mirror of https://github.com/snes9xgit/snes9x.git
1315 lines
47 KiB
C++
1315 lines
47 KiB
C++
// ****************************************************************************
|
||
// * This file is part of the HqMAME project. It is distributed under *
|
||
// * GNU General Public License: http://www.gnu.org/licenses/gpl.html *
|
||
// * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved *
|
||
// * *
|
||
// * Additionally and as a special exception, the author gives permission *
|
||
// * to link the code of this program with the MAME library (or with modified *
|
||
// * versions of MAME that use the same license as MAME), and distribute *
|
||
// * linked combinations including the two. You must obey the GNU General *
|
||
// * Public License in all respects for all of the code used other than MAME. *
|
||
// * If you modify this file, you may extend this exception to your version *
|
||
// * of the file, but you are not obligated to do so. If you do not wish to *
|
||
// * do so, delete this exception statement from your version. *
|
||
// ****************************************************************************
|
||
|
||
#include "xbrz.h"
|
||
#include <cassert>
|
||
#include <algorithm>
|
||
#ifdef unix
|
||
#include <cmath>
|
||
#endif
|
||
#include <vector>
|
||
|
||
|
||
namespace
|
||
{
|
||
template <uint32_t N> inline
|
||
unsigned char getByte(uint32_t val) { return static_cast<unsigned char>((val >> (8 * N)) & 0xff); }
|
||
|
||
inline unsigned char getAlpha(uint32_t val) { return getByte<3>(val); }
|
||
inline unsigned char getRed (uint32_t val) { return getByte<2>(val); }
|
||
inline unsigned char getGreen(uint32_t val) { return getByte<1>(val); }
|
||
inline unsigned char getBlue (uint32_t val) { return getByte<0>(val); }
|
||
|
||
template <class T> inline
|
||
T abs(T value)
|
||
{
|
||
//static_assert(std::is_signed<T>::value, "abs() requires signed types");
|
||
return value < 0 ? -value : value;
|
||
}
|
||
|
||
const uint32_t redMask = 0xff0000;
|
||
const uint32_t greenMask = 0x00ff00;
|
||
const uint32_t blueMask = 0x0000ff;
|
||
|
||
template <unsigned int M, unsigned int N> inline
|
||
void alphaBlend(uint32_t& dst, uint32_t col) //blend color over destination with opacity M / N
|
||
{
|
||
//static_assert(0 < M && M < N && N <= 256, "possible overflow of (col & byte1Mask) * M + (dst & byte1Mask) * (N - M)");
|
||
|
||
const uint32_t byte1Mask = 0x000000ff;
|
||
const uint32_t byte2Mask = 0x0000ff00;
|
||
const uint32_t byte3Mask = 0x00ff0000;
|
||
const uint32_t byte4Mask = 0xff000000;
|
||
|
||
dst = (byte1Mask & (((col & byte1Mask) * M + (dst & byte1Mask) * (N - M)) / N)) | //
|
||
(byte2Mask & (((col & byte2Mask) * M + (dst & byte2Mask) * (N - M)) / N)) | //this works because next higher 8 bits are free
|
||
(byte3Mask & (((col & byte3Mask) * M + (dst & byte3Mask) * (N - M)) / N)) | //
|
||
(byte4Mask & (((((col & byte4Mask) >> 8) * M + ((dst & byte4Mask) >> 8) * (N - M)) / N) << 8)); //next 8 bits are not free, so shift
|
||
//the last row operating on a potential alpha channel costs only ~1% perf => negligible!
|
||
}
|
||
|
||
|
||
//inline
|
||
//double fastSqrt(double n)
|
||
//{
|
||
// __asm //speeds up xBRZ by about 9% compared to std::sqrt which internally uses the same assembler instructions but adds some "fluff"
|
||
// {
|
||
// fld n
|
||
// fsqrt
|
||
// }
|
||
//}
|
||
//
|
||
|
||
|
||
//inline
|
||
//uint32_t alphaBlend2(uint32_t pix1, uint32_t pix2, double alpha)
|
||
//{
|
||
// return (redMask & static_cast<uint32_t>((pix1 & redMask ) * alpha + (pix2 & redMask ) * (1 - alpha))) |
|
||
// (greenMask & static_cast<uint32_t>((pix1 & greenMask) * alpha + (pix2 & greenMask) * (1 - alpha))) |
|
||
// (blueMask & static_cast<uint32_t>((pix1 & blueMask ) * alpha + (pix2 & blueMask ) * (1 - alpha)));
|
||
//}
|
||
|
||
|
||
uint32_t* byteAdvance( uint32_t* ptr, int bytes) { return reinterpret_cast< uint32_t*>(reinterpret_cast< char*>(ptr) + bytes); }
|
||
const uint32_t* byteAdvance(const uint32_t* ptr, int bytes) { return reinterpret_cast<const uint32_t*>(reinterpret_cast<const char*>(ptr) + bytes); }
|
||
|
||
|
||
//fill block with the given color
|
||
inline
|
||
void fillBlock(uint32_t* trg, int pitch, uint32_t col, int blockWidth, int blockHeight)
|
||
{
|
||
//for (int y = 0; y < blockHeight; ++y, trg = byteAdvance(trg, pitch))
|
||
// std::fill(trg, trg + blockWidth, col);
|
||
|
||
for (int y = 0; y < blockHeight; ++y, trg = byteAdvance(trg, pitch))
|
||
for (int x = 0; x < blockWidth; ++x)
|
||
trg[x] = col;
|
||
}
|
||
|
||
inline
|
||
void fillBlock(uint32_t* trg, int pitch, uint32_t col, int n) { fillBlock(trg, pitch, col, n, n); }
|
||
|
||
|
||
#ifdef _MSC_VER
|
||
#define FORCE_INLINE __forceinline
|
||
#elif defined __GNUC__
|
||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||
#else
|
||
#define FORCE_INLINE inline
|
||
#endif
|
||
|
||
|
||
enum RotationDegree //clock-wise
|
||
{
|
||
ROT_0,
|
||
ROT_90,
|
||
ROT_180,
|
||
ROT_270
|
||
};
|
||
|
||
//calculate input matrix coordinates after rotation at compile time
|
||
template <RotationDegree rotDeg, size_t I, size_t J, size_t N>
|
||
struct MatrixRotation;
|
||
|
||
template <size_t I, size_t J, size_t N>
|
||
struct MatrixRotation<ROT_0, I, J, N>
|
||
{
|
||
static const size_t I_old = I;
|
||
static const size_t J_old = J;
|
||
};
|
||
|
||
template <RotationDegree rotDeg, size_t I, size_t J, size_t N> //(i, j) = (row, col) indices, N = size of (square) matrix
|
||
struct MatrixRotation
|
||
{
|
||
static const size_t I_old = N - 1 - MatrixRotation<static_cast<RotationDegree>(rotDeg - 1), I, J, N>::J_old; //old coordinates before rotation!
