Updated build script for new TIA sound class. Fixed missing include

in SoundSDL.  Removed some extraneous CR characters from TIASnd code.


git-svn-id: svn://svn.code.sf.net/p/stella/code/trunk@767 8b62c5a3-ac7e-4cc8-8f21-d9a121418aba
This commit is contained in:
stephena 2005-09-05 01:12:56 +00:00
parent 58dcda81b5
commit b648fb4f50
4 changed files with 470 additions and 469 deletions

View File

@ -13,7 +13,7 @@
// See the file "license" for information on usage and redistribution of
// this file, and for a DISCLAIMER OF ALL WARRANTIES.
//
// $Id: SoundSDL.cxx,v 1.22 2005-09-04 23:59:30 bwmott Exp $
// $Id: SoundSDL.cxx,v 1.23 2005-09-05 01:12:56 stephena Exp $
//============================================================================
#ifdef SOUND_SUPPORT
@ -23,7 +23,7 @@
#include <cmath>
#include <SDL.h>
#include "TIASound.h"
#include "TIASnd.hxx"
#include "FrameBuffer.hxx"
#include "Serializer.hxx"
#include "Deserializer.hxx"
@ -576,4 +576,4 @@ void SoundSDL::RegWriteQueue::grow()
myBuffer = buffer;
}
#endif // SOUND_SUPPORT
#endif // SOUND_SUPPORT

View File

@ -13,361 +13,361 @@
// See the file "license" for information on usage and redistribution of
// this file, and for a DISCLAIMER OF ALL WARRANTIES.
//
// $Id: TIASnd.cxx,v 1.1 2005-09-04 23:48:33 bwmott Exp $
//============================================================================
#include "System.hxx"
#include "TIASnd.hxx"
// $Id: TIASnd.cxx,v 1.2 2005-09-05 01:12:56 stephena Exp $
//============================================================================
#include "System.hxx"
#include "TIASnd.hxx"
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
TIASound::TIASound(Int32 outputFrequency, uInt32 channels)
: myOutputFrequency(outputFrequency),
myChannels(channels),
myOutputCounter(0),
myVolumePercentage(100)
{
reset();
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
TIASound::~TIASound()
{
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::reset()
{
myAUDC[0] = myAUDC[1] = myAUDF[0] = myAUDF[1] = myAUDV[0] = myAUDV[1] = 0;
myP4[0] = myP5[0] = myP4[1] = myP5[1] = 1;
myFreqDiv[0].set(0);
myFreqDiv[1].set(0);
myOutputCounter = 0;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::outputFrequency(uInt32 freq)
{
myOutputFrequency = freq;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::channels(uInt32 number)
{
if(number == 2)
myChannels = 2;
else
myChannels = 1;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::set(uInt16 address, uInt8 value)
{
switch(address)
{
case 0x15: // AUDC0
myAUDC[0] = value & 0x0f;
break;
case 0x16: // AUDC1
myAUDC[1] = value & 0x0f;
break;
case 0x17: // AUDF0
myAUDF[0] = value & 0x1f;
myFreqDiv[0].set(myAUDF[0]);
break;
case 0x18: // AUDF1
myAUDF[1] = value & 0x1f;
myFreqDiv[1].set(myAUDF[1]);
break;
case 0x19: // AUDV0
myAUDV[0] = value & 0x0f;
break;
case 0x1a: // AUDV1
myAUDV[1] = value & 0x0f;
break;
default:
break;
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt8 TIASound::get(uInt16 address)
{
switch(address)
{
case 0x15: // AUDC0
return myAUDC[0];
case 0x16: // AUDC1
return myAUDC[1];
case 0x17: // AUDF0
return myAUDF[0];
case 0x18: // AUDF1
return myAUDF[1];
case 0x19: // AUDV0
return myAUDV[0];
case 0x1a: // AUDV1
return myAUDV[1];
default:
return 0;
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::volume(uInt32 percent)
{
if((percent >= 0) && (percent <= 100))
{
myVolumePercentage = percent;
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::process(uInt8* buffer, uInt32 samples)
{
Int32 v0 = ((myAUDV[0] << 2) * myVolumePercentage) / 100;
Int32 v1 = ((myAUDV[1] << 2) * myVolumePercentage) / 100;
// Loop until the sample buffer is full
while(samples > 0)
{
// Process both sound channels
for(uInt32 c = 0; c < 2; ++c)
{
// Update P4 & P5 registers for channel if freq divider outputs a pulse
if((myFreqDiv[c].clock()))
{
switch(myAUDC[c])
{
case 0x00: // Set to 1
{
// Shift a 1 into the 4-bit register each clock
myP4[c] = (myP4[c] << 1) | 0x01;
break;
}
case 0x01: // 4 bit poly
{
// Clock P4 as a standard 4-bit LSFR taps at bits 3 & 2
myP4[c] = (myP4[c] & 0x0f) ?
