/* TinyEXIF.cpp -- A simple ISO C++ library to parse basic EXIF and XMP information from a JPEG file. Copyright (c) 2015-2017 Seacave cdc.seacave@gmail.com All rights reserved. Based on the easyexif library (2013 version) https://github.com/mayanklahiri/easyexif of Mayank Lahiri (mlahiri@gmail.com). Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FREEBSD PROJECT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "TinyEXIF.h" #define TINYEXIF_NO_XMP_SUPPORT #ifndef TINYEXIF_NO_XMP_SUPPORT #include #endif // TINYEXIF_NO_XMP_SUPPORT #include #include #include #include #include #include #include #ifdef _MSC_VER namespace { int strcasecmp(const char* a, const char* b) { return _stricmp(a, b); } } #else #include #endif namespace Tools { // search string inside a string, case sensitive static const char* strrnstr(const char* haystack, const char* needle, size_t len) { const size_t needle_len(strlen(needle)); if (0 == needle_len) return haystack; if (len <= needle_len) return NULL; for (size_t i=len-needle_len; i-- > 0; ) { if (haystack[0] == needle[0] && 0 == strncmp(haystack, needle, needle_len)) return haystack; haystack++; } return NULL; } // split an input string with a delimiter and fill a string vector static void strSplit(const std::string& str, char delim, std::vector& values) { values.clear(); std::string::size_type start(0), end(0); while (end != std::string::npos) { end = str.find(delim, start); values.emplace_back(str.substr(start, end-start)); start = end + 1; } } // make sure the given degrees value is between -180 and 180 static double NormD180(double d) { return (d = fmod(d+180.0, 360.0)) < 0 ? d+180.0 : d-180.0; } } // namespace Tools namespace TinyEXIF { enum JPEG_MARKERS { JM_START = 0xFF, JM_SOF0 = 0xC0, JM_SOF1 = 0xC1, JM_SOF2 = 0xC2, JM_SOF3 = 0xC3, JM_DHT = 0xC4, JM_SOF5 = 0xC5, JM_SOF6 = 0xC6, JM_SOF7 = 0xC7, JM_JPG = 0xC8, JM_SOF9 = 0xC9, JM_SOF10 = 0xCA, JM_SOF11 = 0xCB, JM_DAC = 0xCC, JM_SOF13 = 0xCD, JM_SOF14 = 0xCE, JM_SOF15 = 0xCF, JM_RST0 = 0xD0, JM_RST1 = 0xD1, JM_RST2 = 0xD2, JM_RST3 = 0xD3, JM_RST4 = 0xD4, JM_RST5 = 0xD5, JM_RST6 = 0xD6, JM_RST7 = 0xD7, JM_SOI = 0xD8, JM_EOI = 0xD9, JM_SOS = 0xDA, JM_DQT = 0xDB, JM_DNL = 0xDC, JM_DRI = 0xDD, JM_DHP = 0xDE, JM_EXP = 0xDF, JM_APP0 = 0xE0, JM_APP1 = 0xE1, // EXIF and XMP JM_APP2 = 0xE2, JM_APP3 = 0xE3, JM_APP4 = 0xE4, JM_APP5 = 0xE5, JM_APP6 = 0xE6, JM_APP7 = 0xE7, JM_APP8 = 0xE8, JM_APP9 = 0xE9, JM_APP10 = 0xEA, JM_APP11 = 0xEB, JM_APP12 = 0xEC, JM_APP13 = 0xED, // IPTC JM_APP14 = 0xEE, JM_APP15 = 0xEF, JM_JPG0 = 0xF0, JM_JPG1 = 0xF1, JM_JPG2 = 0xF2, JM_JPG3 = 0xF3, JM_JPG4 = 0xF4, JM_JPG5 = 0xF5, JM_JPG6 = 0xF6, JM_JPG7 = 0xF7, JM_JPG8 = 0xF8, JM_JPG9 = 0xF9, JM_JPG10 = 0xFA, JM_JPG11 = 0xFB, JM_JPG12 = 0xFC, JM_JPG13 = 0xFD, JM_COM = 0xFE }; // Parser helper class EntryParser { private: const uint8_t* buf; const unsigned len; const unsigned tiff_header_start; const bool alignIntel; // byte alignment (defined in EXIF header) unsigned offs; // current offset into buffer uint16_t tag, format; uint32_t length; public: EntryParser(const uint8_t* _buf, unsigned _len, unsigned _tiff_header_start, bool _alignIntel) : buf(_buf), len(_len), tiff_header_start(_tiff_header_start), alignIntel(_alignIntel), offs(0) {} void Init(unsigned _offs) { offs = _offs - 12; } void ParseTag() { offs += 12; tag = parse16(buf + offs, alignIntel); format = parse16(buf + offs + 2, alignIntel); length = parse32(buf + offs + 4, alignIntel); } const uint8_t* GetBuffer() const { return buf; } unsigned GetOffset() const { return offs; } bool IsIntelAligned() const { return alignIntel; } uint16_t GetTag() const { return tag; } uint32_t GetLength() const { return length; } uint32_t GetData() const { return parse32(buf + offs + 8, alignIntel); } uint32_t GetSubIFD() const { return tiff_header_start + GetData(); } bool