stella/src/emucore/TIASnd.cxx

383 lines
11 KiB
C++

//============================================================================
//
// SSSS tt lll lll
// SS SS tt ll ll
// SS tttttt eeee ll ll aaaa
// SSSS tt ee ee ll ll aa
// SS tt eeeeee ll ll aaaaa -- "An Atari 2600 VCS Emulator"
// SS SS tt ee ll ll aa aa
// SSSS ttt eeeee llll llll aaaaa
//
// Copyright (c) 1995-2010 by Bradford W. Mott
//
// See the file "License.txt" for information on usage and redistribution of
// this file, and for a DISCLAIMER OF ALL WARRANTIES.
//
// $Id$
//============================================================================
#include "System.hxx"
#include "TIASnd.hxx"
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
TIASound::TIASound(Int32 outputFrequency, Int32 tiaFrequency, uInt32 channels)
: myOutputFrequency(outputFrequency),
myTIAFrequency(tiaFrequency),
myChannels(channels),
myOutputCounter(0),
myVolumePercentage(100),
myVolumeClip(128)
{
reset();
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
TIASound::~TIASound()
{
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::reset()
{
myAUDC[0] = myAUDC[1] = myAUDF[0] = myAUDF[1] = myAUDV[0] = myAUDV[1] = 0;
myP4[0] = myP5[0] = myP4[1] = myP5[1] = 1;
myFreqDiv[0].set(0);
myFreqDiv[1].set(0);
myOutputCounter = 0;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::outputFrequency(Int32 freq)
{
myOutputFrequency = freq;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::tiaFrequency(Int32 freq)
{
myTIAFrequency = freq;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::channels(uInt32 number)
{
myChannels = number == 2 ? 2 : 1;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::clipVolume(bool clip)
{
myVolumeClip = clip ? 128 : 0;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::set(uInt16 address, uInt8 value)
{
switch(address)
{
case 0x15: // AUDC0
myAUDC[0] = value & 0x0f;
break;
case 0x16: // AUDC1
myAUDC[1] = value & 0x0f;
break;
case 0x17: // AUDF0
myAUDF[0] = value & 0x1f;
myFreqDiv[0].set(myAUDF[0]);
break;
case 0x18: // AUDF1
myAUDF[1] = value & 0x1f;
myFreqDiv[1].set(myAUDF[1]);
break;
case 0x19: // AUDV0
myAUDV[0] = value & 0x0f;
break;
case 0x1a: // AUDV1
myAUDV[1] = value & 0x0f;
break;
default:
break;
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt8 TIASound::get(uInt16 address) const
{
switch(address)
{
case 0x15: // AUDC0
return myAUDC[0];
case 0x16: // AUDC1
return myAUDC[1];
case 0x17: // AUDF0
return myAUDF[0];
case 0x18: // AUDF1
return myAUDF[1];
case 0x19: // AUDV0
return myAUDV[0];
case 0x1a: // AUDV1
return myAUDV[1];
default:
return 0;
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::volume(uInt32 percent)
{
if((percent >= 0) && (percent <= 100))
myVolumePercentage = percent;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::process(uInt8* buffer, uInt32 samples)
{
Int32 v0 = ((myAUDV[0] << 2) * myVolumePercentage) / 100;
Int32 v1 = ((myAUDV[1] << 2) * myVolumePercentage) / 100;
// Loop until the sample buffer is full
while(samples > 0)
{
// Process both sound channels
for(uInt32 c = 0; c < 2; ++c)
{
// Update P4 & P5 registers for channel if freq divider outputs a pulse
if((myFreqDiv[c].clock()))
{
switch(myAUDC[c])
{
case 0x00: // Set to 1
{
// Shift a 1 into the 4-bit register each clock
myP4[c] = (myP4[c] << 1) | 0x01;
break;
}
case 0x01: // 4 bit poly
{
// Clock P4 as a standard 4-bit LSFR taps at bits 3 & 2
myP4[c] = (myP4[c] & 0x0f) ?
((myP4[c] << 1) | (((myP4[c] & 0x08) ? 1 : 0) ^
((myP4[c] & 0x04) ? 1 : 0))) : 1;
break;
}
case 0x02: // div 31 -> 4 bit poly
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// This does the divide-by 31 with length 13:18
if((myP5[c] & 0x0f) == 0x08)
{
// Clock P4 as a standard 4-bit LSFR taps at bits 3 & 2
myP4[c] = (myP4[c] & 0x0f) ?
((myP4[c] << 1) | (((myP4[c] & 0x08) ? 1 : 0) ^
((myP4[c] & 0x04) ? 1 : 0))) : 1;
}
break;
}
case 0x03: // 5 bit poly -> 4 bit poly
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// P5 clocks the 4 bit poly
if(myP5[c] & 0x10)
{
// Clock P4 as a standard 4-bit LSFR taps at bits 3 & 2
myP4[c] = (myP4[c] & 0x0f) ?
