//============================================================================ // // SSSS tt lll lll // SS SS tt ll ll // SS tttttt eeee ll ll aaaa // SSSS tt ee ee ll ll aa // SS tt eeeeee ll ll aaaaa -- "An Atari 2600 VCS Emulator" // SS SS tt ee ll ll aa aa // SSSS ttt eeeee llll llll aaaaa // // Copyright (c) 1995-2010 by Bradford W. Mott and the Stella Team // // See the file "License.txt" for information on usage and redistribution of // this file, and for a DISCLAIMER OF ALL WARRANTIES. // // $Id$ //============================================================================ #include #include #include "System.hxx" #include "CartDPCPlus.hxx" // TODO - INC AUDV0+$40 music support // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - CartridgeDPCPlus::CartridgeDPCPlus(const uInt8* image, uInt32 size) : myFastFetch(false), mySystemCycles(0), myFractionalClocks(0.0) { // Make a copy of the entire image as-is, for use by getImage() // (this wastes 29K of RAM, should be controlled by a #ifdef) memcpy(myImageCopy, image, size); // Copy the program ROM image into my buffer memcpy(myProgramImage, image, 4096 * 6); // Copy the display ROM image into my buffer memcpy(myDisplayImage, image + 4096 * 6, 4096); // Copy the Frequency ROM image into my buffer memcpy(myFrequencyImage, image + 4096 * 6 + 4096, 1024); // Initialize the DPC data fetcher registers for(uInt16 i = 0; i < 8; ++i) myTops[i] = myBottoms[i] = myCounters[i] = myFlags[i] = myFractionalIncrements[i] = 0; // None of the data fetchers are in music mode myMusicMode[0] = myMusicMode[1] = myMusicMode[2] = false; // Initialize the DPC's random number generator register (must be non-zero) myRandomNumber = 0x2B435044; // "DPC+" // Remember startup bank myStartBank = 5; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - CartridgeDPCPlus::~CartridgeDPCPlus() { } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - void CartridgeDPCPlus::reset() { // Update cycles to the current system cycles mySystemCycles = mySystem->cycles(); myFractionalClocks = 0.0; // Upon reset we switch to the startup bank bank(myStartBank); } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - void CartridgeDPCPlus::systemCyclesReset() { // Get the current system cycle uInt32 cycles = mySystem->cycles(); // Adjust the cycle counter so that it reflects the new value mySystemCycles -= cycles; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - void CartridgeDPCPlus::install(System& system) { mySystem = &system; uInt16 shift = mySystem->pageShift(); uInt16 mask = mySystem->pageMask(); // Make sure the system we're being installed in has a page size that'll work assert(((0x1080 & mask) == 0) && ((0x1100 & mask) == 0)); // Map all of the accesses to call peek and poke System::PageAccess access; access.directPeekBase = 0; access.directPokeBase = 0; access.device = this; for(uInt32 i = 0x1000; i < 0x2000; i += (1 << shift)) mySystem->setPageAccess(i >> shift, access); // Install pages for the startup bank bank(myStartBank); } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - inline void CartridgeDPCPlus::clockRandomNumberGenerator() { // Update random number generator (32-bit LFSR) myRandomNumber = ((myRandomNumber & 1) ? 0xa260012b: 0x00) ^ ((myRandomNumber >> 1) & 0x7FFFFFFF); } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - inline void CartridgeDPCPlus::priorClockRandomNumberGenerator() { // Update random number generator (32-bit LFSR, reversed) myRandomNumber = ((myRandomNumber & (1<<31)) ? 