IsShort() const { return format == 3; } bool IsLong() const { return format == 4; } bool IsRational() const { return format == 5 || format == 10; } bool IsSRational() const { return format == 10; } bool IsFloat() const { return format == 11; } bool IsUndefined() const { return format == 7; } std::string FetchString() const { return parseString(buf, length, GetData(), tiff_header_start, len, alignIntel); } bool Fetch(std::string& val) const { if (format != 2 || length == 0) return false; val = FetchString(); return true; } bool Fetch(uint8_t& val) const { if ((format != 1 && format != 2 && format != 6) || length == 0) return false; val = parse8(buf + offs + 8); return true; } bool Fetch(uint16_t& val) const { if (!IsShort() || length == 0) return false; val = parse16(buf + offs + 8, alignIntel); return true; } bool Fetch(uint16_t& val, uint32_t idx) const { if (!IsShort() || length <= idx) return false; val = parse16(buf + GetSubIFD() + idx*2, alignIntel); return true; } bool Fetch(uint32_t& val) const { if (!IsLong() || length == 0) return false; val = parse32(buf + offs + 8, alignIntel); return true; } bool Fetch(float& val) const { if (!IsFloat() || length == 0) return false; val = parseFloat(buf + offs + 8, alignIntel); return true; } bool Fetch(double& val) const { if (!IsRational() || length == 0) return false; val = parseRational(buf + GetSubIFD(), alignIntel, IsSRational()); return true; } bool Fetch(double& val, uint32_t idx) const { if (!IsRational() || length <= idx) return false; val = parseRational(buf + GetSubIFD() + idx*8, alignIntel, IsSRational()); return true; } bool FetchFloat(double& val) const { float _val; if (!Fetch(_val)) return false; val = _val; return true; } public: static uint8_t parse8(const uint8_t* buf) { return buf[0]; } static uint16_t parse16(const uint8_t* buf, bool intel) { if (intel) return ((uint16_t)buf[1]<<8) | buf[0]; return ((uint16_t)buf[0]<<8) | buf[1]; } static uint32_t parse32(const uint8_t* buf, bool intel) { if (intel) return ((uint32_t)buf[3]<<24) | ((uint32_t)buf[2]<<16) | ((uint32_t)buf[1]<<8) | buf[0]; return ((uint32_t)buf[0]<<24) | ((uint32_t)buf[1]<<16) | ((uint32_t)buf[2]<<8) | buf[3]; } static float parseFloat(const uint8_t* buf, bool intel) { union { uint32_t i; float f; } i2f; i2f.i = parse32(buf, intel); return i2f.f; } static double parseRational(const uint8_t* buf, bool intel, bool isSigned) { const uint32_t denominator = parse32(buf+4, intel); if (denominator == 0) return 0.0; const uint32_t numerator = parse32(buf, intel); return isSigned ? (double)(int32_t)numerator/(double)(int32_t)denominator : (double)numerator/(double)denominator; } static std::string parseString(const uint8_t* buf, unsigned num_components, unsigned data, unsigned base, unsigned len, bool intel) { std::string value; if (num_components <= 4) { value.resize(num_components); char j = intel ? 0 : 24; char j_m = intel ? -8 : 8; for (unsigned i=0; i> j) & 0xff; if (value[num_components-1] == '\0') value.resize(num_components-1); } else if (base+data+num_components <= len) { const char* const sz((const char*)buf+base+data); unsigned num(0); while (num < num_components && sz[num] != '\0') ++num; while (num && sz[num-1] == ' ') --num; value.assign(sz, num); } return value; } }; // Constructors EXIFInfo::EXIFInfo() : Fields(FIELD_NA) { } EXIFInfo::EXIFInfo(EXIFStream& stream) { parseFrom(stream); } EXIFInfo::EXIFInfo(std::istream& stream) { parseFrom(stream); } EXIFInfo::EXIFInfo(const uint8_t* data, unsigned length) { parseFrom(data, length); } // Parse tag as Image IFD void EXIFInfo::parseIFDImage(EntryParser& parser, unsigned& exif_sub_ifd_offset, unsigned& gps_sub_ifd_offset) { switch (parser.GetTag()) { case 0x0102: // Bits per sample parser.Fetch(BitsPerSample); break; case 0x010e: // Image description parser.Fetch(ImageDescription); break; case 