((myP4[c] << 1) | (((myP4[c] & 0x08) ? 1 : 0) ^
((myP4[c] & 0x04) ? 1 : 0))) : 1;
break;
}
case 0x02: // div 31 -> 4 bit poly
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// This does the divide-by 31 with length 13:18
if((myP5[c] & 0x0f) == 0x08)
{
// Clock P4 as a standard 4-bit LSFR taps at bits 3 & 2
myP4[c] = (myP4[c] & 0x0f) ?
((myP4[c] << 1) | (((myP4[c] & 0x08) ? 1 : 0) ^
((myP4[c] & 0x04) ? 1 : 0))) : 1;
}
break;
}
case 0x03: // 5 bit poly -> 4 bit poly
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// P5 clocks the 4 bit poly
if(myP5[c] & 0x10)
{
// Clock P4 as a standard 4-bit LSFR taps at bits 3 & 2
myP4[c] = (myP4[c] & 0x0f) ?
((myP4[c] << 1) | (((myP4[c] & 0x08) ? 1 : 0) ^
((myP4[c] & 0x04) ? 1 : 0))) : 1;
}
break;
}
case 0x04: // div 2
{
// Clock P4 toggling the lower bit (divide by 2)
myP4[c] = (myP4[c] << 1) | ((myP4[c] & 0x01) ? 0 : 1);
break;
}
case 0x05: // div 2
{
// Clock P4 toggling the lower bit (divide by 2)
myP4[c] = (myP4[c] << 1) | ((myP4[c] & 0x01) ? 0 : 1);
break;
}
case 0x06: // div 31 -> div 2
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// This does the divide-by 31 with length 13:18
if((myP5[c] & 0x0f) == 0x08)
{
// Clock P4 toggling the lower bit (divide by 2)
myP4[c] = (myP4[c] << 1) | ((myP4[c] & 0x01) ? 0 : 1);
}
break;
}
case 0x07: // 5 bit poly -> div 2
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// P5 clocks the 4 bit register
if(myP5[c] & 0x10)
{
// Clock P4 toggling the lower bit (divide by 2)
myP4[c] = (myP4[c] << 1) | ((myP4[c] & 0x01) ? 0 : 1);
}
break;
}
case 0x08: // 9 bit poly
{
// Clock P5 & P4 as a standard 9-bit LSFR taps at 8 & 4
myP5[c] = ((myP5[c] & 0x1f) || (myP4[c] & 0x0f)) ?
