//============================================================================ // // SSSS tt lll lll // SS SS tt ll ll // SS tttttt eeee ll ll aaaa // SSSS tt ee ee ll ll aa // SS tt eeeeee ll ll aaaaa -- "An Atari 2600 VCS Emulator" // SS SS tt ee ll ll aa aa // SSSS ttt eeeee llll llll aaaaa // // Copyright (c) 1995-2017 by Bradford W. Mott, Stephen Anthony // and the Stella Team // // See the file "License.txt" for information on usage and redistribution of // this file, and for a DISCLAIMER OF ALL WARRANTIES. //============================================================================ #include #include #include "Console.hxx" #include "Settings.hxx" #include "Switches.hxx" #include "System.hxx" #include "M6532.hxx" // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - M6532::M6532(const Console& console, const Settings& settings) : myConsole(console), mySettings(settings), myTimer(0), myIntervalShift(0), myCyclesWhenTimerSet(0), myDDRA(0), myDDRB(0), myOutA(0), myOutB(0), myInterruptFlag(false), myTimerFlagValid(false), myEdgeDetectPositive(false) { } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - void M6532::reset() { // Initialize the 128 bytes of memory if(mySettings.getBool("ramrandom")) for(uInt32 t = 0; t < 128; ++t) myRAM[t] = mySystem->randGenerator().next(); else memset(myRAM, 0, 128); // The timer absolutely cannot be initialized to zero; some games will // loop or hang (notably Solaris and H.E.R.O.) myTimer = (0xff - (mySystem->randGenerator().next() % 0xfe)) << 10; myIntervalShift = 10; myCyclesWhenTimerSet = 0; // Zero the I/O registers myDDRA = myDDRB = myOutA = myOutB = 0x00; // Zero the timer registers myOutTimer[0] = myOutTimer[1] = myOutTimer[2] = myOutTimer[3] = 0x00; // Zero the interrupt flag register and mark D7 as invalid myInterruptFlag = 0x00; myTimerFlagValid = false; // Edge-detect set to negative (high to low) myEdgeDetectPositive = false; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - void M6532::systemCyclesReset() { // System cycles are being reset to zero so we need to adjust // the cycle count we remembered when the timer was last set myCyclesWhenTimerSet -= mySystem->cycles(); // We should also inform any 'smart' controllers as well myConsole.leftController().systemCyclesReset(); myConsole.rightController().systemCyclesReset(); } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - void M6532::update() { Controller& port0 = myConsole.leftController(); Controller& port1 = myConsole.rightController(); // Get current PA7 state bool prevPA7 = port0.myDigitalPinState[Controller::Four]; // Update entire port state port0.update(); port1.update(); myConsole.switches().update(); // Get new PA7 state bool currPA7 = port0.myDigitalPinState[Controller::Four]; // PA7 Flag is set on active transition in appropriate direction if((!myEdgeDetectPositive && prevPA7 && !currPA7) || (myEdgeDetectPositive && !prevPA7 && currPA7)) myInterruptFlag |= PA7Bit; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - void M6532::install(System& system) { installDelegate(system, *this); } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - void M6532::installDelegate(System& system, Device& device) { // Remember which system I'm installed in mySystem = &system; // All accesses are to the given device System::PageAccess access(&device, System::PA_READWRITE); // We're installing in a 2600 system for(int address = 0; address < 8192; address += (1 << System::PAGE_SHIFT)) if((address & 0x1080) == 0x0080) mySystem->setPageAccess(address >> System::PAGE_SHIFT, access); } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - uInt8 M6532::peek(uInt16 addr) { // Access RAM directly. Originally, accesses to RAM could bypass // this method and its pages could be installed directly into the // system. However, certain cartridges (notably 4A50) can mirror // the RAM address space, making it necessary to chain accesses. if((addr & 0x1080) == 0x0080 && (addr & 0x0200) == 0x0000) { return myRAM[addr & 0x007f]; } switch(addr & 0x07) { case 0x00: // SWCHA - Port A I/O Register (Joystick) { uInt8 value = (myConsole.leftController().read() << 4) | myConsole.rightController().read(); // Each pin is high (1) by default and will only go low (0) if either // (a) External device drives the pin low // (b) Corresponding bit in SWACNT = 1 and SWCHA = 0 // Thanks to A. Herbert for this info return (myOutA | ~myDDRA) & value; } case 0x01: // SWACNT - Port A Data Direction Register { return myDDRA; } case 0x02: // SWCHB - Port B I/O Register (Console switches) { return (myOutB | ~myDDRB) & (myConsole.switches().read() | myDDRB); } case 0x03: // SWBCNT - Port B Data Direction Register { return myDDRB; } case 0x04: // INTIM - Timer Output case 0x06: { // Timer Flag is always cleared when accessing INTIM myInterruptFlag &= ~TimerBit; // Get number of clocks since timer was set Int32 timer = timerClocks(); if(timer >= 0) { // Return at 'divide by TIMxT' interval rate return (timer >> myIntervalShift) & 0xff; } else { // Return at 'divide by 1' rate uInt8 divByOne = timer & 0xff; // Timer flag has been updated; don't update it again on TIMINT read if(divByOne != 0 && divByOne != 255) myTimerFlagValid = true; return divByOne; } } case 0x05: // TIMINT/INSTAT - Interrupt Flag case 0x07: { // Update timer flag if it is invalid and timer has expired if(!myTimerFlagValid && timerClocks() < 