0x010f: // Camera maker parser.Fetch(Make); break; case 0x0110: // Camera model parser.Fetch(Model); break; case 0x0112: // Orientation of image parser.Fetch(Orientation); break; case 0x011a: // XResolution parser.Fetch(XResolution); break; case 0x011b: // YResolution parser.Fetch(YResolution); break; case 0x0128: // Resolution Unit parser.Fetch(ResolutionUnit); break; case 0x0131: // Software used for image parser.Fetch(Software); break; case 0x0132: // EXIF/TIFF date/time of image modification parser.Fetch(DateTime); break; case 0x1001: // Original Image width if (!parser.Fetch(RelatedImageWidth)) { uint16_t _RelatedImageWidth; if (parser.Fetch(_RelatedImageWidth)) RelatedImageWidth = _RelatedImageWidth; } break; case 0x1002: // Original Image height if (!parser.Fetch(RelatedImageHeight)) { uint16_t _RelatedImageHeight; if (parser.Fetch(_RelatedImageHeight)) RelatedImageHeight = _RelatedImageHeight; } break; case 0x8298: // Copyright information parser.Fetch(Copyright); break; case 0x8769: // EXIF SubIFD offset exif_sub_ifd_offset = parser.GetSubIFD(); break; case 0x8825: // GPS IFS offset gps_sub_ifd_offset = parser.GetSubIFD(); break; default: // Try to parse as EXIF tag, as some images store them in here parseIFDExif(parser); break; } } // Parse tag as Exif IFD void EXIFInfo::parseIFDExif(EntryParser& parser) { switch (parser.GetTag()) { case 0x02bc: #ifndef TINYEXIF_NO_XMP_SUPPORT // XMP Metadata (Adobe technote 9-14-02) if (parser.IsUndefined()) { const std::string strXML(parser.FetchString()); parseFromXMPSegmentXML(strXML.c_str(), (unsigned)strXML.length()); } #endif // TINYEXIF_NO_XMP_SUPPORT break; case 0x829a: // Exposure time in seconds parser.Fetch(ExposureTime); break; case 0x829d: // FNumber parser.Fetch(FNumber); break; case 0x8822: // Exposure Program parser.Fetch(ExposureProgram); break; case 0x8827: // ISO Speed Rating parser.Fetch(ISOSpeedRatings); break; case 0x9003: // Original date and time parser.Fetch(DateTimeOriginal); break; case 0x9004: // Digitization date and time parser.Fetch(DateTimeDigitized); break; case 0x9201: // Shutter speed value parser.Fetch(ShutterSpeedValue); ShutterSpeedValue = 1.0/exp(ShutterSpeedValue*log(2)); break; case 0x9202: // Aperture value parser.Fetch(ApertureValue); ApertureValue = exp(ApertureValue*log(2)*0.5); break; case 0x9203: // Brightness value parser.Fetch(BrightnessValue); break; case 0x9204: // Exposure bias value parser.Fetch(ExposureBiasValue); break; case 0x9206: // Subject distance parser.Fetch(SubjectDistance); break; case 0x9207: // Metering mode parser.Fetch(MeteringMode); break; case 0x9208: // Light source parser.Fetch(LightSource); break; case 0x9209: // Flash info parser.Fetch(Flash); break; case 0x920a: // Focal length parser.Fetch(FocalLength); break; case 0x9214: // Subject area if (parser.IsShort() && parser.GetLength() > 1) { SubjectArea.resize(parser.GetLength()); for (uint32_t i=0; i parser.GetLength()) return; parser.Init(off+2); parser.ParseTag(); --num_entries; std::string maker; if (parser.GetTag() == 1 && parser.Fetch(maker)) { if (0 == strcasecmp(maker.c_str(), "DJI")) { while (--num_entries >= 0) { parser.ParseTag(); switch (parser.GetTag()) { case 3: // SpeedX parser.FetchFloat(GeoLocation.SpeedX); break; case 4: // SpeedY parser.FetchFloat(GeoLocation.SpeedY); break; case 5: // SpeedZ parser.FetchFloat(GeoLocation.SpeedZ); break; case 9: // Camera Pitch parser.FetchFloat(GeoLocation.PitchDegree); break; case 10: // Camera Yaw parser.FetchFloat(GeoLocation.YawDegree); break; case 11: // Camera Roll parser.FetchFloat(GeoLocation.RollDegree); break; } } } } parser.Init(startOff+12); } // Parse tag as GPS IFD void EXIFInfo::parseIFDGPS(EntryParser& parser) { switch (parser.GetTag()) { case 1: // GPS north or south parser.Fetch(GeoLocation.LatComponents.direction); break; case 