0x44c00257: 0x00) ^ (myRandomNumber << 1); } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - inline void CartridgeDPCPlus::updateMusicModeDataFetchers() { // Calculate the number of cycles since the last update Int32 cycles = mySystem->cycles() - mySystemCycles; mySystemCycles = mySystem->cycles(); // Calculate the number of DPC OSC clocks since the last update double clocks = ((20000.0 * cycles) / 1193191.66666667) + myFractionalClocks; Int32 wholeClocks = (Int32)clocks; myFractionalClocks = clocks - (double)wholeClocks; if(wholeClocks <= 0) { return; } // Let's update counters and flags of the music mode data fetchers for(int x = 5; x <= 7; ++x) { // Update only if the data fetcher is in music mode if(myMusicMode[x - 5]) { myMusicCounter[x - 5] += myMusicFrequency[x - 5]; } } } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - uInt8 CartridgeDPCPlus::peek(uInt16 address) { address &= 0x0FFF; uInt8 peekvalue = myProgramImage[(myCurrentBank << 12) + address]; // In debugger/bank-locked mode, we ignore all hotspots and in general // anything that can change the internal state of the cart if(bankLocked()) return peekvalue; if(myFastFetch && myLDAimmediate) { peekvalue = myProgramImage[(myCurrentBank << 12) + address]; if(peekvalue < 0x0028) address = peekvalue; } myLDAimmediate = false; if(address < 0x0028) { uInt8 result = 0; // Get the index of the data fetcher that's being accessed uInt32 index = address & 0x07; uInt32 function = (address >> 3) & 0x07; // Update flag register for selected data fetcher if((myCounters[index] & 0x00ff) == ((myTops[index]+1) & 0xff)) { myFlags[index] = 0xff; } else if((myCounters[index] & 0x00ff) == myBottoms[index]) { myFlags[index] = 0x00; } switch(function) { case 0x00: { switch(index) { case 0x00: // advance and return byte 0 of random clockRandomNumberGenerator(); result = myRandomNumber & 0xFF; break; case 0x01: // return to prior and return byte 0 of random priorClockRandomNumberGenerator(); result = myRandomNumber & 0xFF; break; case 0x02: result = (myRandomNumber>>8) & 0xFF; break; case 0x03: result = (myRandomNumber>>16) & 0xFF; break; case 0x04: result = (myRandomNumber>>24) & 0xFF; break; case 0x05: // No, it's a music read { static const uInt8 musicAmplitudes[8] = { 0x00, 0x04, 0x05, 0x09, 0x06, 0x0a, 0x0b, 0x0f }; // Update the music data fetchers (counter & flag) updateMusicModeDataFetchers(); uInt8 i = 0; if(myMusicMode[0] && (myMusicCounter[0]>>31)) { i |= 0x01; } if(myMusicMode[1] && (myMusicCounter[1]>>31)) { i |= 0x02; } if(myMusicMode[2] && (myMusicCounter[2]>>31)) { i |= 0x04; } result = musicAmplitudes[i]; break; } case 0x06: // reserved case 0x07: // reserved break; } break; } // DFx display data read case 0x01: { result = myDisplayImage[myCounters[index]]; myCounters[index] = (myCounters[index] + 0x1) & 0x0fff; break; } // DFx display data read AND'd w/flag case 0x02: { result = myDisplayImage[myCounters[index]] & myFlags[index]; myCounters[index] = (myCounters[index] + 0x1) & 0x0fff; break; } // DFx display data read w/fractional increment case 0x03: { result = myDisplayImage[myFractionalCounters[index] >> 8]; myFractionalCounters[index] = (myFractionalCounters[index] + myFractionalIncrements[index]) & 0x0fffff; break; } case 0x04: { switch (index) { case 0x00: case 0x01: case 0x02: case 0x03: { result = myFlags[index]; break; } case 0x04: // reserved case 0x05: // reserved case 0x06: // reserved case 0x07: // reserved break; } break; } default: { result = 0; } } return result; } else { // Switch banks if necessary switch(address) { case 0x0FF6: // Set the current bank to the first 4k bank bank(0); break; case 0x0FF7: // Set the current bank to the second 4k bank bank(1); break; case 0x0FF8: // Set the current bank to the third 4k bank bank(2); break; case 0x0FF9: // Set the current bank to the fourth 4k bank bank(3); break; case 0x0FFA: // Set the current bank to the fifth 4k bank bank(4); break; case 0x0FFB: // Set the current bank to the last 4k bank bank(5); break; default: break; } peekvalue = myProgramImage[(myCurrentBank << 12) + address]; if(myFastFetch) myLDAimmediate = (peekvalue == 0xA9); return peekvalue; } } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - bool