Fixed DASH scheme to work according to spec; it now works with the

test ROM from Thomas.  Still TODO is work on patch support, and add
debugger tabs for bankswitching and extra RAM.


git-svn-id: svn://svn.code.sf.net/p/stella/code/trunk@2962 8b62c5a3-ac7e-4cc8-8f21-d9a121418aba
This commit is contained in:
stephena 2014-07-26 20:32:33 +00:00
parent 756a55fd82
commit 82ef198585
2 changed files with 136 additions and 89 deletions

View File

@ -29,18 +29,15 @@ CartridgeDASH::CartridgeDASH(const uInt8* image, uInt32 size, const Settings& se
Cartridge(settings), mySize(size) {
// Allocate array for the ROM image
myImage = new uInt8[mySize+65536];
myImage = new uInt8[mySize];
// Copy the ROM image into my buffer
memcpy(myImage, image, mySize);
createCodeAccessBase(mySize + 65536); //RAM_TOTAL_SIZE); // TODO: how does the RAM write offset affect the size we need?
// This cart can address 4 banks of RAM, each 512 bytes @ 1000, 1200, 1400, 1600
// However, it may not be addressable all the time (it may be swapped out)
createCodeAccessBase(mySize + RAM_TOTAL_SIZE);
// Remember startup bank (0 per spec, rather than last per 3E scheme).
// Set this to go to 3rd 1K Bank.
myStartBank = 0; //(3 << BANK_BITS) | 0;
myStartBank = 0;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
@ -58,9 +55,15 @@ void CartridgeDASH::reset() {
else
memset(myRAM, 0, RAM_TOTAL_SIZE);
// We'll map the startup bank (0) from the image into the third 1K bank upon reset
// Initialise bank values for all ROM/RAM access
// This is used to reverse-lookup from address to bank location
for (uInt32 b = 0; b < 8; b++)
bankInUse[b] = BANK_UNDEFINED; // bank is undefined and inaccessible!
initializeBankState();
bankROM(myStartBank);
// We'll map the startup banks 0 and 3 from the image into the third 1K bank upon reset
bankROM((0 << BANK_BITS) | 0);
bankROM((3 << BANK_BITS) | 0);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
@ -83,32 +86,26 @@ void CartridgeDASH::install(System& system) {
for (uInt32 i = 0x00; i < 0x40; i += (1 << shift))
mySystem->setPageAccess(i >> shift, access);
// Setup the last segment (of 4, each 1K) to point to the first ROM slice
// Actually we DO NOT want "always". It's just on bootup, and can be out switched later
access.type = System::PA_READ;
for (uInt32 address = (0x2000 - ROM_BANK_SIZE); address < 0x2000; address += (1 << shift)) {
access.directPeekBase = &myImage[address & (ROM_BANK_SIZE - 1)]; // from base address 0x0000 in image
access.codeAccessBase = &myCodeAccessBase[address & (ROM_BANK_SIZE - 1)];
mySystem->setPageAccess(address >> shift, access);
}
// Initialise bank values for the 4x 1K bank areas
// Initialise bank values for all ROM/RAM access
// This is used to reverse-lookup from address to bank location
for (uInt32 b = 0; b < 8; b++)
bankInUse[b] = BANK_UNDEFINED; // bank is undefined and inaccessible!
initializeBankState();
// Install pages for the startup bank into the first segment
bankROM(myStartBank);
// Setup the last segment (of 4, each 1K) to point to the first ROM slice
// Actually we DO NOT want "always". It's just on bootup, and can be out switched later
bankROM((0 << BANK_BITS) | 0);
bankROM((3 << BANK_BITS) | 0);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
uInt8 CartridgeDASH::peek(uInt16 address) {
uInt16 peekAddress = address;
address &= 0x0FFF; // restrict to 4K address range
uInt8 value = 0;
uInt32 bank = (address >> (ROM_BANK_TO_POWER - 1)) & 7; // convert to 512 byte bank index (0-7)
uInt32 bank = (address >> (ROM_BANK_TO_POWER - 1)) & 7; // convert to 512 byte bank index (0-7)
Int16 imageBank = bankInUse[bank]; // the ROM/RAM bank that's here
if (imageBank == BANK_UNDEFINED) { // an uninitialised bank?