|
||
static const size_t J_old = MatrixRotation<static_cast<RotationDegree>(rotDeg - 1), I, J, N>::I_old; //
|
||
};
|
||
|
||
|
||
template <size_t N, RotationDegree rotDeg>
|
||
class OutputMatrix
|
||
{
|
||
public:
|
||
OutputMatrix(uint32_t* out, int outWidth) : //access matrix area, top-left at position "out" for image with given width
|
||
out_(out),
|
||
outWidth_(outWidth) {}
|
||
|
||
template <size_t I, size_t J>
|
||
uint32_t& ref() const
|
||
{
|
||
static const size_t I_old = MatrixRotation<rotDeg, I, J, N>::I_old;
|
||
static const size_t J_old = MatrixRotation<rotDeg, I, J, N>::J_old;
|
||
return *(out_ + J_old + I_old * outWidth_);
|
||
}
|
||
|
||
private:
|
||
uint32_t* out_;
|
||
const int outWidth_;
|
||
};
|
||
|
||
|
||
template <class T> inline
|
||
T square(T value) { return value * value; }
|
||
|
||
|
||
/*
|
||
inline
|
||
void rgbtoLuv(uint32_t c, double& L, double& u, double& v)
|
||
{
|
||
//http://www.easyrgb.com/index.php?X=MATH&H=02#text2
|
||
double r = getRed (c) / 255.0;
|
||
double g = getGreen(c) / 255.0;
|
||
double b = getBlue (c) / 255.0;
|
||
|
||
if ( r > 0.04045 )
|
||
r = std::pow(( ( r + 0.055 ) / 1.055 ) , 2.4);
|
||
else
|
||
r /= 12.92;
|
||
if ( g > 0.04045 )
|
||
g = std::pow(( ( g + 0.055 ) / 1.055 ) , 2.4);
|
||
else
|
||
g /= 12.92;
|
||
if ( b > 0.04045 )
|
||
b = std::pow(( ( b + 0.055 ) / 1.055 ) , 2.4);
|
||
else
|
||
b /= 12.92;
|
||
|
||
r *= 100;
|
||
g *= 100;
|
||
b *= 100;
|
||
|
||
double x = 0.4124564 * r + 0.3575761 * g + 0.1804375 * b;
|
||
double y = 0.2126729 * r + 0.7151522 * g + 0.0721750 * b;
|
||
double z = 0.0193339 * r + 0.1191920 * g + 0.9503041 * b;
|
||
//---------------------
|
||
double var_U = 4 * x / ( x + 15 * y + 3 * z );
|
||
double var_V = 9 * y / ( x + 15 * y + 3 * z );
|
||
double var_Y = y / 100;
|
||
|
||
if ( var_Y > 0.008856 ) var_Y = std::pow(var_Y , 1.0/3 );
|
||
else var_Y = 7.787 * var_Y + 16.0 / 116;
|
||
|
||
const double ref_X = 95.047; //Observer= 2<>, Illuminant= D65
|
||
const double ref_Y = 100.000;
|
||
const double ref_Z = 108.883;
|
||
|
||
const double ref_U = ( 4 * ref_X ) / ( ref_X + ( 15 * ref_Y ) + ( 3 * ref_Z ) );
|
||
const double ref_V = ( 9 * ref_Y ) / ( ref_X + ( 15 * ref_Y ) + ( 3 * ref_Z ) );
|
||
|
||
L = ( 116 * var_Y ) - 16;
|
||
u = 13 * L * ( var_U - ref_U );
|
||
v = 13 * L * ( var_V - ref_V );
|
||
}
|
||
*/
|
||
|
||
inline
|
||
void rgbtoLab(uint32_t c, unsigned char& L, signed char& A, signed char& B)
|
||
{
|
||
//code: http://www.easyrgb.com/index.php?X=MATH
|
||
//test: http://www.workwithcolor.com/color-converter-01.htm
|
||
//------RGB to XYZ------
|
||
double r = getRed (c) / 255.0;
|
||
double g = getGreen(c) / 255.0;
|
||
double b = getBlue (c) / 255.0;
|
||
|
||
r = r > 0.04045 ? std::pow(( r + 0.055 ) / 1.055, 2.4) : r / 12.92;
|
||
r = g > 0.04045 ? std::pow(( g + 0.055 ) / 1.055, 2.4) : g / 12.92;
|
||
r = b > 0.04045 ? std::pow(( b + 0.055 ) / 1.055, 2.4) : b / 12.92;
|
||
|
||
r *= 100;
|
||
g *= 100;
|
||
b *= 100;
|
||
|
||
double x = 0.4124564 * r + 0.3575761 * g + 0.1804375 * b;
|
||
double y = 0.2126729 * r + 0.7151522 * g + 0.0721750 * b;
|
||
double z = 0.0193339 * r + 0.1191920 * g + 0.9503041 * b;
|
||
//------XYZ to Lab------
|
||
const double refX = 95.047; //
|
||
const double refY = 100.000; //Observer= 2<>, Illuminant= D65
|
||
const double refZ = 108.883; //
|
||
double var_X = x / refX;
|
||
double var_Y = y / refY;
|
||
double var_Z = z / refZ;
|
||
|
||
var_X = var_X > 0.008856 ? std::pow(var_X, 1.0 / 3) : 7.787 * var_X + 4.0 / 29;
|
||
var_Y = var_Y > 0.008856 ? std::pow(var_Y, 1.0 / 3) : 7.787 * var_Y + 4.0 / 29;
|
||
var_Z = var_Z > 0.008856 ? std::pow(var_Z, 1.0 / 3) : 7.787 * var_Z + 4.0 / 29;
|
||
|
||
L = static_cast<unsigned char>(116 * var_Y - 16);
|
||
A = static_cast< signed char>(500 * (var_X - var_Y));
|
||
B = static_cast< signed char>(200 * (var_Y - var_Z));
|
||
};
|
||
|
||
|
||
inline
|
||
double distLAB(uint32_t pix1, uint32_t pix2)
|
||
{
|
||
unsigned char L1 = 0; //[0, 100]
|
||
signed char a1 = 0; //[-128, 127]
|
||
signed char b1 = 0; //[-128, 127]
|
||
rgbtoLab(pix1, L1, a1, b1);
|
||
|
||
unsigned char L2 = 0;
|
||
signed char a2 = 0;
|
||
signed char b2 = 0;
|
||
rgbtoLab(pix2, L2, a2, b2);
|
||
|
||
//-----------------------------
|
||
//http://www.easyrgb.com/index.php?X=DELT
|
||
|
||
//Delta E/CIE76
|
||
return std::sqrt(square(1.0 * L1 - L2) +
|
||
square(1.0 * a1 - a2) +
|
||
square(1.0 * b1 - b2));
|
||
}
|
||
|
||
|
||
/*
|
||
inline
|
||
void rgbtoHsl(uint32_t c, double& h, double& s, double& l)
|
||
{
|
||
//http://www.easyrgb.com/index.php?X=MATH&H=18#text18
|
||
const int r = getRed (c);
|
||
const int g = getGreen(c);
|
||
const int b = getBlue (c);
|
||
|
||
const int varMin = numeric::min(r, g, b);
|
||
const int varMax = numeric::max(r, g, b);
|
||
const int delMax = varMax - varMin;
|
||
|
||
l = (varMax + varMin) / 2.0 / 255.0;
|
||
|
||
if (delMax == 0) //gray, no chroma...
