Updated CompuMate emulation. This bankswitching side of things seems to be

working fine.  Still TODO is the controller side, so you can actually input
some data.


git-svn-id: svn://svn.code.sf.net/p/stella/code/trunk@2408 8b62c5a3-ac7e-4cc8-8f21-d9a121418aba
This commit is contained in:
stephena 2012-03-11 23:26:12 +00:00
parent d0b8bd57e5
commit b80a0ecdc9
2 changed files with 233 additions and 34 deletions

View File

@ -21,6 +21,7 @@
#include <cstring>
#include "System.hxx"
#include "M6532.hxx"
#include "CartCM.hxx"
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
@ -30,6 +31,15 @@ CartridgeCM::CartridgeCM(const uInt8* image, uInt32 size, const Settings& settin
// Copy the ROM image into my buffer
memcpy(myImage, image, BSPF_min(16384u, size));
createCodeAccessBase(16384);
// This cart contains 2048 bytes extended RAM @ 0x1800
// This RAM scheme is unique in that it doesn't require separate read/write ports
registerRamArea(0x1800, 2048, 0x00, 0x00);
// On powerup, portA is all 1's, so the last bank of ROM is enabled and
// RAM is disabled
myStartBank = 3;
myRamState = 0x10;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
@ -40,47 +50,144 @@ CartridgeCM::~CartridgeCM()
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void CartridgeCM::reset()
{
// Initialize RAM
if(mySettings.getBool("ramrandom"))
for(uInt32 i = 0; i < 2048; ++i)
myRAM[i] = mySystem->randGenerator().next();
else
memset(myRAM, 0, 2048);
// Upon reset we switch to the startup bank
bank(myStartBank);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void CartridgeCM::install(System& system)
{
mySystem = &system;
uInt16 mask = mySystem->pageMask();
// Make sure the system we're being installed in has a page size that'll work
assert((0x1000 & mask) == 0);
// Mirror all access in RIOT; by doing so we're taking responsibility
// for that address space in peek and poke below.
mySystem->m6532().install(system, *this);
// Install pages for the startup bank
bank(myStartBank);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt8 CartridgeCM::peek(uInt16 address)
{
return 0;
// NOTE: This does not handle accessing cart ROM/RAM, however, this function
// should never be called for ROM/RAM because of the way page accessing
// has been setup
// It will only ever be called for RIOT reads
return mySystem->m6532().peek(address);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool CartridgeCM::poke(uInt16 address, uInt8)
bool CartridgeCM::poke(uInt16 address, uInt8 value)
{
return false;
// NOTE: This could be called for RIOT writes or cart ROM writes
// In the latter case, the write is ignored
if(!(address & 0x1000))
{
// RIOT mirroring, check bankswitch
if(address == 0x280)
{
myRamState = value;
bank(myRamState & 0x3);
if(value & 0x20) myColumn = 0;
if(value & 0x40) myColumn = (myColumn + 1) % 10;
}
mySystem->m6532().poke(address, value);
}
return myBankChanged;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool CartridgeCM::bank(uInt16 bank)
{
return false;
{
if(bankLocked()) return false;
// Remember what bank we're in
myCurrentBank = bank;
uInt16 offset = myCurrentBank << 12;
uInt16 shift = mySystem->pageShift();
// Although this scheme contains four 4K banks and one 2K bank, it's easier
// to think of things in terms of 2K slices, as follows:
//
// The lower 2K of cart address space always points to the lower 2K of the
// current ROM bank
// The upper 2K of cart address space can point to either the 2K of RAM or
// the upper 2K of the current ROM bank
System::PageAccess access(0, 0, 0, this, System::PA_READ);
// Lower 2K (always ROM)
for(uInt32 address = 0x1000; address < 0x1800; address += (1 << shift))
{
access.directPeekBase = &myImage[offset + (address & 0x0FFF)];
access.codeAccessBase = &myCodeAccessBase[offset + (address & 0x0FFF)];
mySystem->setPageAccess(address >> shift, access);
}
// Upper 2K (RAM or ROM)
for(uInt32 address = 0x1800; address < 0x2000; address += (1 << shift))
{
access.type = System::PA_READWRITE;
if(myRamState & 0x10)
{
access.directPeekBase = &myImage[offset + (address & 0x0FFF)];
access.codeAccessBase = &myCodeAccessBase[offset + (address & 0x0FFF)];
}
else
{
access.directPeekBase = &myRAM[address & 0x7FF];
access.codeAccessBase = &myCodeAccessBase[offset + (address & 0x07FF)];
}
if((myRamState & 0x30) == 0x20)
access.directPokeBase = &myRAM[address & 0x7FF];
else
access.directPokeBase = 0;
mySystem->setPageAccess(address >> shift, access);
}
return myBankChanged = true;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt16 CartridgeCM::bank() const
{
return 0;
return myCurrentBank;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt16 CartridgeCM::bankCount() const
{
// We report 4 banks (of ROM), even though RAM can overlap the upper 2K
// of cart address space at some times
// However, this RAM isn't enabled in the normal way that bankswitching
// works, so it is ignored here
return 4;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool CartridgeCM::patch(uInt16 address, uInt8 value)
{
return false;
if((myRamState & 0x30) == 0x20)
myRAM[address & 0x7FF] = value;
else
myImage[(myCurrentBank << 12) + address] = value;
return myBankChanged = true;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
@ -93,11 +200,54 @@ const uInt8* CartridgeCM::getImage(int& size) const
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool CartridgeCM::save(Serializer& out) const
{
return false;
try
{
out.putString(name());
out.putInt(myCurrentBank);
out.putByte(myRamState);
out.putByte(myColumn);
// The 2048 bytes of RAM
out.putInt(2048);
for(uInt32 i = 0; i < 2048; ++i)
out.putByte((char)myRAM[i]);
}
catch(const char* msg)
{
cerr << "ERROR: CartridgeCM::save" << endl << " " << msg << endl;
return false;
}
return true;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool CartridgeCM::load(Serializer& in)
{
return false;
try
{
if(in.getString() != name())
return false;
myCurrentBank = (uInt16) in.getInt();
myRamState = (uInt8) in.getByte();
myColumn = (uInt8) in.getByte();
// The 2048 bytes of RAM
uInt32 limit = (uInt32) in.getInt();
for(uInt32 i = 0; i < limit; ++i)
myRAM[i] = (uInt8) in.getByte();
}
catch(const char* msg)
{
cerr << "ERROR: CartridgeCM::load" << endl << " " << msg << endl;
return false;
}
// Remember what bank we were in
myRamState = (uInt8) in.getByte();
bank(myCurrentBank);
return true;
}