((myP5[c] << 1) | (((myP4[c] & 0x08) ? 1 : 0) ^
((myP5[c] & 0x10) ? 1 : 0))) : 1;
myP4[c] = (myP4[c] << 1) | ((myP5[c] & 0x20) ? 1 : 0);
break;
}
case 0x09: // 5 bit poly
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// Clock value out of P5 into P4 with no modification
myP4[c] = (myP4[c] << 1) | ((myP5[c] & 0x20) ? 1 : 0);
break;
}
case 0x0a: // div 31
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// This does the divide-by 31 with length 13:18
if((myP5[c] & 0x0f) == 0x08)
{
// Feed bit 4 of P5 into P4 (this will toggle back and forth)
myP4[c] = (myP4[c] << 1) | ((myP5[c] & 0x10) ? 1 : 0);
}
break;
}
case 0x0b: // Set last 4 bits to 1
{
// A 1 is shifted into the 4-bit register each clock
myP4[c] = (myP4[c] << 1) | 0x01;
break;
}
case 0x0c: // div 6
{
// Use 4-bit register to generate sequence 000111000111
myP4[c] = (~myP4[c] << 1) |
((!(!(myP4[c] & 4) && ((myP4[c] & 7)))) ? 0 : 1);
break;
}
case 0x0d: // div 6
{
// Use 4-bit register to generate sequence 000111000111
myP4[c] = (~myP4[c] << 1) |
((!(!(myP4[c] & 4) && ((myP4[c] & 7)))) ? 0 : 1);
break;
}
case 0x0e: // div 31 -> div 6
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// This does the divide-by 31 with length 13:18
if((myP5[c] & 0x0f) == 0x08)
{
// Use 4-bit register to generate sequence 000111000111
myP4[c] = (~myP4[c] << 1) |
((!(!(myP4[c] & 4) && ((myP4[c] & 7)))) ? 0 : 1);
}
break;
}
case 0x0f: // poly 5 -> div 6
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// Use poly 5 to clock 4-bit div register
if(myP5[c] & 0x10)
{
// Use 4-bit register to generate sequence 000111000111
myP4[c] = (~myP4[c] << 1) |
((!(!(myP4[c] & 4) && ((myP4[c] & 7)))) ? 0 : 1);
}
break;
}
}
}
}
myOutputCounter += myOutputFrequency;
if(myChannels == 1)
{
// Handle mono sample generation
while((samples > 0) && (myOutputCounter >= TIASoundFrequency))
{
*(buffer++) = (((myP4[0] & 8) ? v0 : 0) +
((myP4[1] & 8) ? v1 : 0)) + 128;
myOutputCounter -= TIASoundFrequency;
samples--;
}
}
else
{
// Handle stereo sample generation
while((samples > 0) && (myOutputCounter >= TIASoundFrequency))
{
*(buffer++) = ((myP4[0] & 8) ? v0 : 0) + 128;
*(buffer++) = ((myP4[1] & 8) ? v1 : 0) + 128;
myOutputCounter -= TIASoundFrequency;
samples--;
}
}
}
}
TIASound::TIASound(Int32 outputFrequency, uInt32 channels)
: myOutputFrequency(outputFrequency),
myChannels(channels),
myOutputCounter(0),
myVolumePercentage(100)
{
reset();
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
TIASound::~TIASound()
{
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::reset()
{
myAUDC[0] = myAUDC[1] = myAUDF[0] = myAUDF[1] = myAUDV[0] = myAUDV[1] = 0;
myP4[0] = myP5[0] = myP4[1] = myP5[1] = 1;
myFreqDiv[0].set(0);
myFreqDiv[1].set(0);
myOutputCounter = 0;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::outputFrequency(uInt32 freq)
{
myOutputFrequency = freq;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::channels(uInt32 number)
{
if(number == 2)
myChannels = 2;
else
myChannels = 1;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::set(uInt16 address, uInt8 value)
{
switch(address)
{
case 0x15: // AUDC0
myAUDC[0] = value & 0x0f;
break;
case 0x16: // AUDC1
myAUDC[1] = value & 0x0f;
break;
case 0x17: // AUDF0
myAUDF[0] = value & 0x1f;
myFreqDiv[0].set(myAUDF[0]);
break;
case 0x18: // AUDF1
myAUDF[1] = value & 0x1f;
myFreqDiv[1].set(myAUDF[1]);
break;
case 0x19: // AUDV0
myAUDV[0] = value & 0x0f;
break;
case 0x1a: // AUDV1
myAUDV[1] = value & 0x0f;
break;
default:
break;
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt8 TIASound::get(uInt16 address)
{
switch(address)
{
case 0x15: // AUDC0
return myAUDC[0];
case 0x16: // AUDC1
return myAUDC[1];
case 0x17: // AUDF0
return myAUDF[0];
case 0x18: // AUDF1
return myAUDF[1];
case 0x19: // AUDV0
return myAUDV[0];
case 0x1a: // AUDV1
return myAUDV[1];
default:
return 0;
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::volume(uInt32 percent)
{
if((percent >= 0) && (percent <= 100))
{
myVolumePercentage = percent;
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void TIASound::process(uInt8* buffer, uInt32 samples)
{
Int32 v0 = ((myAUDV[0] << 2) * myVolumePercentage) / 100;
Int32 v1 = ((myAUDV[1] << 2) * myVolumePercentage) / 100;
// Loop until the sample buffer is full
while(samples > 0)
{
// Process both sound channels
for(uInt32 c = 0; c < 2; ++c)
{
// Update P4 & P5 registers for channel if freq divider outputs a pulse
if((myFreqDiv[c].clock()))
{
switch(myAUDC[c])
{
case 0x00: // Set to 1
{
// Shift a 1 into the 4-bit register each clock
myP4[c] = (myP4[c] << 1) | 0x01;
break;
}
case 0x01: // 4 bit poly
{
// Clock P4 as a standard 4-bit LSFR taps at bits 3 & 2
myP4[c] = (myP4[c] & 0x0f) ?