2: // GPS latitude if (parser.IsRational() && parser.GetLength() == 3) { parser.Fetch(GeoLocation.LatComponents.degrees, 0); parser.Fetch(GeoLocation.LatComponents.minutes, 1); parser.Fetch(GeoLocation.LatComponents.seconds, 2); } break; case 3: // GPS east or west parser.Fetch(GeoLocation.LonComponents.direction); break; case 4: // GPS longitude if (parser.IsRational() && parser.GetLength() == 3) { parser.Fetch(GeoLocation.LonComponents.degrees, 0); parser.Fetch(GeoLocation.LonComponents.minutes, 1); parser.Fetch(GeoLocation.LonComponents.seconds, 2); } break; case 5: // GPS altitude reference (below or above sea level) parser.Fetch((uint8_t&)GeoLocation.AltitudeRef); break; case 6: // GPS altitude parser.Fetch(GeoLocation.Altitude); break; case 7: // GPS timestamp if (parser.IsRational() && parser.GetLength() == 3) { double h,m,s; parser.Fetch(h, 0); parser.Fetch(m, 1); parser.Fetch(s, 2); char buffer[256]; snprintf(buffer, 256, "%g %g %g", h, m, s); GeoLocation.GPSTimeStamp = buffer; } break; case 11: // Indicates the GPS DOP (data degree of precision) parser.Fetch(GeoLocation.GPSDOP); break; case 18: // GPS geodetic survey data parser.Fetch(GeoLocation.GPSMapDatum); break; case 29: // GPS date-stamp parser.Fetch(GeoLocation.GPSDateStamp); break; case 30: // GPS differential indicates whether differential correction is applied to the GPS receiver parser.Fetch(GeoLocation.GPSDifferential); break; } } // // Locates the JM_APP1 segment and parses it using // parseFromEXIFSegment() or parseFromXMPSegment() // int EXIFInfo::parseFrom(EXIFStream& stream) { clear(); if (!stream.IsValid()) return PARSE_INVALID_JPEG; // Sanity check: all JPEG files start with 0xFFD8 and end with 0xFFD9 // This check also ensures that the user has supplied a correct value for len. const uint8_t* buf(stream.GetBuffer(2)); if (buf == NULL || buf[0] != JM_START || buf[1] != JM_SOI) return PARSE_INVALID_JPEG; // Scan for JM_APP1 header (bytes 0xFF 0xE1) and parse its length. // Exit if both EXIF and XMP sections were parsed. struct APP1S { uint32_t& val; inline APP1S(uint32_t& v) : val(v) {} inline operator uint32_t () const { return val; } inline operator uint32_t& () { return val; } inline int operator () (int code=PARSE_ABSENT_DATA) const { return val&FIELD_ALL ? (int)PARSE_SUCCESS : code; } } app1s(Fields); while ((buf=stream.GetBuffer(2)) != NULL) { // find next marker; // in cases of markers appended after the compressed data, // optional JM_START fill bytes may precede the marker if (*buf++ != JM_START) break; uint8_t marker; while ((marker=buf[0]) == JM_START && (buf=stream.GetBuffer(1)) != NULL); // select marker uint16_t sectionLength; switch (marker) { case 0x00: case 0x01: case JM_START: case JM_RST0: case JM_RST1: case JM_RST2: case JM_RST3: case JM_RST4: case JM_RST5: case JM_RST6: case JM_RST7: case JM_SOI: break; case JM_SOS: // start of stream: and we're done case JM_EOI: // no data? not good return app1s(); case JM_APP1: if ((buf=stream.GetBuffer(2)) == NULL) return app1s(PARSE_INVALID_JPEG); sectionLength = EntryParser::parse16(buf, false); if (sectionLength <= 2 || (buf=stream.GetBuffer(sectionLength-=2)) == NULL) return app1s(PARSE_INVALID_JPEG); switch (int ret=parseFromEXIFSegment(buf, sectionLength)) { case PARSE_ABSENT_DATA: #ifndef TINYEXIF_NO_XMP_SUPPORT switch (ret=parseFromXMPSegment(buf, sectionLength)) { case PARSE_ABSENT_DATA: break; case PARSE_SUCCESS: if ((app1s|=FIELD_XMP) == FIELD_ALL) return PARSE_SUCCESS; break; default: return app1s(ret); // some error } #endif // TINYEXIF_NO_XMP_SUPPORT break; case PARSE_SUCCESS: if ((app1s|=FIELD_EXIF) == FIELD_ALL) return PARSE_SUCCESS; break; default: return app1s(ret); // some error } break; default: // skip the section if ((buf=stream.GetBuffer(2)) == NULL || (sectionLength=EntryParser::parse16(buf, false)) <= 