snes9x/getset.h

858 lines
21 KiB
C

/*****************************************************************************\
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
This file is licensed under the Snes9x License.
For further information, consult the LICENSE file in the root directory.
\*****************************************************************************/
#ifndef _GETSET_H_
#define _GETSET_H_
#include "cpuexec.h"
#include "dsp.h"
#include "sa1.h"
#include "spc7110.h"
#include "c4.h"
#include "obc1.h"
#include "seta.h"
#include "bsx.h"
#include "msu1.h"
#define addCyclesInMemoryAccess \
if (!CPU.InDMAorHDMA) \
{ \
CPU.Cycles += speed; \
while (CPU.Cycles >= CPU.NextEvent) \
S9xDoHEventProcessing(); \
}
#define addCyclesInMemoryAccess_x2 \
if (!CPU.InDMAorHDMA) \
{ \
CPU.Cycles += speed << 1; \
while (CPU.Cycles >= CPU.NextEvent) \
S9xDoHEventProcessing(); \
}
extern uint8 OpenBus;
static inline int32 memory_speed (uint32 address)
{
if (address & 0x408000)
{
if (address & 0x800000)
return (CPU.FastROMSpeed);
return (SLOW_ONE_CYCLE);
}
if ((address + 0x6000) & 0x4000)
return (SLOW_ONE_CYCLE);
if ((address - 0x4000) & 0x7e00)
return (ONE_CYCLE);
return (TWO_CYCLES);
}
inline uint8 S9xGetByte (uint32 Address)
{
int block = (Address & 0xffffff) >> MEMMAP_SHIFT;
uint8 *GetAddress = Memory.Map[block];
int32 speed = memory_speed(Address);
uint8 byte;
if (GetAddress >= (uint8 *) CMemory::MAP_LAST)
{
byte = *(GetAddress + (Address & 0xffff));
addCyclesInMemoryAccess;
return (byte);
}
switch ((pint) GetAddress)
{
case CMemory::MAP_CPU:
byte = S9xGetCPU(Address & 0xffff);
addCyclesInMemoryAccess;
return (byte);
case CMemory::MAP_PPU:
if (CPU.InDMAorHDMA && (Address & 0xff00) == 0x2100)
return (OpenBus);
byte = S9xGetPPU(Address & 0xffff);
addCyclesInMemoryAccess;
return (byte);
case CMemory::MAP_LOROM_SRAM:
case CMemory::MAP_SA1RAM:
// Address & 0x7fff : offset into bank
// Address & 0xff0000 : bank
// bank >> 1 | offset : SRAM address, unbound
// unbound & SRAMMask : SRAM offset
byte = *(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask));
addCyclesInMemoryAccess;
return (byte);
case CMemory::MAP_LOROM_SRAM_B:
byte = *(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB));
addCyclesInMemoryAccess;
return (byte);
case CMemory::MAP_HIROM_SRAM:
case CMemory::MAP_RONLY_SRAM:
byte = *(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask));
addCyclesInMemoryAccess;
return (byte);
case CMemory::MAP_BWRAM:
byte = *(Memory.BWRAM + ((Address & 0x7fff) - 0x6000));
addCyclesInMemoryAccess;
return (byte);
case CMemory::MAP_DSP:
byte = S9xGetDSP(Address & 0xffff);
addCyclesInMemoryAccess;
return (byte);
case CMemory::MAP_SPC7110_ROM:
byte = S9xGetSPC7110Byte(Address);
addCyclesInMemoryAccess;
return (byte);
case CMemory::MAP_SPC7110_DRAM:
byte = S9xGetSPC7110(0x4800);
addCyclesInMemoryAccess;
return (byte);
case CMemory::MAP_C4:
byte = S9xGetC4(Address & 0xffff);
addCyclesInMemoryAccess;
return (byte);
case CMemory::MAP_OBC_RAM:
byte = S9xGetOBC1(Address & 0xffff);
addCyclesInMemoryAccess;
return (byte);
case CMemory::MAP_SETA_DSP:
byte = S9xGetSetaDSP(Address);
