCLAIMER OF ALL WARRANTIES.
//============================================================================
#include <cstring>
#ifdef DEBUGGER_SUPPORT
#include "Debugger.hxx"
#endif
#include "System.hxx"
#include "Thumbulator.hxx"
#include "CartCDF.hxx"
#include "TIA.hxx"
// Location of data within the RAM copy of the CDF Driver.
// Version 0 1
const uInt16 DSxPTR[] = {0x06E0, 0x00A0};
const uInt16 DSxINC[] = {0x0768, 0x0128};
const uInt16 WAVEFORM[] = {0x07F0, 0x01B0};
#define DSRAM 0x0800
#define COMMSTREAM 0x20
#define JUMPSTREAM 0x21
#define AMPLITUDE 0x22
#define FAST_FETCH_ON ((myMode & 0x0F) == 0)
#define DIGITAL_AUDIO_ON ((myMode & 0xF0) == 0)
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
CartridgeCDF::CartridgeCDF(const BytePtr& image, uInt32 size,
const Settings& settings)
: Cartridge(settings),
myAudioCycles(0),
myARMCycles(0),
myFractionalClocks(0.0)
{
// Copy the ROM image into my buffer
memcpy(myImage, image.get(), std::min(32768u, size));
// even though the ROM is 32K, only 28K is accessible to the 6507
createCodeAccessBase(4096 * 7);
// Pointer to the program ROM (28K @ 0 byte offset)
// which starts after the 2K CDF Driver and 2K C Code
myProgramImage = myImage + 4096;
// Pointer to CDF driver in RAM
myBusDriverImage = myCDFRAM;
// Pointer to the display RAM
myDisplayImage = myCDFRAM + DSRAM;
setVersion();
// Create Thumbulator ARM emulator
const string& prefix = settings.getBool("dev.settings") ? "dev." : "plr.";
myThumbEmulator = make_unique<Thumbulator>(
reinterpret_cast<uInt16*>(myImage), reinterpret_cast<uInt16*>(myCDFRAM),
settings.getBool(prefix + "thumb.trapfatal"), myVersion ?
Thumbulator::ConfigureFor::CDF1 : Thumbulator::ConfigureFor::CDF, this);
setInitialState();
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void CartridgeCDF::reset()
{
initializeRAM(myCDFRAM+2048, 8192-2048);
myAudioCycles = myARMCycles = 0;
myFractionalClocks = 0.0;
setInitialState();
// Upon reset we switch to the startup bank
bank(startBank());
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void CartridgeCDF::setInitialState()
{
// Copy initial CDF driver to Harmony RAM
memcpy(myBusDriverImage, myImage, 0x0800);
for (int i=0; i < 3; ++i)
myMusicWaveformSize[i] = 27;
// CDF always starts in bank 6
initializeStartBank(6);
// Assuming mode starts out with Fast Fetch off and 3-Voice music,
// need to confirm with Chris
myMode = 0xFF;
myBankOffset = myLDAimmediateOperandAddress = myJMPoperandAddress = 0;
myFastJumpActive = 0;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void CartridgeCDF::consoleChanged(ConsoleTiming timing)
{
myThumbEmulator->setConsoleTiming(timing);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void CartridgeCDF::install(System& system)
{
mySystem = &system;
// Map all of the accesses to call peek and poke
System::PageAccess access(this, System::PA_READ);
for(uInt16 addr = 0x1000; addr < 0x1040; addr += System::PAGE_SIZE)
mySystem->setPageAccess(addr, access);
// Install pages for the startup bank
bank(startBank());
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
inline void CartridgeCDF::updateMusicModeDataFetchers()
{
// Calculate the number of cycles since the last update
uInt32 cycles = uInt32(mySystem->cycles() - myAudioCycles);
myAudioCycles = mySystem->cycles();
// Calculate the number of CDF OSC clocks since the last update
double clocks = ((20000.0 * cycles) / 1193191.66666667) + myFractionalClocks;
uInt32 wholeClocks = uInt32(clocks);
myFractionalClocks = clocks - double(wholeClocks);
// Let's update counters and flags of the music mode data fetchers
if(wholeClocks > 0)
for(int x = 0; x <= 2; ++x)
myMusicCounters[x] += myMusicFrequencies[x] * wholeClocks;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
inline void CartridgeCDF::callFunction(uInt8 value)
{
switch (value)
{
// Call user written ARM code (will most likely be C compiled for ARM)
case 254: // call with IRQ driven audio, no special handling needed at this
// time for Stella as ARM code "runs in zero 6507 cycles".