|
||
{
|
||
h = 0;
|
||
s = 0;
|
||
}
|
||
else
|
||
{
|
||
s = l < 0.5 ?
|
||
delMax / (1.0 * varMax + varMin) :
|
||
delMax / (2.0 * 255 - varMax - varMin);
|
||
|
||
double delR = ((varMax - r) / 6.0 + delMax / 2.0) / delMax;
|
||
double delG = ((varMax - g) / 6.0 + delMax / 2.0) / delMax;
|
||
double delB = ((varMax - b) / 6.0 + delMax / 2.0) / delMax;
|
||
|
||
if (r == varMax)
|
||
h = delB - delG;
|
||
else if (g == varMax)
|
||
h = 1 / 3.0 + delR - delB;
|
||
else if (b == varMax)
|
||
h = 2 / 3.0 + delG - delR;
|
||
|
||
if (h < 0)
|
||
h += 1;
|
||
if (h > 1)
|
||
h -= 1;
|
||
}
|
||
}
|
||
|
||
inline
|
||
double distHSL(uint32_t pix1, uint32_t pix2, double lightningWeight)
|
||
{
|
||
double h1 = 0;
|
||
double s1 = 0;
|
||
double l1 = 0;
|
||
rgbtoHsl(pix1, h1, s1, l1);
|
||
double h2 = 0;
|
||
double s2 = 0;
|
||
double l2 = 0;
|
||
rgbtoHsl(pix2, h2, s2, l2);
|
||
|
||
//HSL is in cylindric coordinatates where L represents height, S radius, H angle,
|
||
//however we interpret the cylinder as a bi-conic solid with top/bottom radius 0, middle radius 1
|
||
assert(0 <= h1 && h1 <= 1);
|
||
assert(0 <= h2 && h2 <= 1);
|
||
|
||
double r1 = l1 < 0.5 ?
|
||
l1 * 2 :
|
||
2 - l1 * 2;
|
||
|
||
double x1 = r1 * s1 * std::cos(h1 * 2 * numeric::pi);
|
||
double y1 = r1 * s1 * std::sin(h1 * 2 * numeric::pi);
|
||
double z1 = l1;
|
||
|
||
double r2 = l2 < 0.5 ?
|
||
l2 * 2 :
|
||
2 - l2 * 2;
|
||
|
||
double x2 = r2 * s2 * std::cos(h2 * 2 * numeric::pi);
|
||
double y2 = r2 * s2 * std::sin(h2 * 2 * numeric::pi);
|
||
double z2 = l2;
|
||
|
||
return 255 * std::sqrt(square(x1 - x2) + square(y1 - y2) + square(lightningWeight * (z1 - z2)));
|
||
}
|
||
*/
|
||
|
||
|
||
inline
|
||
double distRGB(uint32_t pix1, uint32_t pix2)
|
||
{
|
||
const double r_diff = static_cast<int>(getRed (pix1)) - getRed (pix2);
|
||
const double g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2);
|
||
const double b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2);
|
||
|
||
//euklidean RGB distance
|
||
return std::sqrt(square(r_diff) + square(g_diff) + square(b_diff));
|
||
}
|
||
|
||
|
||
inline
|
||
double distNonLinearRGB(uint32_t pix1, uint32_t pix2)
|
||
{
|
||
//non-linear rgb: http://www.compuphase.com/cmetric.htm
|
||
const double r_diff = static_cast<int>(getRed (pix1)) - getRed (pix2);
|
||
const double g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2);
|
||
const double b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2);
|
||
|
||
const double r_avg = (static_cast<double>(getRed(pix1)) + getRed(pix2)) / 2;
|
||
return std::sqrt((2 + r_avg / 255) * square(r_diff) + 4 * square(g_diff) + (2 + (255 - r_avg) / 255) * square(b_diff));
|
||
}
|
||
|
||
|
||
inline
|
||
double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight)
|
||
{
|
||
//http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion
|
||
//YCbCr conversion is a matrix multiplication => take advantage of linearity by subtracting first!
|
||
const int r_diff = static_cast<int>(getRed (pix1)) - getRed (pix2); //we may delay division by 255 to after matrix multiplication
|
||
const int g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2); //
|
||
const int b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2); //substraction for int is noticeable faster than for double!
|
||
|
||
//const double k_b = 0.0722; //ITU-R BT.709 conversion
|
||
//const double k_r = 0.2126; //
|
||
const double k_b = 0.0593; //ITU-R BT.2020 conversion
|
||
const double k_r = 0.2627; //
|
||
const double k_g = 1 - k_b - k_r;
|
||
|
||
const double scale_b = 0.5 / (1 - k_b);
|
||
const double scale_r = 0.5 / (1 - k_r);
|
||
|
||
const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr!
|
||
const double c_b = scale_b * (b_diff - y);
|
||
const double c_r = scale_r * (r_diff - y);
|
||
|
||
//we skip division by 255 to have similar range like other distance functions
|
||
return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r));
|
||
}
|
||
|
||
|
||
struct DistYCbCrBuffer //30% perf boost compared to distYCbCr()!
|
||
{
|
||
public:
|
||
DistYCbCrBuffer() : buffer(256 * 256 * 256)
|
||
{
|
||
for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores)
|
||
{
|
||
const int r_diff = getByte<2>(i) * 2 - 255;
|
||
const int g_diff = getByte<1>(i) * 2 - 255;
|
||
const int b_diff = getByte<0>(i) * 2 - 255;
|
||
|
||
const double k_b = 0.0593; //ITU-R BT.2020 conversion
|
||
const double k_r = 0.2627; //
|
||
const double k_g = 1 - k_b - k_r;
|
||
|
||
const double scale_b = 0.5 / (1 - k_b);
|
||
const double scale_r = 0.5 / (1 - k_r);
|
||
|
||
const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr!
|
||
const double c_b = scale_b * (b_diff - y);
|
||
const double c_r = scale_r * (r_diff - y);
|
||
|
||
buffer[i] = static_cast<float>(std::sqrt(square(y) + square(c_b) + square(c_r)));
|
||
}
|
||
}
|
||
|
||
double dist(uint32_t pix1, uint32_t pix2) const
|
||
{
|
||
//if (pix1 == pix2) -> 8% perf degradation!
|
||
// return 0;
|
||
//if (pix1 > pix2)
|
||
// std::swap(pix1, pix2); -> 30% perf degradation!!!