@ -116,19 +113,22 @@ uInt8 CartridgeDASH::peek(uInt16 address) {
// accessing invalid bank, so return should be... random?
value = mySystem->randGenerator().next();
} else if (imageBank & BITMASK_ROMRAM) { // a RAM bank
} else if (imageBank & BITMASK_ROMRAM) { // a RAM bank
Int32 ramBank = imageBank & BIT_BANK_MASK; // discard irrelevant bits
Int32 offset = ramBank << RAM_BANK_TO_POWER; // base bank address in RAM
offset += (address & BITMASK_RAM_BANK); // + byte offset in RAM bank
value = myRAM[offset];
// Reading from the write port triggers an unwanted write
value = mySystem->getDataBusState(0xFF);
} else { // accessing ROM
if(bankLocked())
return value;
else
{
triggerReadFromWritePort(peekAddress);
Int32 romBank = imageBank & BIT_BANK_MASK; // discard irrelevant bits
Int32 offset = romBank << ROM_BANK_TO_POWER; // base bank address in image
offset += (address & BITMASK_ROM_BANK); // + byte offset in image bank
value = myImage[offset];
Int32 ramBank = imageBank & BIT_BANK_MASK; // discard irrelevant bits
Int32 offset = ramBank << RAM_BANK_TO_POWER; // base bank address in RAM
offset += (address & BITMASK_RAM_BANK); // + byte offset in RAM bank
return myRAM[offset] = value;
}
}
return value;
@ -139,8 +139,6 @@ bool CartridgeDASH::poke(uInt16 address, uInt8 value) {
bool myBankChanged = false;
//address &= 0x0FFF; // restrict to 4K address range
// Check for write to the bank switch address. RAM/ROM and bank # are encoded in 'value'
// There are NO mirrored hotspots.
@ -162,83 +160,125 @@ bool CartridgeDASH::poke(uInt16 address, uInt8 value) {
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool CartridgeDASH::bankRAM(uInt8 bank) {
bool changed = false;
if (bankLocked()) // debugger can lock RAM
return false;
// Each RAM bank uses two slots, separated by 0x800 in memory -- one read, one write.
bankRAMSlot(bank | BITMASK_ROMRAM | 0);
bankRAMSlot(bank | BITMASK_ROMRAM | BITMASK_LOWERUPPER);
return true;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void CartridgeDASH::bankRAMSlot(uInt16 bank) {
uInt16 shift = mySystem->pageShift();
uInt16 bankNumber = (bank >> BANK_BITS) & 3; // which bank # we are switching TO (BITS D6,D7) to 512 byte block
uInt16 currentBank = bank & BIT_BANK_MASK; // Wrap around/restrict to valid range
uInt16 bankNumber = (bank >> BANK_BITS) & 3; // which bank # we are switching TO (BITS D6,D7) to 512 byte block
uInt16 currentBank = bank & BIT_BANK_MASK; // Wrap around/restrict to valid range
bool upper = bank & BITMASK_LOWERUPPER; // is this the read or write port
// Each RAM bank uses two slots, separated by 0x800 in memory -- one read, one write.