addCyclesInMemoryAccess;
return (byte);
case CMemory::MAP_SETA_RISC:
byte = S9xGetST018(Address);
addCyclesInMemoryAccess;
return (byte);
case CMemory::MAP_BSX:
byte = S9xGetBSX(Address);
addCyclesInMemoryAccess;
return (byte);
case CMemory::MAP_NONE:
default:
byte = OpenBus;
addCyclesInMemoryAccess;
return (byte);
}
}
inline uint16 S9xGetWord (uint32 Address, enum s9xwrap_t w = WRAP_NONE)
{
uint16 word;
uint32 mask = MEMMAP_MASK & (w == WRAP_PAGE ? 0xff : (w == WRAP_BANK ? 0xffff : 0xffffff));
if ((Address & mask) == mask)
{
PC_t a;
word = OpenBus = S9xGetByte(Address);
switch (w)
{
case WRAP_PAGE:
a.xPBPC = Address;
a.B.xPCl++;
return (word | (S9xGetByte(a.xPBPC) << 8));
case WRAP_BANK:
a.xPBPC = Address;
a.W.xPC++;
return (word | (S9xGetByte(a.xPBPC) << 8));
case WRAP_NONE:
default:
return (word | (S9xGetByte(Address + 1) << 8));
}
}
int block = (Address & 0xffffff) >> MEMMAP_SHIFT;
uint8 *GetAddress = Memory.Map[block];
int32 speed = memory_speed(Address);
if (GetAddress >= (uint8 *) CMemory::MAP_LAST)
{
word = READ_WORD(GetAddress + (Address & 0xffff));
addCyclesInMemoryAccess_x2;
return (word);
}
switch ((pint) GetAddress)
{
case CMemory::MAP_CPU:
word = S9xGetCPU(Address & 0xffff);
addCyclesInMemoryAccess;
word |= S9xGetCPU((Address + 1) & 0xffff) << 8;
addCyclesInMemoryAccess;
return (word);
case CMemory::MAP_PPU:
if (CPU.InDMAorHDMA)
{
word = OpenBus = S9xGetByte(Address);
return (word | (S9xGetByte(Address + 1) << 8));
}
word = S9xGetPPU(Address & 0xffff);
addCyclesInMemoryAccess;
word |= S9xGetPPU((Address + 1) & 0xffff) << 8;
addCyclesInMemoryAccess;
return (word);
case CMemory::MAP_LOROM_SRAM:
case CMemory::MAP_SA1RAM:
if (Memory.SRAMMask >= MEMMAP_MASK)
word = READ_WORD(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask));
else
word = (*(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask))) |
((*(Memory.SRAM + (((((Address + 1) & 0xff0000) >> 1) | ((Address + 1) & 0x7fff)) & Memory.SRAMMask))) << 8);
addCyclesInMemoryAccess_x2;
return (word);
case CMemory::MAP_LOROM_SRAM_B:
if (Multi.sramMaskB >= MEMMAP_MASK)
word = READ_WORD(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB));
else
word = (*(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB))) |
((*(Multi.sramB + (((((Address + 1) & 0xff0000) >> 1) | ((Address + 1) & 0x7fff)) & Multi.sramMaskB))) << 8);
addCyclesInMemoryAccess_x2;
return (word);
case CMemory::MAP_HIROM_SRAM:
case CMemory::MAP_RONLY_SRAM:
if (Memory.SRAMMask >= MEMMAP_MASK)
word = READ_WORD(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask));
else
word = (*(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)) |
(*(Memory.SRAM + ((((Address + 1) & 0x7fff) - 0x6000 + (((Address + 1) & 0xf0000) >> 3)) & Memory.SRAMMask)) << 8));
addCyclesInMemoryAccess_x2;
return (word);
case CMemory::MAP_BWRAM:
word = READ_WORD(Memory.BWRAM + ((Address & 0x7fff) - 0x6000));
addCyclesInMemoryAccess_x2;
return (word);
case CMemory::MAP_DSP:
word = S9xGetDSP(Address & 0xffff);
addCyclesInMemoryAccess;
word |= S9xGetDSP((Address + 1) & 0xffff) << 8;
addCyclesInMemoryAccess;
return (word);
case CMemory::MAP_SPC7110_ROM:
word = S9xGetSPC7110Byte(Address);