|
||
|
||
const int r_diff = static_cast<int>(getRed (pix1)) - getRed (pix2);
|
||
const int g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2);
|
||
const int b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2);
|
||
|
||
return buffer[(((r_diff + 255) / 2) << 16) | //slightly reduce precision (division by 2) to squeeze value into single byte
|
||
(((g_diff + 255) / 2) << 8) |
|
||
(( b_diff + 255) / 2)];
|
||
}
|
||
|
||
private:
|
||
std::vector<float> buffer; //consumes 64 MB memory; using double is 2% faster, but takes 128 MB
|
||
} distYCbCrBuffer;
|
||
|
||
|
||
inline
|
||
double distYUV(uint32_t pix1, uint32_t pix2, double luminanceWeight)
|
||
{
|
||
//perf: it's not worthwhile to buffer the YUV-conversion, the direct code is faster by ~ 6%
|
||
//since RGB -> YUV conversion is essentially a matrix multiplication, we can calculate the RGB diff before the conversion (distributive property)
|
||
const double r_diff = static_cast<int>(getRed (pix1)) - getRed (pix2);
|
||
const double g_diff = static_cast<int>(getGreen(pix1)) - getGreen(pix2);
|
||
const double b_diff = static_cast<int>(getBlue (pix1)) - getBlue (pix2);
|
||
|
||
//http://en.wikipedia.org/wiki/YUV#Conversion_to.2Ffrom_RGB
|
||
const double w_b = 0.114;
|
||
const double w_r = 0.299;
|
||
const double w_g = 1 - w_r - w_b;
|
||
|
||
const double u_max = 0.436;
|
||
const double v_max = 0.615;
|
||
|
||
const double scale_u = u_max / (1 - w_b);
|
||
const double scale_v = v_max / (1 - w_r);
|
||
|
||
double y = w_r * r_diff + w_g * g_diff + w_b * b_diff;//value range: 255 * [-1, 1]
|
||
double u = scale_u * (b_diff - y); //value range: 255 * 2 * u_max * [-1, 1]
|
||
double v = scale_v * (r_diff - y); //value range: 255 * 2 * v_max * [-1, 1]
|
||
|
||
#ifndef NDEBUG
|
||
const double eps = 0.5;
|
||
#endif
|
||
assert(abs(y) <= 255 + eps);
|
||
assert(abs(u) <= 255 * 2 * u_max + eps);
|
||
assert(abs(v) <= 255 * 2 * v_max + eps);
|
||
|
||
return std::sqrt(square(luminanceWeight * y) + square(u) + square(v));
|
||
}
|
||
|
||
|
||
enum BlendType
|
||
{
|
||
BLEND_NONE = 0,
|
||
BLEND_NORMAL, //a normal indication to blend
|
||
BLEND_DOMINANT, //a strong indication to blend
|
||
//attention: BlendType must fit into the value range of 2 bit!!!
|
||
};
|
||
|
||
struct BlendResult
|
||
{
|
||
BlendType
|
||
/**/blend_f, blend_g,
|
||
/**/blend_j, blend_k;
|
||
};
|
||
|
||
|
||
struct Kernel_4x4 //kernel for preprocessing step
|
||
{
|
||
uint32_t
|
||
/**/a, b, c, d,
|
||
/**/e, f, g, h,
|
||
/**/i, j, k, l,
|
||
/**/m, n, o, p;
|
||
};
|
||
|
||
#define cdist(pix1, pix2) ColorDistance::dist((pix1), (pix2), cfg.luminanceWeight_)
|
||
/*
|
||
input kernel area naming convention:
|
||
-----------------
|
||
| A | B | C | D |
|
||
----|---|---|---|
|
||
| E | F | G | H | //evaluate the four corners between F, G, J, K
|
||
----|---|---|---| //input pixel is at position F
|
||
| I | J | K | L |
|
||
----|---|---|---|
|
||
| M | N | O | P |
|
||
-----------------
|
||
*/
|
||
template <class ColorDistance>
|
||
FORCE_INLINE //detect blend direction
|
||
BlendResult preProcessCorners(const Kernel_4x4& ker, const xbrz::ScalerCfg& cfg) //result: F, G, J, K corners of "GradientType"
|
||
{
|
||
BlendResult result = {};
|
||
|
||
if ((ker.f == ker.g &&
|
||
ker.j == ker.k) ||
|
||
(ker.f == ker.j &&
|
||
ker.g == ker.k))
|
||
return result;
|
||
|
||
//auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight_); };
|
||
|
||
const int weight = 4;
|
||
double jg = cdist(ker.i, ker.f) + cdist(ker.f, ker.c) + cdist(ker.n, ker.k) + cdist(ker.k, ker.h) + weight * cdist(ker.j, ker.g);
|
||
double fk = cdist(ker.e, ker.j) + cdist(ker.j, ker.o) + cdist(ker.b, ker.g) + cdist(ker.g, ker.l) + weight * cdist(ker.f, ker.k);
|
||
|
||
if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8
|
||
{
|
||
const bool dominantGradient = cfg.dominantDirectionThreshold * jg < fk;
|
||
if (ker.f != ker.g && ker.f != ker.j)
|
||
result.blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
|
||
|
||
if (ker.k != ker.j && ker.k != ker.g)
|
||
result.blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
|
||
}
|
||
else if (fk < jg)
|
||
{
|
||
const bool dominantGradient = cfg.dominantDirectionThreshold * fk < jg;
|
||
if (ker.j != ker.f && ker.j != ker.k)
|
||
result.blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
|
||
|
||
if (ker.g != ker.f && ker.g != ker.k)
|
||
result.blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
struct Kernel_3x3
|
||
{
|
||
uint32_t
|
||
/**/a, b, c,
|
||
/**/d, e, f,
|
||
/**/g, h, i;
|
||
};
|
||
|
||
#define DEF_GETTER(x) template <RotationDegree rotDeg> uint32_t inline get_##x(const Kernel_3x3& ker) { return ker.x; }
|
||
//we cannot and NEED NOT write "ker.##x" since ## concatenates preprocessor tokens but "." is not a token
|
||
DEF_GETTER(a) DEF_GETTER(b) DEF_GETTER(c)
|
||
DEF_GETTER(d) DEF_GETTER(e) DEF_GETTER(f)
|
||
DEF_GETTER(g) DEF_GETTER(h) DEF_GETTER(i)
|
||
#undef DEF_GETTER
|
||
|
||
#define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_90>(const Kernel_3x3& ker) { return ker.y; }
|
||
DEF_GETTER(a, g) DEF_GETTER(b, d) DEF_GETTER(c, a)
|
||
DEF_GETTER(d, h) DEF_GETTER(e, e) DEF_GETTER(f, b)
|
||
DEF_GETTER(g, i) DEF_GETTER(h, f) DEF_GETTER(i, c)
|
||
#undef DEF_GETTER
|
||
|
||
#define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_180>(const Kernel_3x3& ker) { return ker.y; }
|
||
DEF_GETTER(a, i) DEF_GETTER(b, h) DEF_GETTER(c, g)
|
||
DEF_GETTER(d, f) DEF_GETTER(e, e) DEF_GETTER(f, d)
|
||
DEF_GETTER(g, c) DEF_GETTER(h, b) DEF_GETTER(i, a)
|
||
#undef DEF_GETTER
|
||
|
||
#define DEF_GETTER(x, y) template <> inline uint32_t get_##x<ROT_270>(const Kernel_3x3& ker) { return ker.y; }
|
||
DEF_GETTER(a, c) DEF_GETTER(b, f) DEF_GETTER(c, i)
|
||
DEF_GETTER(d, b) DEF_GETTER(e, e) DEF_GETTER(f, h)
|
||
DEF_GETTER(g, a) DEF_GETTER(h, d) DEF_GETTER(i, g)
|
||
#undef DEF_GETTER
|
||
|
||
|
||
//compress four blend types into a single byte
|
||
inline BlendType getTopL (unsigned char b) { return static_cast<BlendType>(0x3 & b); }
|
||
inline BlendType getTopR (unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 2)); }
|
||
inline BlendType getBottomR(unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 4)); }
|
||
inline BlendType getBottomL(unsigned char b) { return static_cast<BlendType>(0x3 & (b >> 6)); }
|
||
|
||
inline void setTopL (unsigned char& b, BlendType bt) { b |= bt; } //buffer is assumed to be initialized before preprocessing!