((myP4[c] << 1) | (((myP4[c] & 0x08) ? 1 : 0) ^
((myP4[c] & 0x04) ? 1 : 0))) : 1;
break;
}
case 0x02: // div 31 -> 4 bit poly
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// This does the divide-by 31 with length 13:18
if((myP5[c] & 0x0f) == 0x08)
{
// Clock P4 as a standard 4-bit LSFR taps at bits 3 & 2
myP4[c] = (myP4[c] & 0x0f) ?
((myP4[c] << 1) | (((myP4[c] & 0x08) ? 1 : 0) ^
((myP4[c] & 0x04) ? 1 : 0))) : 1;
}
break;
}
case 0x03: // 5 bit poly -> 4 bit poly
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// P5 clocks the 4 bit poly
if(myP5[c] & 0x10)
{
// Clock P4 as a standard 4-bit LSFR taps at bits 3 & 2
myP4[c] = (myP4[c] & 0x0f) ?
((myP4[c] << 1) | (((myP4[c] & 0x08) ? 1 : 0) ^
((myP4[c] & 0x04) ? 1 : 0))) : 1;
}
break;
}
case 0x04: // div 2
{
// Clock P4 toggling the lower bit (divide by 2)
myP4[c] = (myP4[c] << 1) | ((myP4[c] & 0x01) ? 0 : 1);
break;
}
case 0x05: // div 2
{
// Clock P4 toggling the lower bit (divide by 2)
myP4[c] = (myP4[c] << 1) | ((myP4[c] & 0x01) ? 0 : 1);
break;
}
case 0x06: // div 31 -> div 2
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// This does the divide-by 31 with length 13:18
if((myP5[c] & 0x0f) == 0x08)
{
// Clock P4 toggling the lower bit (divide by 2)
myP4[c] = (myP4[c] << 1) | ((myP4[c] & 0x01) ? 0 : 1);
}
break;
}
case 0x07: // 5 bit poly -> div 2
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// P5 clocks the 4 bit register
if(myP5[c] & 0x10)
{
// Clock P4 toggling the lower bit (divide by 2)
myP4[c] = (myP4[c] << 1) | ((myP4[c] & 0x01) ? 0 : 1);
}
break;
}
case 0x08: // 9 bit poly
{
// Clock P5 & P4 as a standard 9-bit LSFR taps at 8 & 4
myP5[c] = ((myP5[c] & 0x1f) || (myP4[c] & 0x0f)) ?