case 255: // call without IRQ driven audio
try {
Int32 cycles = Int32(mySystem->cycles() - myARMCycles);
myARMCycles = mySystem->cycles();
myThumbEmulator->run(cycles);
}
catch(const runtime_error& e) {
if(!mySystem->autodetectMode())
{
#ifdef DEBUGGER_SUPPORT
Debugger::debugger().startWithFatalError(e.what());
#else
cout << e.what() << endl;
#endif
}
}
break;
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt8 CartridgeCDF::peek(uInt16 address)
{
address &= 0x0FFF;
uInt8 peekvalue = myProgramImage[myBankOffset + address];
// In debugger/bank-locked mode, we ignore all hotspots and in general
// anything that can change the internal state of the cart
if(bankLocked())
return peekvalue;
// implement JMP FASTJMP which fetches the destination address from stream 33
if (myFastJumpActive
&& myJMPoperandAddress == address)
{
uInt32 pointer;
uInt8 value;
--myFastJumpActive;
++myJMPoperandAddress;
pointer = getDatastreamPointer(JUMPSTREAM);
value = myDisplayImage[ pointer >> 20 ];
pointer += 0x100000; // always increment by 1
setDatastreamPointer(JUMPSTREAM, pointer);
return value;
}
// test for JMP FASTJUMP where FASTJUMP = $0000
if (FAST_FETCH_ON
&& peekvalue == 0x4C
&& myProgramImage[myBankOffset + address+1] == 0
&& myProgramImage[myBankOffset + address+2] == 0)
{
myFastJumpActive = 2; // return next two peeks from datastream 31
myJMPoperandAddress = address + 1;
return peekvalue;
}
myJMPoperandAddress = 0;
// Do a FAST FETCH LDA# if:
// 1) in Fast Fetch mode
// 2) peeking the operand of an LDA # instruction
// 3) peek value is 0-34
if(FAST_FETCH_ON
&& myLDAimmediateOperandAddress == address
&& peekvalue <= AMPLITUDE)
{
myLDAimmediateOperandAddress = 0;
if (peekvalue == AMPLITUDE)
{
updateMusicModeDataFetchers();
if DIGITAL_AUDIO_ON
{
// retrieve packed sample (max size is 2K, or 4K of unpacked data)
uInt32 sampleaddress = getSample() + (myMusicCounters[0] >> 21);
// get sample value from ROM or RAM
if (sampleaddress < 0x8000)
peekvalue = myImage[sampleaddress];
else if (sampleaddress >= 0x40000000 && sampleaddress < 0x40002000) // check for RAM
peekvalue = myCDFRAM[sampleaddress - 0x40000000];
else
peekvalue = 0;
// make sure current volume value is in the lower nybble
if ((myMusicCounters[0] & (1<<20)) == 0)
peekvalue >>= 4;
peekvalue &= 0x0f;
}
else
{
peekvalue = myDisplayImage[getWaveform(0) + (myMusicCounters[0] >> myMusicWaveformSize[0])]
+ myDisplayImage[getWaveform(1) + (myMusicCounters[1] >> myMusicWaveformSize[1])]
+ myDisplayImage[getWaveform(2) + (myMusicCounters[2] >> myMusicWaveformSize[2])];
}
return peekvalue;
}
else
{
return readFromDatastream(peekvalue);
}
}
myLDAimmediateOperandAddress = 0;
// Switch banks if necessary
switch(address)
{
case 0xFF5:
// Set the current bank to the first 4k bank
bank(0);
break;
case 0x0FF6:
// Set the current bank to the second 4k bank
bank(1);
break;
case 0x0FF7:
// Set the current bank to the third 4k bank
bank(2);
break;
case 0x0FF8:
// Set the current bank to the fourth 4k bank
bank(3);
break;
case 0x0FF9:
// Set the current bank to the fifth 4k bank
bank(4);
break;
case 0x0FFA:
// Set the current bank to the sixth 4k bank
bank(5);
break;
case 0x0FFB:
// Set the current bank to the last 4k bank
bank(6);
break;
default:
break;
}
if(FAST_FETCH_ON && peekvalue == 0xA9)
myLDAimmediateOperandAddress = address + 1;
return peekvalue;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool CartridgeCDF::poke(uInt16 address, uInt8 value)
{
uInt32 pointer;
address &= 0x0FFF;
switch(address)
{