2 || !stream.SkipBuffer(sectionLength-2)) return app1s(PARSE_INVALID_JPEG); } } return app1s(); } int EXIFInfo::parseFrom(std::istream& stream) { class EXIFStdStream : public EXIFStream { public: EXIFStdStream(std::istream& stream) : stream(stream) { // Would be nice to assert here that the stream was opened in binary mode, but // apparently that's not possible: https://stackoverflow.com/a/224259/19254 } bool IsValid() const override { return !!stream; } const uint8_t* GetBuffer(unsigned desiredLength) override { buffer.resize(desiredLength); if (!stream.read(reinterpret_cast(buffer.data()), desiredLength)) return NULL; return buffer.data(); } bool SkipBuffer(unsigned desiredLength) override { return (bool)stream.seekg(desiredLength, std::ios::cur); } private: std::istream& stream; std::vector buffer; }; EXIFStdStream streamWrapper(stream); return parseFrom(streamWrapper); } int EXIFInfo::parseFrom(const uint8_t* buf, unsigned len) { class EXIFStreamBuffer : public EXIFStream { public: explicit EXIFStreamBuffer(const uint8_t* buf, unsigned len) : it(buf), end(buf+len) {} bool IsValid() const override { return it != NULL; } const uint8_t* GetBuffer(unsigned desiredLength) override { const uint8_t* const itNext(it+desiredLength); if (itNext >= end) return NULL; const uint8_t* const begin(it); it = itNext; return begin; } bool SkipBuffer(unsigned desiredLength) override { return GetBuffer(desiredLength) != NULL; } private: const uint8_t* it, * const end; }; EXIFStreamBuffer stream(buf, len); return parseFrom(stream); } // // Main parsing function for an EXIF segment. // Do a sanity check by looking for bytes "Exif\0\0". // The marker has to contain at least the TIFF header, otherwise the // JM_APP1 data is corrupt. So the minimum length specified here has to be: // 6 bytes: "Exif\0\0" string // 2 bytes: TIFF header (either "II" or "MM" string) // 2 bytes: TIFF magic (short 0x2a00 in Motorola byte order) // 4 bytes: Offset to first IFD // ========= // 14 bytes // // PARAM: 'buf' start of the EXIF TIFF, which must be the bytes "Exif\0\0". // PARAM: 'len' length of buffer // int EXIFInfo::parseFromEXIFSegment(const uint8_t* buf, unsigned len) { unsigned offs = 6; // current offset into buffer if (!buf || len < offs) return PARSE_ABSENT_DATA; if (!std::equal(buf, buf+offs, "Exif\0\0")) return PARSE_ABSENT_DATA; // Now parsing the TIFF header. The first two bytes are either "II" or // "MM" for Intel or Motorola byte alignment. Sanity check by parsing // the uint16_t that follows, making sure it equals 0x2a. The // last 4 bytes are an offset into the first IFD, which are added to // the global offset counter. For this block, we expect the following // minimum size: // 2 bytes: 'II' or 'MM' // 2 bytes: 0x002a // 4 bytes: offset to first IDF // ----------------------------- // 8 bytes if (offs + 8 > len) return PARSE_CORRUPT_DATA; bool alignIntel; if (buf[offs] == 'I' && buf[offs+1] == 'I') alignIntel = true; // 1: Intel byte alignment else if (buf[offs] == 'M' && buf[offs+1] == 'M') alignIntel = false; // 0: Motorola byte alignment else return PARSE_UNKNOWN_BYTEALIGN; EntryParser parser(buf, len, offs, alignIntel); offs += 2; if (0x2a != EntryParser::parse16(buf + offs, alignIntel)) return PARSE_CORRUPT_DATA; offs += 2; const unsigned first_ifd_offset = EntryParser::parse32(buf + offs, alignIntel); offs += first_ifd_offset - 4; if (offs >= len) return PARSE_CORRUPT_DATA; // Now parsing the first Image File Directory (IFD0, for the main image). // An IFD consists of a variable number of 12-byte directory entries. The // first two bytes of the IFD section contain the number of directory // entries in the section. The last 4 bytes of the IFD contain an offset // to the next IFD, which means this IFD must contain exactly 6 + 12 * num // bytes of data. if (offs + 2 > len) return PARSE_CORRUPT_DATA; int num_entries = EntryParser::parse16(buf + offs, alignIntel); if (offs + 6 + 12 * num_entries > len) return PARSE_CORRUPT_DATA; unsigned exif_sub_ifd_offset = len; unsigned gps_sub_ifd_offset = len; parser.Init(offs+2); while (--num_entries >= 0) { parser.ParseTag(); parseIFDImage(parser, exif_sub_ifd_offset, gps_sub_ifd_offset); } // Jump to the EXIF SubIFD if it exists and parse all the information // there. Note that it's possible that the EXIF SubIFD doesn't exist. // The EXIF SubIFD contains most of the interesting information that a // typical user might want. if (exif_sub_ifd_offset + 4 <= len) { offs = exif_sub_ifd_offset; num_entries = EntryParser::parse16(buf + offs, alignIntel); if (offs + 6 + 12 * num_entries > len) return PARSE_CORRUPT_DATA; parser.Init(offs+2); while (--num_entries >= 0) { parser.ParseTag(); parseIFDExif(parser); } } // Jump to the GPS SubIFD if it exists and parse all the information // there. Note that it's possible that the GPS SubIFD doesn't exist. if (gps_sub_ifd_offset + 4 <= len) { offs = gps_sub_ifd_offset; num_entries = EntryParser::parse16(buf + offs, alignIntel); if (offs + 6 + 12 * num_entries > len) return PARSE_CORRUPT_DATA; parser.Init(offs+2); while (--num_entries >= 0) { parser.ParseTag(); parseIFDGPS(parser); } GeoLocation.parseCoords(); } return PARSE_SUCCESS; } #ifndef TINYEXIF_NO_XMP_SUPPORT // // Main parsing function for a XMP segment. // Do a sanity check by looking for bytes "http://ns.adobe.com/xap/1.0/\0". // So the minimum length specified here has to be: // 29 bytes: "http://ns.adobe.com/xap/1.0/\0" string // // PARAM: 'buf' start of the XMP header, which must be the bytes "http://ns.adobe.com/xap/1.0/\0". // PARAM: 'len' length of buffer // int EXIFInfo::parseFromXMPSegment(const uint8_t* buf, unsigned len) { unsigned offs = 29; // current offset into buffer if (!buf || len < offs) return PARSE_ABSENT_DATA; if (!std::equal(buf, buf+offs, "http://ns.adobe.com/xap/1.0/\0")) return PARSE_ABSENT_DATA; if (offs >= len) return PARSE_CORRUPT_DATA; return parseFromXMPSegmentXML((const char*)(buf + offs), len - offs); } int EXIFInfo::parseFromXMPSegmentXML(const char* szXML, unsigned len) { // Skip xpacket end section so that tinyxml2 lib parses the section correctly. const char* szEnd(Tools::strrnstr(szXML, "FirstChildElement("rdf:RDF")) == NULL || (document=document->FirstChildElement("rdf:Description")) == NULL) return PARSE_ABSENT_DATA; // Try parsing the XMP content for tiff details. if (Orientation == 0) { uint32_t _Orientation(0); document->QueryUnsignedAttribute("tiff:Orientation", &_Orientation); Orientation = (uint16_t)_Orientation; } if (ImageWidth == 0 && ImageHeight == 0) { document->QueryUnsignedAttribute("tiff:ImageWidth", &ImageWidth); if (document->QueryUnsignedAttribute("tiff:ImageHeight", &ImageHeight) != tinyxml2::XML_SUCCESS) document->QueryUnsignedAttribute("tiff:ImageLength", &ImageHeight) ; } if (XResolution == 0 && YResolution == 0 && ResolutionUnit == 0) { document->QueryDoubleAttribute("tiff:XResolution", &XResolution); document->QueryDoubleAttribute("tiff:YResolution", &YResolution); uint32_t _ResolutionUnit(0); document->QueryUnsignedAttribute("tiff:ResolutionUnit", &_ResolutionUnit); ResolutionUnit = (uint16_t)_ResolutionUnit; } // Try parsing the XMP content for projection type. { const tinyxml2::XMLElement* const element(document->FirstChildElement("GPano:ProjectionType")); if (element != NULL) { const char* const szProjectionType(element->GetText()); if (szProjectionType != NULL) { if (0 == strcasecmp(szProjectionType, "perspective")) ProjectionType = 1; else if (0 == strcasecmp(szProjectionType, "equirectangular") || 0 == strcasecmp(szProjectionType, "spherical")) ProjectionType = 2; } } } // Try parsing the XMP content for supported maker's