((myP5[c] << 1) | (((myP4[c] & 0x08) ? 1 : 0) ^
((myP5[c] & 0x10) ? 1 : 0))) : 1;
myP4[c] = (myP4[c] << 1) | ((myP5[c] & 0x20) ? 1 : 0);
break;
}
case 0x09: // 5 bit poly
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// Clock value out of P5 into P4 with no modification
myP4[c] = (myP4[c] << 1) | ((myP5[c] & 0x20) ? 1 : 0);
break;
}
case 0x0a: // div 31
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// This does the divide-by 31 with length 13:18
if((myP5[c] & 0x0f) == 0x08)
{
// Feed bit 4 of P5 into P4 (this will toggle back and forth)
myP4[c] = (myP4[c] << 1) | ((myP5[c] & 0x10) ? 1 : 0);
}
break;
}
case 0x0b: // Set last 4 bits to 1
{
// A 1 is shifted into the 4-bit register each clock
myP4[c] = (myP4[c] << 1) | 0x01;
break;
}
case 0x0c: // div 6
{
// Use 4-bit register to generate sequence 000111000111
myP4[c] = (~myP4[c] << 1) |
((!(!(myP4[c] & 4) && ((myP4[c] & 7)))) ? 0 : 1);
break;
}
case 0x0d: // div 6
{
// Use 4-bit register to generate sequence 000111000111
myP4[c] = (~myP4[c] << 1) |
((!(!(myP4[c] & 4) && ((myP4[c] & 7)))) ? 0 : 1);
break;
}
case 0x0e: // div 31 -> div 6
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// This does the divide-by 31 with length 13:18
if((myP5[c] & 0x0f) == 0x08)
{
// Use 4-bit register to generate sequence 000111000111
myP4[c] = (~myP4[c] << 1) |
((!(!(myP4[c] & 4) && ((myP4[c] & 7)))) ? 0 : 1);
}
break;
}
case 0x0f: // poly 5 -> div 6
{
// Clock P5 as a standard 5-bit LSFR taps at bits 4 & 2
myP5[c] = (myP5[c] & 0x1f) ?
((myP5[c] << 1) | (((myP5[c] & 0x10) ? 1 : 0) ^
((myP5[c] & 0x04) ? 1 : 0))) : 1;
// Use poly 5 to clock 4-bit div register
if(myP5[c] & 0x10)
{
// Use 4-bit register to generate sequence 000111000111
myP4[c] = (~myP4[c] << 1) |
((!(!(myP4[c] & 4) && ((myP4[c] & 7)))) ? 0 : 1);
}
break;
}
}
}
}
myOutputCounter += myOutputFrequency;
if(myChannels == 1)
{
// Handle mono sample generation
while((samples > 0) && (myOutputCounter >= TIASoundFrequency))
{
*(buffer++) = (((myP4[0] & 8) ? v0 : 0) +
((myP4[1] & 8) ? v1 : 0)) + 128;
myOutputCounter -= TIASoundFrequency;
samples--;
}
}
else
{
// Handle stereo sample generation
while((samples > 0) && (myOutputCounter >= TIASoundFrequency))
{
*(buffer++) = ((myP4[0] & 8) ? v0 : 0) + 128;
*(buffer++) = ((myP4[1] & 8) ? v1 : 0) + 128;
myOutputCounter -= TIASoundFrequency;
samples--;
}
}
}
}

View File

@ -13,20 +13,20 @@
// See the file "license" for information on usage and redistribution of
// this file, and for a DISCLAIMER OF ALL WARRANTIES.
//
// $Id: TIASnd.hxx,v 1.1 2005-09-04 23:48:33 bwmott Exp $
//============================================================================
#ifndef TIASOUND_HXX
#define TIASOUND_HXX
#include "bspf.hxx"
// $Id: TIASnd.hxx,v 1.2 2005-09-05 01:12:56 stephena Exp $
//============================================================================
#ifndef TIASOUND_HXX
#define TIASOUND_HXX
#include "bspf.hxx"
/**
This class implements a fairly accurate emulation of the TIA sound
hardware.
@author Bradford W. Mott
@version $Id: TIASnd.hxx,v 1.1 2005-09-04 23:48:33 bwmott Exp $
@version $Id: TIASnd.hxx,v 1.2 2005-09-05 01:12:56 stephena Exp $
*/
class TIASound
{
@ -37,105 +37,106 @@ class TIASound
/**
Create a new TIA Sound object using the specified output frequency
*/
TIASound(Int32 outputFrequency = TIASoundFrequency, uInt32 channels = 1);
/**
Destructor
*/
virtual ~TIASound();
public:
TIASound(Int32 outputFrequency = TIASoundFrequency, uInt32 channels = 1);
/**
Destructor
*/
virtual ~TIASound();
public:
/**
Reset the sound emulation to its power-on state
*/
void reset();
/**
Set the frequency output samples should be generated at
*/
void outputFrequency(uInt32 freq);
/**
Selects the number of audio channels per sample (1 = mono, 2 = stereo)
*/
void channels(uInt32 number);
public:
/**
Sets the specified sound register to the given value
@param address Register address
@param value Value to store in the register
*/
void set(uInt16 address, uInt8 value);
/**
Gets the specified sound register's value
@param address Register address
*/
uInt8 get(uInt16 address);
/**
Create sound samples based on the current sound register settings
in the specified buffer. NOTE: If channels is set to stereo then
the buffer will need to be twice as long as the number of samples.