View File

@ -27,36 +27,76 @@ class System;
/**
Cartridge class used for SpectraVideo CompuMate bankswitched games.
There are 4 4K banks selectable at $1000 - $1FFFF.
This is more than just a cartridge mapper - it's also a "computer" add-on.
There's two 8K EPROMs soldered on top of each other. There's two short
wires with DB-9's on them which you plug into the two controller ports.
A 42 or so key membrane keyboard with audio in and audio out, and 2K of RAM.
There are 4 4K banks selectable at $1000 - $1FFF, and 2K RAM at
$1800 - $1FFF (R/W 'line' is available at SWCHA D5, so there's no separate
read and write ports).
Bankswitching is done though the controller ports
INPT0: D7 = CTRL key input (0 on startup / 1 = key pressed)
INPT1: D7 = always HIGH input (tested at startup)
INPT2: D7 = always HIGH input (tested at startup)
INPT3: D7 = SHIFT key input (0 on startup / 1 = key pressed)
INPT4: D7 = keyboard row 1 input (0 = key pressed)
INPT5: D7 = keyboard row 3 input (0 = key pressed)
SWCHA: D7 = tape recorder I/O ?
D6 = 1 -> increase key collumn (0 to 9)
D5 = 1 -> reset key collumn to 0 (if D4 = 0)
D5 = 0 -> enable RAM writing (if D4 = 1)
D4 = 1 -> map 2K of RAM at $1800 - $1fff
D3 = keyboard row 4 input (0 = key pressed)
D2 = keyboard row 2 input (0 = key pressed)
SWCHA: D7 = Audio input from tape player
D6 = Audio out to tape player and 4017 CLK
1 -> increase key column (0 to 9)
D5 = 4017 RST, and RAM direction. (high = write, low = read)
1 -> reset key column to 0 (if D4 = 0)
0 -> enable RAM writing (if D4 = 1)
D4 = RAM enable: 1 = disable RAM, 0 = enable RAM
D3 = keyboard row 1 input (0 = key pressed)
D2 = keyboard row 1 input (0 = key pressed)
D1 = bank select high bit
D0 = bank select low bit
Keyboard column numbering:
column 0 = 7 U J M
column 1 = 6 Y H N
column 2 = 8 I K ,
column 3 = 2 W S X
column 4 = 3 E D C
column 5 = 0 P ENTER SPACE
column 6 = 9 O L .
column 7 = 5 T G B
column 8 = 1 Q A Z
column 9 = 4 R F V
INPT0: D7 = CTRL key input (0 on startup / 1 = key pressed)
INPT1: D7 = always HIGH input (pulled high thru 20K resistor)
INPT2: D7 = always HIGH input (pulled high thru 20K resistor)
INPT3: D7 = SHIFT key input (0 on startup / 1 = key pressed)
INPT4: D7 = keyboard row 0 input (0 = key pressed)
INPT5: D7 = keyboard row 2 input (0 = key pressed)
The keyboard's composed of a 4017 1 of 10 counter, driving the 10 columns of
the keyboard. It has 4 rows. The 4 row outputs are buffered by inverters.
Bit 5 of portA controls the reset line on the 4017. Pulling it high will reset
scanning to column 0. Pulling it low will allow the counter to be clocked.
Bit 6 of portA clocks the 4017. Each rising edge advances the column one
count.
There's 10 columns labelled 0-9, and 4 rows, labelled 0-3.
Column
0 1 2 3 4 5 6 7 8 9
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
| 7 | | 6 | | 8 | | 2 | | 3 | | 0 | | 9 | | 5 | | 1 | | 4 | 0
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
| U | | Y | | I | | W | | E | | P | | O | | T | | Q | | R | 1
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ Row
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
| J | | H | | K | | S | | D | |ent| | L | | G | | A | | F | 2
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
| M | | N | | < | | X | | C | |spc| | > | | B | | Z | | V | 3
+---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+ +---+
Function and Shift are separate keys that are read by 2 of the paddle inputs.
These two buttons pull the specific paddle input low when pressed.
Because the inputs are inverted, a low indicates a pressed button, and a high
is an unpressed one.
The audio input/output are designed to drive a tape player. The audio output is
buffered through an inverter and 2 resistors and a capacitor to reduce the level
to feed it into the tape player.
The audio input is passed through a .1uf capacitor and is pulled to 1/2 supply
by two 20K resistors, then it goes through a hex inverting schmitt trigger to
square it up. This then runs into bit 7 of portA.
@author Stephen Anthony & z26 team
@version $Id$
@ -172,6 +212,15 @@ class CartridgeCM : public Cartridge
// The 16K ROM image of the cartridge
uInt8 myImage[16384];
// The 2K of RAM
uInt8 myRAM[2048];
// RAM read/write state
uInt8 myRamState;
// Column currently active
uInt8 myColumn;
};
#endif