|
||
inline void setTopR (unsigned char& b, BlendType bt) { b |= (bt << 2); }
|
||
inline void setBottomR(unsigned char& b, BlendType bt) { b |= (bt << 4); }
|
||
inline void setBottomL(unsigned char& b, BlendType bt) { b |= (bt << 6); }
|
||
|
||
inline bool blendingNeeded(unsigned char b) { return b != 0; }
|
||
|
||
template <RotationDegree rotDeg> inline
|
||
unsigned char rotateBlendInfo(unsigned char b) { return b; }
|
||
template <> inline unsigned char rotateBlendInfo<ROT_90 >(unsigned char b) { return ((b << 2) | (b >> 6)) & 0xff; }
|
||
template <> inline unsigned char rotateBlendInfo<ROT_180>(unsigned char b) { return ((b << 4) | (b >> 4)) & 0xff; }
|
||
template <> inline unsigned char rotateBlendInfo<ROT_270>(unsigned char b) { return ((b << 6) | (b >> 2)) & 0xff; }
|
||
|
||
|
||
#ifndef NDEBUG
|
||
int debugPixelX = -1;
|
||
int debugPixelY = 84;
|
||
bool breakIntoDebugger = false;
|
||
#endif
|
||
|
||
#define eq(pix1, pix2) (ColorDistance::dist((pix1), (pix2), cfg.luminanceWeight_) < cfg.equalColorTolerance_)
|
||
|
||
/*
|
||
input kernel area naming convention:
|
||
-------------
|
||
| A | B | C |
|
||
----|---|---|
|
||
| D | E | F | //input pixel is at position E
|
||
----|---|---|
|
||
| G | H | I |
|
||
-------------
|
||
*/
|
||
template <class Scaler, class ColorDistance, RotationDegree rotDeg>
|
||
FORCE_INLINE //perf: quite worth it!
|
||
void blendPixel(const Kernel_3x3& ker,
|
||
uint32_t* target, int trgWidth,
|
||
unsigned char blendInfo, //result of preprocessing all four corners of pixel "e"
|
||
const xbrz::ScalerCfg& cfg)
|
||
{
|
||
#define a get_a<rotDeg>(ker)
|
||
#define b get_b<rotDeg>(ker)
|
||
#define c get_c<rotDeg>(ker)
|
||
#define d get_d<rotDeg>(ker)
|
||
#define e get_e<rotDeg>(ker)
|
||
#define f get_f<rotDeg>(ker)
|
||
#define g get_g<rotDeg>(ker)
|
||
#define h get_h<rotDeg>(ker)
|
||
#define i get_i<rotDeg>(ker)
|
||
|
||
#ifdef WIN32
|
||
# ifndef NDEBUG
|
||
if (breakIntoDebugger)
|
||
__debugbreak(); //__asm int 3;
|
||
# endif
|
||
#endif
|
||
|
||
const unsigned char blend = rotateBlendInfo<rotDeg>(blendInfo);
|
||
|
||
if (getBottomR(blend) >= BLEND_NORMAL)
|
||
{
|
||
//auto eq = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight_) < cfg.equalColorTolerance_; };
|
||
//auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight_); };
|
||
|
||
bool doLineBlend = true;
|
||
if (getBottomR(blend) >= BLEND_DOMINANT)
|
||
doLineBlend = true;
|
||
//make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes
|
||
else if (getTopR(blend) != BLEND_NONE && !eq(e, g)) //but support double-blending for 90<39> corners
|
||
doLineBlend = false;
|
||
else if(getBottomL(blend) != BLEND_NONE && !eq(e, c))
|
||
doLineBlend = false;
|
||
//no full blending for L-shapes; blend corner only (handles "mario mushroom eyes")
|
||
else if (!eq(e, i) && eq(g, h) && eq(h , i) && eq(i, f) && eq(f, c))
|
||
doLineBlend = false;
|
||
else
|
||
doLineBlend = true;
|
||
|
||
const uint32_t px = cdist(e, f) <= cdist(e, h) ? f : h; //choose most similar color
|
||
|
||
OutputMatrix<Scaler::scale, rotDeg> out(target, trgWidth);
|
||
|
||
if (doLineBlend)
|
||
{
|
||
const double fg = cdist(f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9
|
||
const double hc = cdist(h, c); //
|
||
|
||
const bool haveShallowLine = cfg.steepDirectionThreshold * fg <= hc && e != g && d != g;
|
||
const bool haveSteepLine = cfg.steepDirectionThreshold * hc <= fg && e != c && b != c;
|
||
|
||
if (haveShallowLine)
|
||
{
|
||
if (haveSteepLine)
|
||
Scaler::blendLineSteepAndShallow(px, out);
|
||
else
|
||
Scaler::blendLineShallow(px, out);
|
||
}
|
||
else
|
||
{
|
||
if (haveSteepLine)
|
||
Scaler::blendLineSteep(px, out);
|
||
else
|
||
Scaler::blendLineDiagonal(px,out);
|
||
}
|
||
}
|
||
else
|
||
Scaler::blendCorner(px, out);
|
||
}
|
||
|
||
#undef a
|
||
#undef b
|
||
#undef c
|
||
#undef d
|
||
#undef e
|
||
#undef f
|
||
#undef g
|
||
#undef h
|
||
#undef i
|
||
}
|
||
|
||
|
||
template <class Scaler, class ColorDistance> //scaler policy: see "Scaler2x" reference implementation
|
||
void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz::ScalerCfg& cfg, int yFirst, int yLast)
|
||
{
|
||
yFirst = std::max(yFirst, 0);
|
||
yLast = std::min(yLast, srcHeight);
|
||
if (yFirst >= yLast || srcWidth <= 0)
|
||
return;
|
||
|
||
const int trgWidth = srcWidth * Scaler::scale;
|
||
|
||
//"use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of
|
||
//"sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing
|
||
const int bufferSize = srcWidth;
|
||
unsigned char* preProcBuffer = reinterpret_cast<unsigned char*>(trg + yLast * Scaler::scale * trgWidth) - bufferSize;
|
||
std::fill(preProcBuffer, preProcBuffer + bufferSize, 0);
|
||
//static_assert(BLEND_NONE == 0, "");
|
||
|
||
//initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending
|
||
//this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition!