@param buffer The location to store generated samples
@param samples The number of samples to generate
*/
void process(uInt8* buffer, uInt32 samples);
/**
Set the volume of the samples created (0-100)
*/
void volume(uInt32 percent);
private:
/**
Frequency divider class which outputs 1 after "divide-by" clocks. This
is used to divide the main frequency by the values 1 to 32.
*/
class FreqDiv
{
public:
FreqDiv()
{
myDivideByValue = myCounter = 0;
}
void set(uInt32 divideBy)
{
myDivideByValue = divideBy;
}
bool clock()
{
if(++myCounter > myDivideByValue)
{
myCounter = 0;
return true;
}
return false;
}
private:
uInt32 myDivideByValue;
uInt32 myCounter;
};
private:
uInt8 myAUDC[2];
uInt8 myAUDF[2];
uInt8 myAUDV[2];
FreqDiv myFreqDiv[2]; // Frequency dividers
uInt8 myP4[2]; // 4-bit register LFSR (lower 4 bits used)
uInt8 myP5[2]; // 5-bit register LFSR (lower 5 bits used)
Int32 myOutputFrequency;
Int32 myOutputCounter;
uInt32 myChannels;
uInt32 myVolumePercentage;
};
#endif
void reset();
/**
Set the frequency output samples should be generated at
*/
void outputFrequency(uInt32 freq);
/**
Selects the number of audio channels per sample (1 = mono, 2 = stereo)
*/
void channels(uInt32 number);
public:
/**
Sets the specified sound register to the given value
@param address Register address
@param value Value to store in the register
*/
void set(uInt16 address, uInt8 value);
/**
Gets the specified sound register's value
@param address Register address
*/
uInt8 get(uInt16 address);
/**
Create sound samples based on the current sound register settings
in the specified buffer. NOTE: If channels is set to stereo then
the buffer will need to be twice as long as the number of samples.
@param buffer The location to store generated samples
@param samples The number of samples to generate
*/
void process(uInt8* buffer, uInt32 samples);
/**
Set the volume of the samples created (0-100)
*/
void volume(uInt32 percent);
private:
/**
Frequency divider class which outputs 1 after "divide-by" clocks. This
is used to divide the main frequency by the values 1 to 32.
*/
class FreqDiv
{
public:
FreqDiv()
{
myDivideByValue = myCounter = 0;
}
void set(uInt32 divideBy)
{
myDivideByValue = divideBy;
}
bool clock()
{
if(++myCounter > myDivideByValue)
{
myCounter = 0;
return true;
}
return false;
}
private:
uInt32 myDivideByValue;
uInt32 myCounter;
};
private:
uInt8 myAUDC[2];
uInt8 myAUDF[2];
uInt8 myAUDV[2];
FreqDiv myFreqDiv[2]; // Frequency dividers
uInt8 myP4[2]; // 4-bit register LFSR (lower 4 bits used)
uInt8 myP5[2]; // 5-bit register LFSR (lower 5 bits used)
Int32 myOutputFrequency;
uInt32 myChannels;
Int32 myOutputCounter;
uInt32 myVolumePercentage;
};
#endif

View File

@ -45,7 +45,7 @@ MODULE_OBJS := \
src/emucore/Settings.o \
src/emucore/Switches.o \
src/emucore/TIA.o \
src/emucore/TIASound.o \
src/emucore/TIASnd.o \
src/emucore/unzip.o
MODULE_DIRS += \