addCyclesInMemoryAccess;
word |= S9xGetSPC7110Byte(Address + 1) << 8;
addCyclesInMemoryAccess;
return (word);
case CMemory::MAP_SPC7110_DRAM:
word = S9xGetSPC7110(0x4800);
addCyclesInMemoryAccess;
word |= S9xGetSPC7110(0x4800) << 8;
addCyclesInMemoryAccess;
return (word);
case CMemory::MAP_C4:
word = S9xGetC4(Address & 0xffff);
addCyclesInMemoryAccess;
word |= S9xGetC4((Address + 1) & 0xffff) << 8;
addCyclesInMemoryAccess;
return (word);
case CMemory::MAP_OBC_RAM:
word = S9xGetOBC1(Address & 0xffff);
addCyclesInMemoryAccess;
word |= S9xGetOBC1((Address + 1) & 0xffff) << 8;
addCyclesInMemoryAccess;
return (word);
case CMemory::MAP_SETA_DSP:
word = S9xGetSetaDSP(Address);
addCyclesInMemoryAccess;
word |= S9xGetSetaDSP(Address + 1) << 8;
addCyclesInMemoryAccess;
return (word);
case CMemory::MAP_SETA_RISC:
word = S9xGetST018(Address);
addCyclesInMemoryAccess;
word |= S9xGetST018(Address + 1) << 8;
addCyclesInMemoryAccess;
return (word);
case CMemory::MAP_BSX:
word = S9xGetBSX(Address);
addCyclesInMemoryAccess;
word |= S9xGetBSX(Address + 1) << 8;
addCyclesInMemoryAccess;
return (word);
case CMemory::MAP_NONE:
default:
word = OpenBus | (OpenBus << 8);
addCyclesInMemoryAccess_x2;
return (word);
}
}
inline void S9xSetByte (uint8 Byte, uint32 Address)
{
int block = (Address & 0xffffff) >> MEMMAP_SHIFT;
uint8 *SetAddress = Memory.WriteMap[block];
int32 speed = memory_speed(Address);
if (SetAddress >= (uint8 *) CMemory::MAP_LAST)
{
*(SetAddress + (Address & 0xffff)) = Byte;
addCyclesInMemoryAccess;
return;
}
switch ((pint) SetAddress)
{
case CMemory::MAP_CPU:
S9xSetCPU(Byte, Address & 0xffff);
addCyclesInMemoryAccess;
return;
case CMemory::MAP_PPU:
if (CPU.InDMAorHDMA && (Address & 0xff00) == 0x2100)
return;
S9xSetPPU(Byte, Address & 0xffff);
addCyclesInMemoryAccess;
return;
case CMemory::MAP_LOROM_SRAM:
if (Memory.SRAMMask)
{
*(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask)) = Byte;
CPU.SRAMModified = TRUE;
}
addCyclesInMemoryAccess;
return;
case CMemory::MAP_LOROM_SRAM_B:
if (Multi.sramMaskB)
{
*(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB)) = Byte;
CPU.SRAMModified = TRUE;
}
addCyclesInMemoryAccess;
return;
case CMemory::MAP_HIROM_SRAM:
if (Memory.SRAMMask)
{
*(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)) = Byte;
CPU.SRAMModified = TRUE;
}
addCyclesInMemoryAccess;
return;
case CMemory::MAP_BWRAM:
*(Memory.BWRAM + ((Address & 0x7fff) - 0x6000)) = Byte;
CPU.SRAMModified = TRUE;
addCyclesInMemoryAccess;
return;
case CMemory::MAP_SA1RAM:
*(Memory.SRAM + (Address & 0xffff)) = Byte;
addCyclesInMemoryAccess;
return;
case CMemory::MAP_DSP:
S9xSetDSP(Byte, Address & 0xffff);
addCyclesInMemoryAccess;
return;
case CMemory::MAP_C4:
S9xSetC4(Byte, Address & 0xffff);
addCyclesInMemoryAccess;
return;
case CMemory::MAP_OBC_RAM:
S9xSetOBC1(Byte, Address & 0xffff);
addCyclesInMemoryAccess;
return;
case CMemory::MAP_SETA_DSP:
S9xSetSetaDSP(Byte, Address);
addCyclesInMemoryAccess;
return;
case CMemory::MAP_SETA_RISC:
S9xSetST018(Byte, Address);
addCyclesInMemoryAccess;
return;
case CMemory::MAP_BSX:
S9xSetBSX(Byte, Address);
addCyclesInMemoryAccess;