bankInUse[bankNumber] = bankInUse[bankNumber + 4] = (Int16) (BITMASK_ROMRAM | currentBank); // Record which bank switched in (marked as RAM)
uInt32 startCurrentBank = currentBank << RAM_BANK_TO_POWER; // Effectively * 512 bytes
uInt32 blockSize = 1 << shift;
// Setup the page access methods for the current bank
System::PageAccess access(this, System::PA_READ);
uInt32 startCurrentBank = currentBank << RAM_BANK_TO_POWER; // Effectively * 512 bytes
uInt32 base = 0x1000 + startCurrentBank;
uInt32 blockSize = 1 << shift;
uInt32 blockMask = blockSize - 1;
if (upper) { // We're mapping the write port
/*for (uInt32 address = base; address < base + RAM_BANK_SIZE; address += blockSize) {
access.directPeekBase = &myRAM[startCurrentBank + (address & blockMask)];
access.codeAccessBase = &myCodeAccessBase[65536 + startCurrentBank + (address & blockMask)];
bankInUse[bankNumber + 4] = (Int16) bank;
access.type = System::PA_WRITE;
} else { // We're mapping the read port
bankInUse[bankNumber] = (Int16) bank;
access.type = System::PA_READ;
}
uInt32 start = 0x1000 + (bankNumber << RAM_BANK_TO_POWER) + (upper ? RAM_WRITE_OFFSET : 0);
uInt32 end = start + RAM_BANK_SIZE - 1;
for (uInt32 address = start; address <= end; address += blockSize) {
if(upper)
access.directPokeBase = &myRAM[startCurrentBank + (address & (RAM_BANK_SIZE - 1))];
else
access.directPeekBase = &myRAM[startCurrentBank + (address & (RAM_BANK_SIZE - 1))];
access.codeAccessBase = &myCodeAccessBase[mySize + startCurrentBank + (address & (RAM_BANK_SIZE - 1))];
mySystem->setPageAccess(address >> shift, access);
}*/
access.directPeekBase = 0;
access.type = System::PA_WRITE;
base += RAM_WRITE_OFFSET;
/*for (uInt32 address = base; address < base + RAM_BANK_SIZE; address += blockSize) {
access.directPokeBase = &myRAM[startCurrentBank + (address&blockMask)];
access.codeAccessBase = &myCodeAccessBase[65536 + startCurrentBank + (address & blockMask)];
mySystem->setPageAccess(address >> shift, access);
}*/
return changed = true;
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool CartridgeDASH::bankROM(uInt8 bank) {
bool changed = false;
if (bankLocked()) // debugger can lock ROM
return false;
if (!bankLocked()) { // debugger can lock ROM
// Map ROM bank image into the system into the correct slot
// Memory map is 1K slots at 0x1000, 0x1400, 0x1800, 0x1C00
// Each ROM uses 2 consecutive 512 byte slots
bankROMSlot(bank | 0);
bankROMSlot(bank | BITMASK_LOWERUPPER);
uInt16 shift = mySystem->pageShift();
return true;
}
uInt16 bankNumber = (bank >> BANK_BITS) & 3; // which bank # we are switching TO (BITS D6,D7)
uInt16 currentBank = bank & BIT_BANK_MASK; // Wrap around/restrict to valid range
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void CartridgeDASH::bankROMSlot(uInt16 bank) {
// Map ROM bank image into the system into the correct slot
// Memory map is 1K slots at 0x1000, 0x1400, 0x1800, 0x1C00
// Each ROM uses 2 consecutive 512 byte slots
uInt16 shift = mySystem->pageShift();
bankInUse[bankNumber * 2] = bankInUse[bankNumber * 2 + 1] = (Int16) currentBank; // Record which bank switched in (as ROM)
uInt16 bankNumber = (bank >> BANK_BITS) & 3; // which bank # we are switching TO (BITS D6,D7)
uInt16 currentBank = bank & BIT_BANK_MASK; // Wrap around/restrict to valid range
bool upper = bank & BITMASK_LOWERUPPER; // is this the lower or upper 512b
uInt32 startCurrentBank = currentBank << ROM_BANK_TO_POWER; // Effectively *1K
bankInUse[bankNumber * 2 + (upper ? 1 : 0)] = (Int16) bank; // Record which bank switched in (as ROM)
// Setup the page access methods for the current bank
System::PageAccess access(this, System::PA_READ);
uInt32 startCurrentBank = currentBank << ROM_BANK_TO_POWER; // Effectively *1K
uInt32 base = 0x1000 + (bankNumber << ROM_BANK_TO_POWER);
for (uInt32 address = base; address < base + ROM_BANK_SIZE; address += (1 << shift)) {
access.directPeekBase = &myImage[startCurrentBank + (address & (ROM_BANK_SIZE - 1))];
access.codeAccessBase = &myCodeAccessBase[startCurrentBank + (address & (ROM_BANK_SIZE - 1))];