info. struct ParseXMP { // try yo fetch the value both from the attribute and child element // and parse if needed rational numbers stored as string fraction static bool Value(const tinyxml2::XMLElement* document, const char* name, double& value) { const char* szAttribute = document->Attribute(name); if (szAttribute == NULL) { const tinyxml2::XMLElement* const element(document->FirstChildElement(name)); if (element == NULL || (szAttribute=element->GetText()) == NULL) return false; } std::vector values; Tools::strSplit(szAttribute, '/', values); switch (values.size()) { case 1: value = strtod(values.front().c_str(), NULL); return true; case 2: value = strtod(values.front().c_str(), NULL)/strtod(values.back().c_str(), NULL); return true; } return false; } // same as previous function but with unsigned int results static bool Value(const tinyxml2::XMLElement* document, const char* name, uint32_t& value) { const char* szAttribute = document->Attribute(name); if (szAttribute == NULL) { const tinyxml2::XMLElement* const element(document->FirstChildElement(name)); if (element == NULL || (szAttribute = element->GetText()) == NULL) return false; } value = strtoul(szAttribute, NULL, 0); return true; return false; } }; const char* szAbout(document->Attribute("rdf:about")); if (0 == strcasecmp(Make.c_str(), "DJI") || (szAbout != NULL && 0 == strcasecmp(szAbout, "DJI Meta Data"))) { ParseXMP::Value(document, "drone-dji:AbsoluteAltitude", GeoLocation.Altitude); ParseXMP::Value(document, "drone-dji:RelativeAltitude", GeoLocation.RelativeAltitude); ParseXMP::Value(document, "drone-dji:GimbalRollDegree", GeoLocation.RollDegree); ParseXMP::Value(document, "drone-dji:GimbalPitchDegree", GeoLocation.PitchDegree); ParseXMP::Value(document, "drone-dji:GimbalYawDegree", GeoLocation.YawDegree); ParseXMP::Value(document, "drone-dji:CalibratedFocalLength", Calibration.FocalLength); ParseXMP::Value(document, "drone-dji:CalibratedOpticalCenterX", Calibration.OpticalCenterX); ParseXMP::Value(document, "drone-dji:CalibratedOpticalCenterY", Calibration.OpticalCenterY); } else if (0 == strcasecmp(Make.c_str(), "senseFly") || 0 == strcasecmp(Make.c_str(), "Sentera")) { ParseXMP::Value(document, "Camera:Roll", GeoLocation.RollDegree); if (ParseXMP::Value(document, "Camera:Pitch", GeoLocation.PitchDegree)) { // convert to DJI format: senseFly uses pitch 0 as NADIR, whereas DJI -90 GeoLocation.PitchDegree = Tools::NormD180(GeoLocation.PitchDegree-90.0); } ParseXMP::Value(document, "Camera:Yaw", GeoLocation.YawDegree); ParseXMP::Value(document, "Camera:GPSXYAccuracy", GeoLocation.AccuracyXY); ParseXMP::Value(document, "Camera:GPSZAccuracy", GeoLocation.AccuracyZ); } else if (0 == strcasecmp(Make.c_str(), "PARROT")) { ParseXMP::Value(document, "Camera:Roll", GeoLocation.RollDegree) || ParseXMP::Value(document, "drone-parrot:CameraRollDegree", GeoLocation.RollDegree); if (ParseXMP::Value(document, "Camera:Pitch", GeoLocation.PitchDegree) || ParseXMP::Value(document, "drone-parrot:CameraPitchDegree", GeoLocation.PitchDegree)) { // convert to DJI format: senseFly uses pitch 0 as NADIR, whereas DJI -90 GeoLocation.PitchDegree = Tools::NormD180(GeoLocation.PitchDegree-90.0); } ParseXMP::Value(document, "Camera:Yaw", GeoLocation.YawDegree) || ParseXMP::Value(document, "drone-parrot:CameraYawDegree", GeoLocation.YawDegree); ParseXMP::Value(document, "Camera:AboveGroundAltitude", GeoLocation.RelativeAltitude); } ParseXMP::Value(document, "GPano:PosePitchDegrees", GPano.PosePitchDegrees); ParseXMP::Value(document, "GPano:PoseRollDegrees", GPano.PoseRollDegrees); // parse GCamera:MicroVideo if (document->Attribute("GCamera:MicroVideo")) { ParseXMP::Value(document, "GCamera:MicroVideo", MicroVideo.HasMicroVideo); ParseXMP::Value(document, "GCamera:MicroVideoVersion", MicroVideo.MicroVideoVersion); ParseXMP::Value(document, "GCamera:MicroVideoOffset", MicroVideo.MicroVideoOffset); } return