CartridgeDPCPlus::poke(uInt16 address, uInt8 value) { address &= 0x0FFF; if((address >= 0x0028) && (address < 0x0080)) { // Get the index of the data fetcher that's being accessed uInt32 index = address & 0x07; uInt32 function = ((address - 0x28) >> 3) & 0x0f; switch(function) { //DFxFrac counter low case 0x00: { myFractionalCounters[index] = (myFractionalCounters[index] & 0x0F0000) | ((uInt16)value << 8); break; } // DFxFrac counter high case 0x01: { myFractionalCounters[index] = (((uInt16)value & 0x0F) << 16) | (myFractionalCounters[index] & 0x00ffff); break; } case 0x02: { myFractionalIncrements[index] = value; myFractionalCounters[index] = myFractionalCounters[index] & 0x0FFF00; break; } // DFx top count case 0x03: { myTops[index] = value; myFlags[index] = 0x00; break; } // DFx bottom count case 0x04: { myBottoms[index] = value; break; } // DFx counter low case 0x05: { myCounters[index] = (myCounters[index] & 0x0F00) | value ; break; } // Control registers case 0x06: { switch (index) { // FastFetch control case 0x00: { myFastFetch = (value == 0); break; } case 0x01: // reserved case 0x02: // reserved case 0x03: // reserved case 0x04: // reserved break; case 0x05: case 0x06: case 0x07: { myMusicMode[index - 5] = (value & 0x10); break; } break; } break; } // DF Push case 0x07: { myCounters[index] = (myCounters[index] - 0x1) & 0x0fff; myDisplayImage[myCounters[index]] = value; break; } // DFx counter hi, same as counter high, but w/out music mode case 0x08: { myCounters[index] = (((uInt16)value & 0x0F) << 8) | (myCounters[index] & 0x00ff); break; } // Random Number Generator Reset case 0x09: { switch (index) { case 0x00: { myRandomNumber = 0x2B435044; // "DPC+" break; } case 0x01: { myRandomNumber = (myRandomNumber & 0xFFFFFF00) | value; break; } case 0x02: { myRandomNumber = (myRandomNumber & 0xFFFF00FF) | (value<<8); break; } case 0x03: { myRandomNumber = (myRandomNumber & 0xFF00FFFF) | (value<<16); break; } case 0x04: { myRandomNumber = (myRandomNumber & 0x00FFFFFF) | (value<<24); break; } case 0x05: case 0x06: case 0x07: { myMusicFrequency[index-5] = myFrequencyImage[(value<<2)] + (myFrequencyImage[(value<<2)+1]<<8) + (myFrequencyImage[(value<<2)+2]<<16) + (myFrequencyImage[(value<<2)+3]<<24); break; } default: break; } break; } // DF Write case 0x0a: { myDisplayImage[myCounters[index]] = value; myCounters[index] = (myCounters[index] + 0x1) & 0x0fff; break; } default: { break; } } } else { // Switch banks if necessary switch(address) { case 0x0FF6: // Set the current bank to the first 4k bank bank(0); break; case 0x0FF7: // Set the current bank to the second 4k bank bank(1); break; case 0x0FF8: // Set the current bank to the third 4k bank bank(2); break; case 0x0FF9: // Set the current bank to the fourth 4k bank bank(3); break; case 0x0FFA: // Set the current bank to the fifth 4k bank bank(4); break; case 0x0FFB: // Set the current bank to the last 4k bank bank(5); break; default: break; } } return false; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - void CartridgeDPCPlus::bank(uInt16 bank) { if(bankLocked()) return; // Remember what bank we're in myCurrentBank = bank; myBankChanged = true; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - uInt16 CartridgeDPCPlus::bank() const { return myCurrentBank; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - uInt16 CartridgeDPCPlus::bankCount() const { return 6; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - bool CartridgeDPCPlus::patch(uInt16 address, uInt8 value) { address &= 0x0FFF; // For now, we ignore attempts to patch the DPC address space if(address >= 0x0080) { myProgramImage[(myCurrentBank << 12) + (address & 0x0FFF)] = value; return myBankChanged = true; } else return false; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - const uInt8* CartridgeDPCPlus::getImage(int& size) const { size = 4096 * 6 + 4096 + 255; return myImageCopy; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - bool CartridgeDPCPlus::save(Serializer& out) const { const string& cart = name(); try { uInt32 i; out.putString(cart); // Indicates which bank is currently active out.putInt(myCurrentBank); // The top registers for the data fetchers out.putInt(8); for(i = 0; i < 8; ++i) out.putByte((char)myTops[i]); // The bottom registers for the data fetchers out.putInt(8); for(i = 0; i < 8; ++i) out.putByte((char)myBottoms[i]); // The counter registers for the data fetchers out.putInt(8); for(i = 0; i < 8; ++i) out.putInt(myCounters[i]); // The counter registers for the fractional data fetchers out.putInt(8); for(i = 0; i < 8; ++i) out.putInt(myFractionalCounters[i]); // The fractional registers for the data fetchers out.putInt(8); for(i = 0; i < 8; ++i) out.putByte((char)myFractionalIncrements[i]); // The flag registers for the data fetchers out.putInt(8); for(i = 0; i < 8; ++i) out.putByte((char)myFlags[i]); // The Fast Fetcher Enabled flag out.putBool(myFastFetch); out.putBool(myLDAimmediate); // The music mode flags for the data fetchers out.putInt(3); for(i = 0; i < 3; ++i) out.putBool(myMusicMode[i]); // The music mode counters for the data fetchers out.putInt(3); for(i = 0; i < 3; ++i) out.putInt(myMusicCounter[i]); // The music mode frequency addends for the data fetchers out.putInt(3); for(i = 0; i < 3; ++i) out.putInt(myMusicFrequency[i]); // The random number generator register out.putInt(myRandomNumber); out.putInt(mySystemCycles); out.putInt((uInt32)(myFractionalClocks * 100000000.0)); } catch(const char* msg) { cerr << "ERROR: CartridgeDPCPlus::save" << endl << " " << msg << endl; return false; } return true; } // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - bool CartridgeDPCPlus::load(Serializer& in) { const string& cart = name(); try { if(in.getString() != cart) return false; uInt32 i, limit; // Indicates which bank is currently active myCurrentBank = (uInt16) in.getInt(); // The top registers for the data fetchers limit = (uInt32) in.getInt(); for(i = 0; i < limit; ++i) myTops[i] = (uInt8) in.getByte(); // The bottom registers for the data fetchers limit = (uInt32) in.getInt(); for(i = 0; i < limit; ++i) myBottoms[i] = (uInt8) in.getByte(); // The counter registers for the data fetchers limit = (uInt32) in.getInt(); for(i = 0; i < limit; ++i) myCounters[i] = (uInt16) in.getInt(); // The counter registers for the fractional data fetchers limit = (uInt32) in.getInt(); for(i = 0; i < limit; ++i) myFractionalCounters[i] = (uInt32) in.getInt(); // The fractional registers for the data fetchers limit = (uInt32) in.getInt(); for(i = 0; i < limit; ++i) myFractionalIncrements[i] = (uInt8) in.getByte(); // The flag registers for the data fetchers limit = (uInt32) in.getInt(); for(i = 0; i < limit; ++i) myFlags[i] = (uInt8) in.getByte(); // The Fast Fetcher Enabled flag myFastFetch = in.getBool(); myLDAimmediate = in.getBool(); // The music mode flags for the data fetchers limit = (uInt32) in.getInt(); for(i = 0; i < limit; ++i) myMusicMode[i] = in.getBool(); // The music mode counters for the data fetchers limit = (uInt32) in.getInt(); for(i = 0; i < limit; ++i) myMusicCounter[i] = (uInt32) in.getInt(); // The music mode frequency addends for the data fetchers limit = (uInt32) in.getInt(); for(i = 0; i < limit; ++i) myMusicFrequency[i] = (uInt32) in.getInt(); // The random number generator register myRandomNumber = (uInt32) in.getInt(); // Get system cycles and fractional clocks mySystemCycles = in.getInt(); myFractionalClocks = (double)in.getInt() / 100000000.0; } catch(const char* msg) { cerr << "ERROR: CartridgeDPCPlus::load" << endl << " " << msg << endl; return false; } // Now, go to the current bank bank(myCurrentBank); return true; }