mySystem->setPageAccess(address >> shift, access);
}
// Setup the page access methods for the current bank
System::PageAccess access(this, System::PA_READ);
changed = true;
uInt32 start = 0x1000 + (bankNumber << ROM_BANK_TO_POWER) + (upper ? ROM_BANK_SIZE / 2 : 0);
uInt32 end = start + ROM_BANK_SIZE / 2 - 1;
for (uInt32 address = start; address <= end; address += (1 << shift)) {
access.directPeekBase = &myImage[startCurrentBank + (address & (ROM_BANK_SIZE - 1))];
access.codeAccessBase = &myCodeAccessBase[startCurrentBank + (address & (ROM_BANK_SIZE - 1))];
mySystem->setPageAccess(address >> shift, access);
}
}
return changed;
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void CartridgeDASH::initializeBankState() {
const uInt16& shift = mySystem->pageShift();
// Switch in each 512b slot
for (uInt32 b = 0; b < 8; b++) {
if (bankInUse[b] == BANK_UNDEFINED) {
// Setup the page access methods for the current bank
System::PageAccess access(this, System::PA_READ);
uInt32 start = 0x1000 + (b << RAM_BANK_TO_POWER);
uInt32 end = start + RAM_BANK_SIZE - 1;
for (uInt32 address = start; address <= end; address += (1 << shift))
mySystem->setPageAccess(address >> shift, access);
}
else if (bankInUse[b] & BITMASK_ROMRAM)
bankRAMSlot(bankInUse[b]);
else
bankROMSlot(bankInUse[b]);
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool CartridgeDASH::patch(uInt16 address, uInt8 value) {
#if 0
// Patch the cartridge ROM (for debugger)
myBankChanged = true;
@ -267,6 +307,9 @@ bool CartridgeDASH::patch(uInt16 address, uInt8 value) {
}
return myBankChanged;
#else
return false;
#endif
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
@ -277,10 +320,10 @@ const uInt8* CartridgeDASH::getImage(int& size) const {
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool CartridgeDASH::save(Serializer& out) const {
try {
out.putString(name());
for (uInt32 b = 0; b < 8; b++)
out.putShort(bankInUse[b]);
out.putShortArray((uInt16*)bankInUse, 8);
out.putByteArray(myRAM, RAM_TOTAL_SIZE);
} catch (...) {
cerr << "ERROR: CartridgeDASH::save" << endl;
@ -291,16 +334,17 @@ bool CartridgeDASH::save(Serializer& out) const {
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
bool CartridgeDASH::load(Serializer& in) {
try {
if (in.getString() != name())
return false;
for (uInt32 b = 0; b < 8; b++) {
bank(bankInUse[b] = in.getShort()); // read, and switch it in
}
in.getShortArray((uInt16*)bankInUse, 8);
in.getByteArray(myRAM, RAM_TOTAL_SIZE);
} catch (...) {
cerr << "ERROR: CartridgeDASH::load" << endl;
return false;
}
initializeBankState();
return true;
}

View File

@ -233,8 +233,10 @@ private:
bool bankRAM(uInt8 bank); // switch a RAM bank
bool bankROM(uInt8 bank); // switch a ROM bank
void bankRAMSlot(uInt16 bank); // switch in a 512b RAM slot (lower or upper 1/2 bank)
void bankROMSlot(uInt16 bank); // switch in a 512b RAM slot (read or write port)
void initializeBankState(); // set all banks according to current bankInUse state
// We have an array that indicates for each of the 8 512 byte areas of the address space, which ROM/RAM
// bank is used in that area. ROM switches 1K so occupies 2 successive entries for each switch. RAM occupies
@ -248,7 +250,8 @@ private:
static const uInt8 BANK_BITS = 6; // # bits for bank
static const uInt8 BIT_BANK_MASK = (1 << BANK_BITS) - 1; // mask for those bits
static const uInt8 BITMASK_ROMRAM = 0x80; // flags ROM or RAM bank switching (D7--> 1==RAM)
static const uInt16 BITMASK_LOWERUPPER = 0x100; // flags lower or upper section of bank (1==upper)
static const uInt16 BITMASK_ROMRAM = 0x200; // flags ROM or RAM bank switching (1==RAM)
static const uInt16 MAXIMUM_BANK_COUNT = (1<<BANK_BITS);
static const uInt16 RAM_BANK_TO_POWER = 9; // 2^n = 512
@ -268,7 +271,7 @@ private:
uInt32 mySize; // Size of the ROM image
uInt8* myImage; // Pointer to a dynamically allocated ROM image of the cartridge
uInt8* myRAM; // on the heap, not stack :)
uInt8 myRAM[RAM_TOTAL_SIZE];
};
#endif