case 0xFF0: // DSWRITE
pointer = getDatastreamPointer(COMMSTREAM);
myDisplayImage[ pointer >> 20 ] = value;
pointer += 0x100000; // always increment by 1 when writing
setDatastreamPointer(COMMSTREAM, pointer);
break;
case 0xFF1: // DSPTR
pointer = getDatastreamPointer(COMMSTREAM);
pointer <<=8;
pointer &= 0xf0000000;
pointer |= (value << 20);
setDatastreamPointer(COMMSTREAM, pointer);
break;
case 0xFF2: // SETMODE
myMode = value;
break;
case 0xFF3: // CALLFN
callFunction(value);
break;
case 0xFF5:
// Set the current bank to the first 4k bank
bank(0);
break;
case 0x0FF6:
// Set the current bank to the second 4k bank
bank(1);
break;
case 0x0FF7:
// Set the current bank to the third 4k bank
bank(2);
break;
case 0x0FF8:
// Set the current bank to the fourth 4k bank
bank(3);
break;
case 0x0FF9:
// Set the current bank to the fifth 4k bank
bank(4);
break;
case 0x0FFA:
// Set the current bank to the sixth 4k bank
bank(5);
break;
case 0x0FFB:
// Set the current bank to the last 4k bank
bank(6);
break;
default:
break;
}
return false;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool CartridgeCDF::bank(uInt16 bank)
{
if(bankLocked()) return false;
// Remember what bank we're in
myBankOffset = bank << 12;
// Setup the page access methods for the current bank
System::PageAccess access(this, System::PA_READ);
// Map Program ROM image into the system
for(uInt16 addr = 0x1040; addr < 0x2000; addr += System::PAGE_SIZE)
{
access.codeAccessBase = &myCodeAccessBase[myBankOffset + (addr & 0x0FFF)];
mySystem->setPageAccess(addr, access);
}
return myBankChanged = true;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt16 CartridgeCDF::getBank() const
{
return myBankOffset >> 12;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt16 CartridgeCDF::bankCount() const
{
return 7;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool CartridgeCDF::patch(uInt16 address, uInt8 value)
{
address &= 0x0FFF;
// For now, we ignore attempts to patch the CDF address space
if(address >= 0x0040)
{
myProgramImage[myBankOffset + (address & 0x0FFF)] = value;
return myBankChanged = true;
}
else
return false;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
const uInt8* CartridgeCDF::getImage(uInt32& size) const
{
size = 32768;
return myImage;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt32 CartridgeCDF::thumbCallback(uInt8 function, uInt32 value1, uInt32 value2)
{
switch (function)
{
case 0:
// _SetNote - set the note/frequency
myMusicFrequencies[value1] = value2;
break;
// _ResetWave - reset counter,
// used to make sure digital samples start from the beginning
case 1:
myMusicCounters[value1] = 0;
break;
// _GetWavePtr - return the counter
case 2:
return myMusicCounters[value1];
// _SetWaveSize - set size of waveform buffer
case 3:
myMusicWaveformSize[value1] = value2;
break;
}
return 0;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool CartridgeCDF::save(Serializer& out) const
{
try
{
// Indicates which bank is currently active
out.putShort(myBankOffset);
// Indicates current mode
out.putByte(myMode);
// State of FastJump
out.putByte(myFastJumpActive);
// operand addresses
out.putShort(myLDAimmediateOperandAddress);
out.putShort(myJMPoperandAddress);
// Harmony RAM
out.putByteArray(myCDFRAM, 8192);
// Audio info
out.putIntArray(myMusicCounters, 3);
out.putIntArray(myMusicFrequencies, 3);
out.putByteArray(myMusicWaveformSize, 3);
// Save cycles and clocks
out.putLong(myAudioCycles);
out.putDouble(myFractionalClocks);
out.putLong(myARMCycles);
}
catch(...)