((myP4[c] << 1) | (((myP4[c] & 0x08) ? 1 : 0) ^
((myP4[c] & 0x04) ? 1 : 0))) : 1;
}
break;
}
case 0x04: // div 2
{
// Clock P4 toggling the lower bit (divide by 2)
myP4[c] = (myP4[c] << 1) | ((myP4[c] & 0x01) ? 0 : 1);
break;
}
case 0x05: // div 2
{
// Clock P4 toggling the lower bit (divide by 2)
myP4[c] = (myP4[c] << 1) | ((myP4[c] & 0x01) ? 0 : 1);
break;
}
case 0x06: // div 31 -> div 2
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// This does the divide-by 31 with length 13:18
if((myP5[c] & 0x0f) == 0x08)
{
// Clock P4 toggling the lower bit (divide by 2)
myP4[c] = (myP4[c] << 1) | ((myP4[c] & 0x01) ? 0 : 1);
}
break;
}
case 0x07: // 5 bit poly -> div 2
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// P5 clocks the 4 bit register
if(myP5[c] & 0x10)
{
// Clock P4 toggling the lower bit (divide by 2)
myP4[c] = (myP4[c] << 1) | ((myP4[c] & 0x01) ? 0 : 1);
}
break;
}
case 0x08: // 9 bit poly
{
// Clock P5 & P4 as a standard 9-bit LSFR taps at 8 & 4
myP5[c] = ((myP5[c] & 0x1f) || (myP4[c] & 0x0f)) ?
((myP5[c] << 1) | (((myP4[c] & 0x08) ? 1 : 0) ^
((myP5[c] & 0x10) ? 1 : 0))) : 1;
myP4[c] = (myP4[c] << 1) | ((myP5[c] & 0x20) ? 1 : 0);
break;
}
case 0x09: // 5 bit poly
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// Clock value out of P5 into P4 with no modification
myP4[c] = (myP4[c] << 1) | ((myP5[c] & 0x20) ? 1 : 0);
break;
}
case 0x0a: // div 31
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// This does the divide-by 31 with length 13:18
if((myP5[c] & 0x0f) == 0x08)
{
// Feed bit 4 of P5 into P4 (this will toggle back and forth)
myP4[c] = (myP4[c] << 1) | ((myP5[c] & 0x10) ? 1 : 0);
}
break;
}
case 0x0b: // Set last 4 bits to 1
{
// A 1 is shifted into the 4-bit register each clock
myP4[c] = (myP4[c] << 1) | 0x01;
break;
}
case 0x0c: // div 6
{
// Use 4-bit register to generate sequence 000111000111
myP4[c] = (~myP4[c] << 1) |
((!(!(myP4[c] & 4) && ((myP4[c] & 7)))) ? 0 : 1);
break;
}
case 0x0d: // div 6
{
// Use 4-bit register to generate sequence 000111000111
myP4[c] = (~myP4[c] << 1) |
((!(!(myP4[c] & 4) && ((myP4[c] & 7)))) ? 0 : 1);
break;
}
case 0x0e: // div 31 -> div 6
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// This does the divide-by 31 with length 13:18
if((myP5[c] & 0x0f) == 0x08)
{
// Use 4-bit register to generate sequence 000111000111
myP4[c] = (~myP4[c] << 1) |
((!(!(myP4[c] & 4) && ((myP4[c] & 7)))) ? 0 : 1);
}
break;
}
case 0x0f: // poly 5 -> div 6
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// Use poly 5 to clock 4-bit div register
if(myP5[c] & 0x10)
{
// Use 4-bit register to generate sequence 000111000111
myP4[c] = (~myP4[c] << 1) |
((!(!(myP4[c] & 4) && ((myP4[c] & 7)))) ? 0 : 1);
}
break;
}
}
}
}
myOutputCounter += myOutputFrequency;
if(myChannels == 1)
{
// Handle mono sample generation
while((samples > 0) && (myOutputCounter >= myTIAFrequency))
{
*(buffer++) = (((myP4[0] & 8) ? v0 : 0) +
((myP4[1] & 8) ? v1 : 0)) + myVolumeClip;
myOutputCounter -= myTIAFrequency;
samples--;
}
}
else
{
// Handle stereo sample generation
while((samples > 0) && (myOutputCounter >= myTIAFrequency))
{
*(buffer++) = ((myP4[0] & 8) ? v0 : 0) + myVolumeClip;
*(buffer++) = ((myP4[1] & 8) ? v1 : 0) + myVolumeClip;
myOutputCounter -= myTIAFrequency;
samples--;
}
}
}
}