PARSE_SUCCESS; } #endif // TINYEXIF_NO_XMP_SUPPORT void EXIFInfo::Geolocation_t::parseCoords() { // Convert GPS latitude if (LatComponents.degrees != DBL_MAX || LatComponents.minutes != 0 || LatComponents.seconds != 0) { Latitude = LatComponents.degrees + LatComponents.minutes / 60 + LatComponents.seconds / 3600; if ('S' == LatComponents.direction) Latitude = -Latitude; } // Convert GPS longitude if (LonComponents.degrees != DBL_MAX || LonComponents.minutes != 0 || LonComponents.seconds != 0) { Longitude = LonComponents.degrees + LonComponents.minutes / 60 + LonComponents.seconds / 3600; if ('W' == LonComponents.direction) Longitude = -Longitude; } // Convert GPS altitude if (hasAltitude() && AltitudeRef == 1) { Altitude = -Altitude; } } bool EXIFInfo::Geolocation_t::hasLatLon() const { return Latitude != DBL_MAX && Longitude != DBL_MAX; } bool EXIFInfo::Geolocation_t::hasAltitude() const { return Altitude != DBL_MAX; } bool EXIFInfo::Geolocation_t::hasRelativeAltitude() const { return RelativeAltitude != DBL_MAX; } bool EXIFInfo::Geolocation_t::hasOrientation() const { return RollDegree != DBL_MAX && PitchDegree != DBL_MAX && YawDegree != DBL_MAX; } bool EXIFInfo::Geolocation_t::hasSpeed() const { return SpeedX != DBL_MAX && SpeedY != DBL_MAX && SpeedZ != DBL_MAX; } bool EXIFInfo::GPano_t::hasPosePitchDegrees() const { return PosePitchDegrees != DBL_MAX; } bool EXIFInfo::GPano_t::hasPoseRollDegrees() const { return PoseRollDegrees != DBL_MAX; } void EXIFInfo::clear() { Fields = FIELD_NA; // Strings ImageDescription = ""; Make = ""; Model = ""; SerialNumber = ""; Software = ""; DateTime = ""; DateTimeOriginal = ""; DateTimeDigitized = ""; SubSecTimeOriginal= ""; Copyright = ""; // Shorts / unsigned / double ImageWidth = 0; ImageHeight = 0; RelatedImageWidth = 0; RelatedImageHeight= 0; Orientation = 0; XResolution = 0; YResolution = 0; ResolutionUnit = 0; BitsPerSample = 0; ExposureTime = 0; FNumber = 0; ExposureProgram = 0; ISOSpeedRatings = 0; ShutterSpeedValue = 0; ApertureValue = 0; BrightnessValue = 0; ExposureBiasValue = 0; SubjectDistance = 0; FocalLength = 0; Flash = 0; MeteringMode = 0; LightSource = 0; ProjectionType = 0; SubjectArea.clear(); // Calibration Calibration.FocalLength = 0; Calibration.OpticalCenterX = 0; Calibration.OpticalCenterY = 0; // LensInfo LensInfo.FocalLengthMax = 0; LensInfo.FocalLengthMin = 0; LensInfo.FStopMax = 0; LensInfo.FStopMin = 0; LensInfo.DigitalZoomRatio = 0; LensInfo.FocalLengthIn35mm = 0; LensInfo.FocalPlaneXResolution = 0; LensInfo.FocalPlaneYResolution = 0; LensInfo.FocalPlaneResolutionUnit = 0; LensInfo.Make = ""; LensInfo.Model = ""; // Geolocation GeoLocation.Latitude = DBL_MAX; GeoLocation.Longitude = DBL_MAX; GeoLocation.Altitude = DBL_MAX; GeoLocation.AltitudeRef = 0; GeoLocation.RelativeAltitude = DBL_MAX; GeoLocation.RollDegree = DBL_MAX; GeoLocation.PitchDegree = DBL_MAX; GeoLocation.YawDegree = DBL_MAX; GeoLocation.SpeedX = DBL_MAX; GeoLocation.SpeedY = DBL_MAX; GeoLocation.SpeedZ = DBL_MAX; GeoLocation.AccuracyXY = 0; GeoLocation.AccuracyZ = 0; GeoLocation.GPSDOP = 0; GeoLocation.GPSDifferential = 0; GeoLocation.GPSMapDatum = ""; GeoLocation.GPSTimeStamp = ""; GeoLocation.GPSDateStamp = ""; GeoLocation.LatComponents.degrees = DBL_MAX; GeoLocation.LatComponents.minutes = 0; GeoLocation.LatComponents.seconds = 0; GeoLocation.LatComponents.direction = 0; GeoLocation.LonComponents.degrees = DBL_MAX; GeoLocation.LonComponents.minutes = 0; GeoLocation.LonComponents.seconds = 0; GeoLocation.LonComponents.direction = 0; // GPano GPano.PosePitchDegrees = DBL_MAX; GPano.PoseRollDegrees = DBL_MAX; // Video metadata MicroVideo.HasMicroVideo = 0; MicroVideo.MicroVideoVersion = 0; MicroVideo.MicroVideoOffset = 0; } } // namespace TinyEXIF