{
cerr << "ERROR: CartridgeCDF::save" << endl;
return false;
}
return true;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool CartridgeCDF::load(Serializer& in)
{
try
{
// Indicates which bank is currently active
myBankOffset = in.getShort();
// Indicates current mode
myMode = in.getByte();
// State of FastJump
myFastJumpActive = in.getByte();
// Address of LDA # operand
myLDAimmediateOperandAddress = in.getShort();
myJMPoperandAddress = in.getShort();
// Harmony RAM
in.getByteArray(myCDFRAM, 8192);
// Audio info
in.getIntArray(myMusicCounters, 3);
in.getIntArray(myMusicFrequencies, 3);
in.getByteArray(myMusicWaveformSize, 3);
// Get cycles and clocks
myAudioCycles = in.getLong();
myFractionalClocks = in.getDouble();
myARMCycles = in.getLong();
}
catch(...)
{
cerr << "ERROR: CartridgeCDF::load" << endl;
return false;
}
// Now, go to the current bank
bank(myBankOffset >> 12);
return true;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt32 CartridgeCDF::getDatastreamPointer(uInt8 index) const
{
uInt16 address = DSxPTR[myVersion] + index * 4;
return myCDFRAM[address + 0] + // low byte
(myCDFRAM[address + 1] << 8) +
(myCDFRAM[address + 2] << 16) +
(myCDFRAM[address + 3] << 24) ; // high byte
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void CartridgeCDF::setDatastreamPointer(uInt8 index, uInt32 value)
{
uInt16 address = DSxPTR[myVersion] + index * 4;
myCDFRAM[address + 0] = value & 0xff; // low byte
myCDFRAM[address + 1] = (value >> 8) & 0xff;
myCDFRAM[address + 2] = (value >> 16) & 0xff;
myCDFRAM[address + 3] = (value >> 24) & 0xff; // high byte
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt32 CartridgeCDF::getDatastreamIncrement(uInt8 index) const
{
uInt16 address = DSxINC[myVersion] + index * 4;
return myCDFRAM[address + 0] + // low byte
(myCDFRAM[address + 1] << 8) +
(myCDFRAM[address + 2] << 16) +
(myCDFRAM[address + 3] << 24) ; // high byte
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt32 CartridgeCDF::getWaveform(uInt8 index) const
{
uInt32 result;
uInt16 address = WAVEFORM[myVersion] + index * 4;
result = myCDFRAM[address + 0] + // low byte
(myCDFRAM[address + 1] << 8) +
(myCDFRAM[address + 2] << 16) +
(myCDFRAM[address + 3] << 24); // high byte
result -= (0x40000000 + DSRAM);
if (result >= 4096)
result &= 4095;
return result;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt32 CartridgeCDF::getSample()
{
uInt32 result;
uInt16 address = WAVEFORM[myVersion];
result = myCDFRAM[address + 0] + // low byte
(myCDFRAM[address + 1] << 8) +
(myCDFRAM[address + 2] << 16) +
(myCDFRAM[address + 3] << 24); // high byte
return result;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt32 CartridgeCDF::getWaveformSize(uInt8 index) const
{
return myMusicWaveformSize[index];
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt8 CartridgeCDF::readFromDatastream(uInt8 index)
{
// Pointers are stored as:
// PPPFF---
//
// Increments are stored as
// ----IIFF
//
// P = Pointer
// I = Increment
// F = Fractional
uInt32 pointer = getDatastreamPointer(index);
uInt16 increment = getDatastreamIncrement(index);
uInt8 value = myDisplayImage[ pointer >> 20 ];
pointer += (increment << 12);
setDatastreamPointer(index, pointer);
return value;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void CartridgeCDF::setVersion()
{
myVersion = 0;
for(uInt32 i = 0; i < 2048; i += 4)
{
// CDF signature occurs 3 times in a row, i+3 (+7 or +11) is version
if ( myImage[i+0] == 0x43 && myImage[i + 4] == 0x43 && myImage[i + 8] == 0x43) // C
if ( myImage[i+1] == 0x44 && myImage[i + 5] == 0x44 && myImage[i + 9] == 0x44) // D
if (myImage[i+2] == 0x46 && myImage[i + 6] == 0x46 && myImage[i +10] == 0x46) // F
{
myVersion = myImage[i+3];
break;
}
}
}