snes9x/apu/resampler.h

163 lines
4.3 KiB
C++

/* Simple resampler based on bsnes's ruby audio library */
#ifndef __RESAMPLER_H
#define __RESAMPLER_H
#include "ring_buffer.h"
#undef MIN
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#undef CLAMP
#undef short_clamp
#define CLAMP(x, low, high) (((x) > (high)) ? (high) : (((x) < (low)) ? (low) : (x)))
#define short_clamp(n) ((short) CLAMP((n), -32768, 32767))
class Resampler : public ring_buffer
{
protected:
double r_step;
double r_frac;
int r_left[4], r_right[4];
double
hermite (double mu1, double a, double b, double c, double d)
{
const double tension = 0.0; //-1 = low, 0 = normal, 1 = high
const double bias = 0.0; //-1 = left, 0 = even, 1 = right
double mu2, mu3, m0, m1, a0, a1, a2, a3;
mu2 = mu1 * mu1;
mu3 = mu2 * mu1;
m0 = (b - a) * (1 + bias) * (1 - tension) / 2;
m0 += (c - b) * (1 - bias) * (1 - tension) / 2;
m1 = (c - b) * (1 + bias) * (1 - tension) / 2;
m1 += (d - c) * (1 - bias) * (1 - tension) / 2;
a0 = +2 * mu3 - 3 * mu2 + 1;
a1 = mu3 - 2 * mu2 + mu1;
a2 = mu3 - mu2;
a3 = -2 * mu3 + 3 * mu2;
return (a0 * b) + (a1 * m0) + (a2 * m1) + (a3 * c);
}
public:
Resampler (int num_samples) : ring_buffer (num_samples << 1)
{
r_frac = 0.0;
}
~Resampler ()
{
}
void
time_ratio (double ratio)
{
r_step = ratio;
clear ();
}
void
clear (void)
{
ring_buffer::clear ();
r_frac = 0;
r_left [0] = r_left [1] = r_left [2] = r_left [3] = 0;
r_right[0] = r_right[1] = r_right[2] = r_right[3] = 0;
}
void
read (short *data, int num_samples)
{
int i_position = start >> 1;
short *internal_buffer = (short *) buffer;
int o_position = 0;
int consumed = 0;
while (o_position < num_samples && consumed < buffer_size)
{
int s_left = internal_buffer[i_position];
int s_right = internal_buffer[i_position + 1];
const double margin_of_error = 1.0e-10;
if (fabs(r_step - 1.0) < margin_of_error)
{
data[o_position] = (short) s_left;
data[o_position + 1] = (short) s_right;
o_position += 2;
i_position = (i_position + 2) % (buffer_size >> 1);
consumed += 2;
continue;
}
r_left [0] = r_left [1];
r_left [1] = r_left [2];
r_left [2] = r_left [3];
r_left [3] = s_left;
r_right[0] = r_right[1];
r_right[1] = r_right[2];
r_right[2] = r_right[3];
r_right[3] = s_right;
while (r_frac <= 1.0 && o_position < num_samples)
{
data[o_position] = short_clamp (hermite (r_frac, r_left [0], r_left [1], r_left [2], r_left [3]));
data[o_position + 1] = short_clamp (hermite (r_frac, r_right[0], r_right[1], r_right[2], r_right[3]));
o_position += 2;
r_frac += r_step;
}
if (r_frac > 1.0)
{
r_frac -= 1.0;
i_position = (i_position + 2) % (buffer_size >> 1);
consumed += 2;
}
}
size -= consumed << 1;
start = (start + (consumed << 1)) % buffer_size;
}
bool
push (short *src, int num_samples)
{
if (max_write () < num_samples)
return false;
ring_buffer::push ((unsigned char *) src, num_samples << 1);
return true;
}
int
max_write (void)
{
return space_empty () >> 1;
}
void
resize (int num_samples)
{
ring_buffer::resize (num_samples << 1);
}
int
avail (void)
{
return (int) floor (((size >> 2) - r_frac) / r_step) * 2;
}
};
#endif /* __RESAMPLER_H */