|
||
if (yFirst > 0)
|
||
{
|
||
const int y = yFirst - 1;
|
||
|
||
const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0);
|
||
const uint32_t* s_0 = src + srcWidth * y; //center line
|
||
const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1);
|
||
const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1);
|
||
|
||
for (int x = 0; x < srcWidth; ++x)
|
||
{
|
||
const int x_m1 = std::max(x - 1, 0);
|
||
const int x_p1 = std::min(x + 1, srcWidth - 1);
|
||
const int x_p2 = std::min(x + 2, srcWidth - 1);
|
||
|
||
Kernel_4x4 ker = {}; //perf: initialization is negligible
|
||
ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible
|
||
ker.b = s_m1[x];
|
||
ker.c = s_m1[x_p1];
|
||
ker.d = s_m1[x_p2];
|
||
|
||
ker.e = s_0[x_m1];
|
||
ker.f = s_0[x];
|
||
ker.g = s_0[x_p1];
|
||
ker.h = s_0[x_p2];
|
||
|
||
ker.i = s_p1[x_m1];
|
||
ker.j = s_p1[x];
|
||
ker.k = s_p1[x_p1];
|
||
ker.l = s_p1[x_p2];
|
||
|
||
ker.m = s_p2[x_m1];
|
||
ker.n = s_p2[x];
|
||
ker.o = s_p2[x_p1];
|
||
ker.p = s_p2[x_p2];
|
||
|
||
const BlendResult res = preProcessCorners<ColorDistance>(ker, cfg);
|
||
/*
|
||
preprocessing blend result:
|
||
---------
|
||
| F | G | //evalute corner between F, G, J, K
|
||
----|---| //input pixel is at position F
|
||
| J | K |
|
||
---------
|
||
*/
|
||
setTopR(preProcBuffer[x], res.blend_j);
|
||
|
||
if (x + 1 < bufferSize)
|
||
setTopL(preProcBuffer[x + 1], res.blend_k);
|
||
}
|
||
}
|
||
//------------------------------------------------------------------------------------
|
||
|
||
for (int y = yFirst; y < yLast; ++y)
|
||
{
|
||
uint32_t* out = trg + Scaler::scale * y * trgWidth; //consider MT "striped" access
|
||
|
||
const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0);
|
||
const uint32_t* s_0 = src + srcWidth * y; //center line
|
||
const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1);
|
||
const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1);
|
||
|
||
unsigned char blend_xy1 = 0; //corner blending for current (x, y + 1) position
|
||
|
||
for (int x = 0; x < srcWidth; ++x, out += Scaler::scale)
|
||
{
|
||
#ifndef NDEBUG
|
||
breakIntoDebugger = debugPixelX == x && debugPixelY == y;
|
||
#endif
|
||
//all those bounds checks have only insignificant impact on performance!
|
||
const int x_m1 = std::max(x - 1, 0); //perf: prefer array indexing to additional pointers!
|
||
const int x_p1 = std::min(x + 1, srcWidth - 1);
|
||
const int x_p2 = std::min(x + 2, srcWidth - 1);
|
||
|
||
Kernel_4x4 ker4 = {}; //perf: initialization is negligible
|
||
|
||
ker4.a = s_m1[x_m1]; //read sequentially from memory as far as possible
|
||
ker4.b = s_m1[x];
|
||
ker4.c = s_m1[x_p1];
|
||
ker4.d = s_m1[x_p2];
|
||
|
||
ker4.e = s_0[x_m1];
|
||
ker4.f = s_0[x];
|
||
ker4.g = s_0[x_p1];
|
||
ker4.h = s_0[x_p2];
|
||
|
||
ker4.i = s_p1[x_m1];
|
||
ker4.j = s_p1[x];
|
||
ker4.k = s_p1[x_p1];
|
||
ker4.l = s_p1[x_p2];
|
||
|
||
ker4.m = s_p2[x_m1];
|
||
ker4.n = s_p2[x];
|
||
ker4.o = s_p2[x_p1];
|
||
ker4.p = s_p2[x_p2];
|
||
|
||
//evaluate the four corners on bottom-right of current pixel
|
||
unsigned char blend_xy = 0; //for current (x, y) position
|
||
{
|
||
const BlendResult res = preProcessCorners<ColorDistance>(ker4, cfg);
|
||
/*
|
||
preprocessing blend result:
|
||
---------
|
||
| F | G | //evalute corner between F, G, J, K
|
||
----|---| //current input pixel is at position F
|
||
| J | K |
|
||
---------
|
||
*/
|
||
blend_xy = preProcBuffer[x];
|
||
setBottomR(blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence!
|
||
|
||
setTopR(blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1)
|
||
preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row
|
||
|
||
blend_xy1 = 0;
|
||
setTopL(blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column
|
||
|
||
if (x + 1 < bufferSize) //set 3rd known corner for (x + 1, y)
|
||
setBottomL(preProcBuffer[x + 1], res.blend_g);
|
||
}
|
||
|
||
//fill block of size scale * scale with the given color
|
||
fillBlock(out, trgWidth * sizeof(uint32_t), ker4.f, Scaler::scale); //place *after* preprocessing step, to not overwrite the results while processing the the last pixel!