0) { myInterruptFlag |= TimerBit; myTimerFlagValid = true; } // PA7 Flag is always cleared after accessing TIMINT uInt8 result = myInterruptFlag; myInterruptFlag &= ~PA7Bit; return result; } default: { #ifdef DEBUG_ACCESSES cerr << "BAD M6532 Peek: " << hex << addr << endl; #endif return 0; } } } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - bool M6532::poke(uInt16 addr, uInt8 value) { // Access RAM directly. Originally, accesses to RAM could bypass // this method and its pages could be installed directly into the // system. However, certain cartridges (notably 4A50) can mirror // the RAM address space, making it necessary to chain accesses. if((addr & 0x1080) == 0x0080 && (addr & 0x0200) == 0x0000) { myRAM[addr & 0x007f] = value; return true; } // A2 distinguishes I/O registers from the timer // A2 = 1 is write to timer // A2 = 0 is write to I/O if((addr & 0x04) != 0) { // A4 = 1 is write to TIMxT (x = 1, 8, 64, 1024) // A4 = 0 is write to edge detect control if((addr & 0x10) != 0) setTimerRegister(value, addr & 0x03); // A1A0 determines interval else myEdgeDetectPositive = addr & 0x01; // A0 determines direction } else { switch(addr & 0x03) { case 0: // SWCHA - Port A I/O Register (Joystick) { myOutA = value; setPinState(true); break; } case 1: // SWACNT - Port A Data Direction Register { myDDRA = value; setPinState(false); break; } case 2: // SWCHB - Port B I/O Register (Console switches) { myOutB = value; break; } case 3: // SWBCNT - Port B Data Direction Register { myDDRB = value; break; } } } return true; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - void M6532::setTimerRegister(uInt8 value, uInt8 interval) { static constexpr uInt8 shift[] = { 0, 3, 6, 10 }; myIntervalShift = shift[interval]; myOutTimer[interval] = value; myTimer = value << myIntervalShift; myCyclesWhenTimerSet = mySystem->cycles(); // Interrupt timer flag is cleared (and invalid) when writing to the timer myInterruptFlag &= ~TimerBit; myTimerFlagValid = false; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - void M6532::setPinState(bool swcha) { /* When a bit in the DDR is set as input, +5V is placed on its output pin. When it's set as output, either +5V or 0V (depending on the contents of SWCHA) will be placed on the output pin. The standard macros for the AtariVox and SaveKey use this fact to send data to the port. This is represented by the following algorithm: if(DDR bit is input) set output as 1 else if(DDR bit is output) set output as bit in ORA */ Controller& port0 = myConsole.leftController(); Controller& port1 = myConsole.rightController(); uInt8 ioport = myOutA | ~myDDRA; port0.write(Controller::One, ioport & 0x10); port0.write(Controller::Two, ioport & 0x20); port0.write(Controller::Three, ioport & 0x40); port0.write(Controller::Four, ioport & 0x80); port1.write(Controller::One, ioport & 0x01); port1.write(Controller::Two, ioport & 0x02); port1.write(Controller::Three, ioport & 0x04); port1.write(Controller::Four, ioport & 0x08); if(swcha) { port0.controlWrite(ioport); port1.controlWrite(ioport); } } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - bool M6532::save(Serializer& out) const { try { out.putString(name()); out.putByteArray(myRAM, 128); out.putInt(myTimer); out.putInt(myIntervalShift); out.putInt(myCyclesWhenTimerSet); out.putByte(myDDRA); out.putByte(myDDRB); out.putByte(myOutA); out.putByte(myOutB); out.putByte(myInterruptFlag); out.putBool(myTimerFlagValid); out.putBool(myEdgeDetectPositive); out.putByteArray(myOutTimer, 4); } catch(...) { cerr << "ERROR: M6532::save" << endl; return false; } return true; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - bool M6532::load(Serializer& in) { try { if(in.getString() != name()) return false; in.getByteArray(myRAM, 128); myTimer = in.getInt(); myIntervalShift = in.getInt(); myCyclesWhenTimerSet = in.getInt(); myDDRA = in.getByte(); myDDRB = in.getByte(); myOutA = in.getByte(); myOutB = in.getByte(); myInterruptFlag = in.getByte(); myTimerFlagValid = in.getBool(); myEdgeDetectPositive = in.getBool(); in.getByteArray(myOutTimer, 4); } catch(...) { cerr << "ERROR: M6532::load" << endl; return false; } return true; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - uInt8 M6532::intim() const { // This method is documented in ::peek(0x284), and exists so that the // debugger can read INTIM without changing the state of the system // Get number of clocks since timer was set Int32 timer = timerClocks(); if(!(timer & 0x40000)) return (timer >> myIntervalShift) & 0xff; else return timer & 0xff; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - uInt8 M6532::timint() const { // This method is documented in ::peek(0x285), and exists so that the // debugger can read TIMINT without changing the state of the system // Update timer flag if it is invalid and timer has expired uInt8 interrupt = myInterruptFlag; if(timerClocks() < 0) interrupt |= TimerBit; return interrupt; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Int32 M6532::intimClocks() const { // This method is similar to intim(), except instead of giving the actual // INTIM value, it will give the current number of clocks between one // INTIM value and the next // Get number of clocks since timer was set Int32 timer = timerClocks(); if(!(timer & 0x40000)) return timerClocks() & ((1 << myIntervalShift) - 1); else return timer & 0xff; }