return;
case CMemory::MAP_NONE:
default:
addCyclesInMemoryAccess;
return;
}
}
inline void S9xSetWord (uint16 Word, uint32 Address, enum s9xwrap_t w = WRAP_NONE, enum s9xwriteorder_t o = WRITE_01)
{
uint32 mask = MEMMAP_MASK & (w == WRAP_PAGE ? 0xff : (w == WRAP_BANK ? 0xffff : 0xffffff));
if ((Address & mask) == mask)
{
PC_t a;
if (!o)
S9xSetByte((uint8) Word, Address);
switch (w)
{
case WRAP_PAGE:
a.xPBPC = Address;
a.B.xPCl++;
S9xSetByte(Word >> 8, a.xPBPC);
break;
case WRAP_BANK:
a.xPBPC = Address;
a.W.xPC++;
S9xSetByte(Word >> 8, a.xPBPC);
break;
case WRAP_NONE:
default:
S9xSetByte(Word >> 8, Address + 1);
break;
}
if (o)
S9xSetByte((uint8) Word, Address);
return;
}
int block = (Address & 0xffffff) >> MEMMAP_SHIFT;
uint8 *SetAddress = Memory.WriteMap[block];
int32 speed = memory_speed(Address);
if (SetAddress >= (uint8 *) CMemory::MAP_LAST)
{
WRITE_WORD(SetAddress + (Address & 0xffff), Word);
addCyclesInMemoryAccess_x2;
return;
}
switch ((pint) SetAddress)
{
case CMemory::MAP_CPU:
if (o)
{
S9xSetCPU(Word >> 8, (Address + 1) & 0xffff);
addCyclesInMemoryAccess;
S9xSetCPU((uint8) Word, Address & 0xffff);
addCyclesInMemoryAccess;
return;
}
else
{
S9xSetCPU((uint8) Word, Address & 0xffff);
addCyclesInMemoryAccess;
S9xSetCPU(Word >> 8, (Address + 1) & 0xffff);
addCyclesInMemoryAccess;
return;
}
case CMemory::MAP_PPU:
if (CPU.InDMAorHDMA)
{
if ((Address & 0xff00) != 0x2100)
S9xSetPPU((uint8) Word, Address & 0xffff);
if (((Address + 1) & 0xff00) != 0x2100)
S9xSetPPU(Word >> 8, (Address + 1) & 0xffff);
return;
}
if (o)
{
S9xSetPPU(Word >> 8, (Address + 1) & 0xffff);
addCyclesInMemoryAccess;
S9xSetPPU((uint8) Word, Address & 0xffff);
addCyclesInMemoryAccess;
return;
}
else
{
S9xSetPPU((uint8) Word, Address & 0xffff);
addCyclesInMemoryAccess;
S9xSetPPU(Word >> 8, (Address + 1) & 0xffff);
addCyclesInMemoryAccess;
return;
}
case CMemory::MAP_LOROM_SRAM:
if (Memory.SRAMMask)
{
if (Memory.SRAMMask >= MEMMAP_MASK)
WRITE_WORD(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask), Word);
else
{
*(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask)) = (uint8) Word;
*(Memory.SRAM + (((((Address + 1) & 0xff0000) >> 1) | ((Address + 1) & 0x7fff)) & Memory.SRAMMask)) = Word >> 8;
}
CPU.SRAMModified = TRUE;
}
addCyclesInMemoryAccess_x2;
return;
case CMemory::MAP_LOROM_SRAM_B:
if (Multi.sramMaskB)
{
if (Multi.sramMaskB >= MEMMAP_MASK)
WRITE_WORD(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB), Word);
else
{
*(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB)) = (uint8) Word;
*(Multi.sramB + (((((Address + 1) & 0xff0000) >> 1) | ((Address + 1) & 0x7fff)) & Multi.sramMaskB)) = Word >> 8;
}
CPU.SRAMModified = TRUE;
}
addCyclesInMemoryAccess_x2;
return;
case CMemory::MAP_HIROM_SRAM:
if (Memory.SRAMMask)
{
if (Memory.SRAMMask >= MEMMAP_MASK)
WRITE_WORD(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask), Word);
else
{
*(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask)) = (uint8) Word;
*(Memory.SRAM + ((((Address + 1) & 0x7fff) - 0x6000 + (((Address + 1) & 0xf0000) >> 3)) & Memory.SRAMMask)) = Word >> 8;
}
CPU.SRAMModified = TRUE;
}
addCyclesInMemoryAccess_x2;