|
||
|
||
//blend four corners of current pixel
|
||
if (blendingNeeded(blend_xy)) //good 5% perf-improvement
|
||
{
|
||
Kernel_3x3 ker3 = {}; //perf: initialization is negligible
|
||
|
||
ker3.a = ker4.a;
|
||
ker3.b = ker4.b;
|
||
ker3.c = ker4.c;
|
||
|
||
ker3.d = ker4.e;
|
||
ker3.e = ker4.f;
|
||
ker3.f = ker4.g;
|
||
|
||
ker3.g = ker4.i;
|
||
ker3.h = ker4.j;
|
||
ker3.i = ker4.k;
|
||
|
||
blendPixel<Scaler, ColorDistance, ROT_0 >(ker3, out, trgWidth, blend_xy, cfg);
|
||
blendPixel<Scaler, ColorDistance, ROT_90 >(ker3, out, trgWidth, blend_xy, cfg);
|
||
blendPixel<Scaler, ColorDistance, ROT_180>(ker3, out, trgWidth, blend_xy, cfg);
|
||
blendPixel<Scaler, ColorDistance, ROT_270>(ker3, out, trgWidth, blend_xy, cfg);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
//------------------------------------------------------------------------------------
|
||
|
||
struct Scaler2x
|
||
{
|
||
static const int scale = 2;
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineShallow(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
|
||
alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineSteep(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
|
||
alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<1, 4>(out.template ref<1, 0>(), col);
|
||
alphaBlend<1, 4>(out.template ref<0, 1>(), col);
|
||
alphaBlend<5, 6>(out.template ref<1, 1>(), col); //[!] fixes 7/8 used in xBR
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<1, 2>(out.template ref<1, 1>(), col);
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendCorner(uint32_t col, OutputMatrix& out)
|
||
{
|
||
//model a round corner
|
||
alphaBlend<21, 100>(out.template ref<1, 1>(), col); //exact: 1 - pi/4 = 0.2146018366
|
||
}
|
||
};
|
||
|
||
|
||
struct Scaler3x
|
||
{
|
||
static const int scale = 3;
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineShallow(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
|
||
alphaBlend<1, 4>(out.template ref<scale - 2, 2>(), col);
|
||
|
||
alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
|
||
out.template ref<scale - 1, 2>() = col;
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineSteep(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
|
||
alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col);
|
||
|
||
alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
|
||
out.template ref<2, scale - 1>() = col;
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<1, 4>(out.template ref<2, 0>(), col);
|
||
alphaBlend<1, 4>(out.template ref<0, 2>(), col);
|
||
alphaBlend<3, 4>(out.template ref<2, 1>(), col);
|
||
alphaBlend<3, 4>(out.template ref<1, 2>(), col);
|
||
out.template ref<2, 2>() = col;
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<1, 8>(out.template ref<1, 2>(), col);
|
||
alphaBlend<1, 8>(out.template ref<2, 1>(), col);
|
||
alphaBlend<7, 8>(out.template ref<2, 2>(), col);
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendCorner(uint32_t col, OutputMatrix& out)
|
||
{
|
||
//model a round corner
|
||
alphaBlend<45, 100>(out.template ref<2, 2>(), col); //exact: 0.4545939598
|
||
//alphaBlend<14, 1000>(out.template ref<2, 1>(), col); //0.01413008627 -> negligible
|
||
//alphaBlend<14, 1000>(out.template ref<1, 2>(), col); //0.01413008627
|
||
}
|
||
};
|
||
|
||
|
||
struct Scaler4x
|
||
{
|
||
static const int scale = 4;
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineShallow(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
|
||
alphaBlend<1, 4>(out.template ref<scale - 2, 2>(), col);
|
||
|
||
alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
|
||
alphaBlend<3, 4>(out.template ref<scale - 2, 3>(), col);
|
||
|
||
out.template ref<scale - 1, 2>() = col;
|
||
out.template ref<scale - 1, 3>() = col;
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineSteep(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
|
||
alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col);
|
||
|
||
alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
|
||
alphaBlend<3, 4>(out.template ref<3, scale - 2>(), col);
|
||
|
||
out.template ref<2, scale - 1>() = col;
|
||
out.template ref<3, scale - 1>() = col;
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<3, 4>(out.template ref<3, 1>(), col);
|
||
alphaBlend<3, 4>(out.template ref<1, 3>(), col);
|
||
alphaBlend<1, 4>(out.template ref<3, 0>(), col);
|
||
alphaBlend<1, 4>(out.template ref<0, 3>(), col);
|
||
alphaBlend<1, 3>(out.template ref<2, 2>(), col); //[!] fixes 1/4 used in xBR
|
||
out.template ref<3, 3>() = out.template ref<3, 2>() = out.template ref<2, 3>() = col;
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<1, 2>(out.template ref<scale - 1, scale / 2 >(), col);
|
||
alphaBlend<1, 2>(out.template ref<scale - 2, scale / 2 + 1>(), col);
|
||
out.template ref<scale - 1, scale - 1>() = col;
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendCorner(uint32_t col, OutputMatrix& out)
|
||
{
|
||
//model a round corner
|
||
alphaBlend<68, 100>(out.template ref<3, 3>(), col); //exact: 0.6848532563
|
||
alphaBlend< 9, 100>(out.template ref<3, 2>(), col); //0.08677704501
|
||
alphaBlend< 9, 100>(out.template ref<2, 3>(), col); //0.08677704501
|
||
}
|
||
};
|
||
|
||
|
||
struct Scaler5x
|
||
{
|
||
static const int scale = 5;
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineShallow(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
|
||
alphaBlend<1, 4>(out.template ref<scale - 2, 2>(), col);
|
||
alphaBlend<1, 4>(out.template ref<scale - 3, 4>(), col);
|
||
|
||
alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
|
||
alphaBlend<3, 4>(out.template ref<scale - 2, 3>(), col);
|
||
|
||
out.template ref<scale - 1, 2>() = col;
|
||
out.template ref<scale - 1, 3>() = col;
|
||
out.template ref<scale - 1, 4>() = col;
|
||
out.template ref<scale - 2, 4>() = col;
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineSteep(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
|
||
alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col);
|
||
alphaBlend<1, 4>(out.template ref<4, scale - 3>(), col);
|
||
|
||
alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
|
||
alphaBlend<3, 4>(out.template ref<3, scale - 2>(), col);
|
||
|
||
out.template ref<2, scale - 1>() = col;
|
||
out.template ref<3, scale - 1>() = col;
|
||
out.template ref<4, scale - 1>() = col;
|
||
out.template ref<4, scale - 2>() = col;
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col);
|
||
alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col);
|
||
alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col);
|
||
|
||
alphaBlend<1, 4>(out.template ref<scale - 1, 0>(), col);
|
||
alphaBlend<1, 4>(out.template ref<scale - 2, 2>(), col);
|
||
alphaBlend<3, 4>(out.template ref<scale - 1, 1>(), col);
|
||
|
||
out.template ref<2, scale - 1>() = col;
|
||
out.template ref<3, scale - 1>() = col;
|
||
|
||
out.template ref<scale - 1, 2>() = col;
|
||
out.template ref<scale - 1, 3>() = col;
|
||
|
||
out.template ref<4, scale - 1>() = col;
|
||
|
||
alphaBlend<2, 3>(out.template ref<3, 3>(), col);
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendLineDiagonal(uint32_t col, OutputMatrix& out)
|
||
{
|
||
alphaBlend<1, 8>(out.template ref<scale - 1, scale / 2 >(), col);
|
||
alphaBlend<1, 8>(out.template ref<scale - 2, scale / 2 + 1>(), col);
|
||
alphaBlend<1, 8>(out.template ref<scale - 3, scale / 2 + 2>(), col);
|
||
|
||
alphaBlend<7, 8>(out.template ref<4, 3>(), col);
|
||
alphaBlend<7, 8>(out.template ref<3, 4>(), col);
|
||
|
||
out.template ref<4, 4>() = col;
|
||
}
|
||
|
||
template <class OutputMatrix>
|
||
static void blendCorner(uint32_t col, OutputMatrix& out)
|
||
{
|
||
//model a round corner
|
||
alphaBlend<86, 100>(out.template ref<4, 4>(), col); //exact: 0.8631434088
|
||
alphaBlend<23, 100>(out.template ref<4, 3>(), col); //0.2306749731
|
||
alphaBlend<23, 100>(out.template ref<3, 4>(), col); //0.2306749731
|
||
//alphaBlend<8, 1000>(out.template ref<4, 2>(), col); //0.008384061834 -> negligible
|
||
//alphaBlend<8, 1000>(out.template ref<2, 4>(), col); //0.008384061834
|
||
}
|
||
};
|
||
|
||
//------------------------------------------------------------------------------------
|
||
|
||
struct ColorDistanceRGB
|
||
{
|
||
static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
|
||
{
|
||
return distYCbCrBuffer.dist(pix1, pix2);
|
||
|
||
//if (pix1 == pix2) //about 4% perf boost
|
||
// return 0;
|
||
//return distYCbCr(pix1, pix2, luminanceWeight);
|
||
}
|
||
};
|
||
|
||
struct ColorDistanceARGB
|
||
{
|
||
static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight)
|
||
{
|
||
const double a1 = getAlpha(pix1) / 255.0 ;
|
||
const double a2 = getAlpha(pix2) / 255.0 ;
|
||
/*
|
||
Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1]
|
||
|
||
1. if a1 = a2, distance should be: a1 * distYCbCr()
|
||
2. if a1 = 0, distance should be: a2 * distYCbCr(black, white) = a2 * 255
|
||
3. if a1 = 1, distance should be: 255 * (1 - a2) + a2 * distYCbCr()
|
||
*/
|
||
|
||
return std::min(a1, a2) * distYCbCrBuffer.dist(pix1, pix2) + 255 * abs(a1 - a2);
|
||
|
||
//if (pix1 == pix2)
|
||
// return 0;
|
||
//return std::min(a1, a2) * distYCbCr(pix1, pix2, luminanceWeight) + 255 * abs(a1 - a2);
|
||
}
|
||
};
|
||
}
|
||
|
||
|
||
void xbrz::scale(size_t factor, const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, ColorFormat colFmt, const xbrz::ScalerCfg& cfg, int yFirst, int yLast)
|
||
{
|
||
switch (colFmt)
|
||
{
|
||
#ifdef WIN32
|
||
case ColorFormat::ARGB:// not Standard C++.