return;
case CMemory::MAP_BWRAM:
WRITE_WORD(Memory.BWRAM + ((Address & 0x7fff) - 0x6000), Word);
CPU.SRAMModified = TRUE;
addCyclesInMemoryAccess_x2;
return;
case CMemory::MAP_SA1RAM:
WRITE_WORD(Memory.SRAM + (Address & 0xffff), Word);
addCyclesInMemoryAccess_x2;
return;
case CMemory::MAP_DSP:
if (o)
{
S9xSetDSP(Word >> 8, (Address + 1) & 0xffff);
addCyclesInMemoryAccess;
S9xSetDSP((uint8) Word, Address & 0xffff);
addCyclesInMemoryAccess;
return;
}
else
{
S9xSetDSP((uint8) Word, Address & 0xffff);
addCyclesInMemoryAccess;
S9xSetDSP(Word >> 8, (Address + 1) & 0xffff);
addCyclesInMemoryAccess;
return;
}
case CMemory::MAP_C4:
if (o)
{
S9xSetC4(Word >> 8, (Address + 1) & 0xffff);
addCyclesInMemoryAccess;
S9xSetC4((uint8) Word, Address & 0xffff);
addCyclesInMemoryAccess;
return;
}
else
{
S9xSetC4((uint8) Word, Address & 0xffff);
addCyclesInMemoryAccess;
S9xSetC4(Word >> 8, (Address + 1) & 0xffff);
addCyclesInMemoryAccess;
return;
}
case CMemory::MAP_OBC_RAM:
if (o)
{
S9xSetOBC1(Word >> 8, (Address + 1) & 0xffff);
addCyclesInMemoryAccess;
S9xSetOBC1((uint8) Word, Address & 0xffff);
addCyclesInMemoryAccess;
return;
}
else
{
S9xSetOBC1((uint8) Word, Address & 0xffff);
addCyclesInMemoryAccess;
S9xSetOBC1(Word >> 8, (Address + 1) & 0xffff);
addCyclesInMemoryAccess;
return;
}
case CMemory::MAP_SETA_DSP:
if (o)
{
S9xSetSetaDSP(Word >> 8, Address + 1);
addCyclesInMemoryAccess;
S9xSetSetaDSP((uint8) Word, Address);
addCyclesInMemoryAccess;
return;
}
else
{
S9xSetSetaDSP((uint8) Word, Address);
addCyclesInMemoryAccess;
S9xSetSetaDSP(Word >> 8, Address + 1);
addCyclesInMemoryAccess;
return;
}
case CMemory::MAP_SETA_RISC:
if (o)
{
S9xSetST018(Word >> 8, Address + 1);
addCyclesInMemoryAccess;
S9xSetST018((uint8) Word, Address);
addCyclesInMemoryAccess;
return;
}
else
{
S9xSetST018((uint8) Word, Address);
addCyclesInMemoryAccess;
S9xSetST018(Word >> 8, Address + 1);
addCyclesInMemoryAccess;
return;
}
case CMemory::MAP_BSX:
if (o)
{
S9xSetBSX(Word >> 8, Address + 1);
addCyclesInMemoryAccess;
S9xSetBSX((uint8) Word, Address);
addCyclesInMemoryAccess;
return;
}
else
{
S9xSetBSX((uint8) Word, Address);
addCyclesInMemoryAccess;
S9xSetBSX(Word >> 8, Address + 1);
addCyclesInMemoryAccess;
return;
}
case CMemory::MAP_NONE:
default:
addCyclesInMemoryAccess_x2;
return;
}
}
inline void S9xSetPCBase (uint32 Address)
{
Registers.PBPC = Address & 0xffffff;
ICPU.ShiftedPB = Address & 0xff0000;
uint8 *GetAddress = Memory.Map[(int)((Address & 0xffffff) >> MEMMAP_SHIFT)];
CPU.MemSpeed = memory_speed(Address);
CPU.MemSpeedx2 = CPU.MemSpeed << 1;
if (GetAddress >= (uint8 *) CMemory::MAP_LAST)
{
CPU.PCBase = GetAddress;
return;
}
switch ((pint) GetAddress)
{
case CMemory::MAP_LOROM_SRAM:
if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK)
CPU.PCBase = NULL;
else
CPU.PCBase = Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask) - (Address & 0xffff);
return;
case CMemory::MAP_LOROM_SRAM_B:
if ((Multi.sramMaskB & MEMMAP_MASK) != MEMMAP_MASK)
CPU.PCBase = NULL;
else
CPU.PCBase = Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB) - (Address & 0xffff);
return;
case CMemory::MAP_HIROM_SRAM:
if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK)
CPU.PCBase = NULL;
else
CPU.PCBase = Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask) - (Address & 0xffff);
return;
case CMemory::MAP_BWRAM:
CPU.PCBase = Memory.BWRAM - 0x6000 - (Address & 0x8000);
return;
case CMemory::MAP_SA1RAM:
CPU.PCBase = Memory.SRAM;
return;
case CMemory::MAP_SPC7110_ROM:
CPU.PCBase = S9xGetBasePointerSPC7110(Address);
return;
case CMemory::MAP_C4:
CPU.PCBase = S9xGetBasePointerC4(Address & 0xffff);
return;
case CMemory::MAP_OBC_RAM:
CPU.PCBase = S9xGetBasePointerOBC1(Address & 0xffff);
return;
case CMemory::MAP_BSX:
CPU.PCBase = S9xGetBasePointerBSX(Address);
return;
case CMemory::MAP_NONE:
default:
CPU.PCBase = NULL;
return;
}
}
inline uint8 * S9xGetBasePointer (uint32 Address)
{
uint8 *GetAddress = Memory.Map[(Address & 0xffffff) >> MEMMAP_SHIFT];
if (GetAddress >= (uint8 *) CMemory::MAP_LAST)
return (GetAddress);
switch ((pint) GetAddress)
{
case CMemory::MAP_LOROM_SRAM:
if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK)
return (NULL);
return (Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask) - (Address & 0xffff));
case CMemory::MAP_LOROM_SRAM_B:
if ((Multi.sramMaskB & MEMMAP_MASK) != MEMMAP_MASK)
return (NULL);
return (Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB) - (Address & 0xffff));
case CMemory::MAP_HIROM_SRAM:
if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK)
return (NULL);
return (Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask) - (Address & 0xffff));
case CMemory::MAP_BWRAM:
return (Memory.BWRAM - 0x6000 - (Address & 0x8000));
case CMemory::MAP_SA1RAM:
return (Memory.SRAM);
case CMemory::MAP_SPC7110_ROM:
return (S9xGetBasePointerSPC7110(Address));
case CMemory::MAP_C4:
return (S9xGetBasePointerC4(Address & 0xffff));
case CMemory::MAP_OBC_RAM:
return (S9xGetBasePointerOBC1(Address & 0xffff));
case CMemory::MAP_NONE:
default:
return (NULL);
}
}
inline uint8 * S9xGetMemPointer (uint32 Address)
{
uint8 *GetAddress = Memory.Map[(Address & 0xffffff) >> MEMMAP_SHIFT];
if (GetAddress >= (uint8 *) CMemory::MAP_LAST)
return (GetAddress + (Address & 0xffff));
switch ((pint) GetAddress)
{
case CMemory::MAP_LOROM_SRAM:
if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK)
return (NULL);
return (Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask));
case CMemory::MAP_LOROM_SRAM_B:
if ((Multi.sramMaskB & MEMMAP_MASK) != MEMMAP_MASK)
return (NULL);
return (Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB));
case CMemory::MAP_HIROM_SRAM:
if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK)
return (NULL);
return (Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0xf0000) >> 3)) & Memory.SRAMMask));
case CMemory::MAP_BWRAM:
return (Memory.BWRAM - 0x6000 + (Address & 0x7fff));
case CMemory::MAP_SA1RAM:
return (Memory.SRAM + (Address & 0xffff));
case CMemory::MAP_SPC7110_ROM:
return (S9xGetBasePointerSPC7110(Address) + (Address & 0xffff));
case CMemory::MAP_C4:
return (S9xGetMemPointerC4(Address & 0xffff));
case CMemory::MAP_OBC_RAM:
return (S9xGetMemPointerOBC1(Address & 0xffff));
case CMemory::MAP_NONE:
default:
return (NULL);
}
}
#endif