|
||
#else
|
||
case ARGB:
|
||
#endif
|
||
switch (factor)
|
||
{
|
||
case 2:
|
||
return scaleImage<Scaler2x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||
case 3:
|
||
return scaleImage<Scaler3x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||
case 4:
|
||
return scaleImage<Scaler4x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||
case 5:
|
||
return scaleImage<Scaler5x, ColorDistanceARGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||
}
|
||
break;
|
||
|
||
#ifdef WIN32
|
||
case ColorFormat::RGB:// not Standard C++.
|
||
#else
|
||
case RGB:
|
||
#endif
|
||
switch (factor)
|
||
{
|
||
case 2:
|
||
return scaleImage<Scaler2x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||
case 3:
|
||
return scaleImage<Scaler3x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||
case 4:
|
||
return scaleImage<Scaler4x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||
case 5:
|
||
return scaleImage<Scaler5x, ColorDistanceRGB>(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast);
|
||
}
|
||
break;
|
||
}
|
||
assert(false);
|
||
}
|
||
|
||
|
||
bool xbrz::equalColorTest(uint32_t col1, uint32_t col2, ColorFormat colFmt, double luminanceWeight, double equalColorTolerance)
|
||
{
|
||
switch (colFmt)
|
||
{
|
||
#ifdef WIN32
|
||
case ColorFormat::ARGB: // not Standard C++.
|
||
#else
|
||
case ARGB:
|
||
#endif
|
||
return ColorDistanceARGB::dist(col1, col2, luminanceWeight) < equalColorTolerance;
|
||
|
||
#ifdef WIN32
|
||
case ColorFormat::RGB:// not Standard C++.
|
||
#else
|
||
case RGB:
|
||
#endif
|
||
return ColorDistanceRGB::dist(col1, col2, luminanceWeight) < equalColorTolerance;
|
||
}
|
||
assert(false);
|
||
return false;
|
||
}
|
||
|
||
|
||
void xbrz::nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, int srcPitch,
|
||
uint32_t* trg, int trgWidth, int trgHeight, int trgPitch,
|
||
SliceType st, int yFirst, int yLast)
|
||
{
|
||
if (srcPitch < srcWidth * static_cast<int>(sizeof(uint32_t)) ||
|
||
trgPitch < trgWidth * static_cast<int>(sizeof(uint32_t)))
|
||
{
|
||
assert(false);
|
||
return;
|
||
}
|
||
|
||
switch (st)
|
||
{
|
||
case NN_SCALE_SLICE_SOURCE:
|
||
//nearest-neighbor (going over source image - fast for upscaling, since source is read only once
|
||
yFirst = std::max(yFirst, 0);
|
||
yLast = std::min(yLast, srcHeight);
|
||
if (yFirst >= yLast || trgWidth <= 0 || trgHeight <= 0) return;
|
||
|
||
for (int y = yFirst; y < yLast; ++y)
|
||
{
|
||
//mathematically: ySrc = floor(srcHeight * yTrg / trgHeight)
|
||
// => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight
|
||
|
||
//keep within for loop to support MT input slices!
|
||
const int yTrg_first = ( y * trgHeight + srcHeight - 1) / srcHeight; //=ceil(y * trgHeight / srcHeight)
|
||
const int yTrg_last = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; //=ceil(((y + 1) * trgHeight) / srcHeight)
|
||
const int blockHeight = yTrg_last - yTrg_first;
|
||
|
||
if (blockHeight > 0)
|
||
{
|
||
const uint32_t* srcLine = byteAdvance(src, y * srcPitch);
|
||
uint32_t* trgLine = byteAdvance(trg, yTrg_first * trgPitch);
|
||
int xTrg_first = 0;
|
||
|
||
for (int x = 0; x < srcWidth; ++x)
|
||
{
|
||
int xTrg_last = ((x + 1) * trgWidth + srcWidth - 1) / srcWidth;
|
||
const int blockWidth = xTrg_last - xTrg_first;
|
||
if (blockWidth > 0)
|
||
{
|
||
xTrg_first = xTrg_last;
|
||
fillBlock(trgLine, trgPitch, srcLine[x], blockWidth, blockHeight);
|
||
trgLine += blockWidth;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case NN_SCALE_SLICE_TARGET:
|
||
//nearest-neighbor (going over target image - slow for upscaling, since source is read multiple times missing out on cache! Fast for similar image sizes!)
|
||
yFirst = std::max(yFirst, 0);
|
||
yLast = std::min(yLast, trgHeight);
|
||
if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0) return;
|
||
|
||
for (int y = yFirst; y < yLast; ++y)
|
||
{
|
||
uint32_t* trgLine = byteAdvance(trg, y * trgPitch);
|
||
const int ySrc = srcHeight * y / trgHeight;
|
||
const uint32_t* srcLine = byteAdvance(src, ySrc * srcPitch);
|
||
for (int x = 0; x < trgWidth; ++x)
|
||
{
|
||
const int xSrc = srcWidth * x / trgWidth;
|
||
trgLine[x] = srcLine[xSrc];
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|