snes9x/dma.cpp

1822 lines
45 KiB
C++

/***********************************************************************************
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
(c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com),
Jerremy Koot (jkoot@snes9x.com)
(c) Copyright 2002 - 2004 Matthew Kendora
(c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org)
(c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/)
(c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net)
(c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca),
Kris Bleakley (codeviolation@hotmail.com)
(c) Copyright 2002 - 2010 Brad Jorsch (anomie@users.sourceforge.net),
Nach (n-a-c-h@users.sourceforge.net),
(c) Copyright 2002 - 2011 zones (kasumitokoduck@yahoo.com)
(c) Copyright 2006 - 2007 nitsuja
(c) Copyright 2009 - 2018 BearOso,
OV2
(c) Copyright 2017 qwertymodo
(c) Copyright 2011 - 2017 Hans-Kristian Arntzen,
Daniel De Matteis
(Under no circumstances will commercial rights be given)
BS-X C emulator code
(c) Copyright 2005 - 2006 Dreamer Nom,
zones
C4 x86 assembler and some C emulation code
(c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com),
Nach,
zsKnight (zsknight@zsnes.com)
C4 C++ code
(c) Copyright 2003 - 2006 Brad Jorsch,
Nach
DSP-1 emulator code
(c) Copyright 1998 - 2006 _Demo_,
Andreas Naive (andreasnaive@gmail.com),
Gary Henderson,
Ivar (ivar@snes9x.com),
John Weidman,
Kris Bleakley,
Matthew Kendora,
Nach,
neviksti (neviksti@hotmail.com)
DSP-2 emulator code
(c) Copyright 2003 John Weidman,
Kris Bleakley,
Lord Nightmare (lord_nightmare@users.sourceforge.net),
Matthew Kendora,
neviksti
DSP-3 emulator code
(c) Copyright 2003 - 2006 John Weidman,
Kris Bleakley,
Lancer,
z80 gaiden
DSP-4 emulator code
(c) Copyright 2004 - 2006 Dreamer Nom,
John Weidman,
Kris Bleakley,
Nach,
z80 gaiden
OBC1 emulator code
(c) Copyright 2001 - 2004 zsKnight,
pagefault (pagefault@zsnes.com),
Kris Bleakley
Ported from x86 assembler to C by sanmaiwashi
SPC7110 and RTC C++ emulator code used in 1.39-1.51
(c) Copyright 2002 Matthew Kendora with research by
zsKnight,
John Weidman,
Dark Force
SPC7110 and RTC C++ emulator code used in 1.52+
(c) Copyright 2009 byuu,
neviksti
S-DD1 C emulator code
(c) Copyright 2003 Brad Jorsch with research by
Andreas Naive,
John Weidman
S-RTC C emulator code
(c) Copyright 2001 - 2006 byuu,
John Weidman
ST010 C++ emulator code
(c) Copyright 2003 Feather,
John Weidman,
Kris Bleakley,
Matthew Kendora
Super FX x86 assembler emulator code
(c) Copyright 1998 - 2003 _Demo_,
pagefault,
zsKnight
Super FX C emulator code
(c) Copyright 1997 - 1999 Ivar,
Gary Henderson,
John Weidman
Sound emulator code used in 1.5-1.51
(c) Copyright 1998 - 2003 Brad Martin
(c) Copyright 1998 - 2006 Charles Bilyue'
Sound emulator code used in 1.52+
(c) Copyright 2004 - 2007 Shay Green (gblargg@gmail.com)
S-SMP emulator code used in 1.54+
(c) Copyright 2016 byuu
SH assembler code partly based on x86 assembler code
(c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se)
2xSaI filter
(c) Copyright 1999 - 2001 Derek Liauw Kie Fa
HQ2x, HQ3x, HQ4x filters
(c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com)
NTSC filter
(c) Copyright 2006 - 2007 Shay Green
GTK+ GUI code
(c) Copyright 2004 - 2018 BearOso
Win32 GUI code
(c) Copyright 2003 - 2006 blip,
funkyass,
Matthew Kendora,
Nach,
nitsuja
(c) Copyright 2009 - 2018 OV2
Mac OS GUI code
(c) Copyright 1998 - 2001 John Stiles
(c) Copyright 2001 - 2011 zones
Libretro port
(c) Copyright 2011 - 2017 Hans-Kristian Arntzen,
Daniel De Matteis
(Under no circumstances will commercial rights be given)
Specific ports contains the works of other authors. See headers in
individual files.
Snes9x homepage: http://www.snes9x.com/
Permission to use, copy, modify and/or distribute Snes9x in both binary
and source form, for non-commercial purposes, is hereby granted without
fee, providing that this license information and copyright notice appear
with all copies and any derived work.
This software is provided 'as-is', without any express or implied
warranty. In no event shall the authors be held liable for any damages
arising from the use of this software or it's derivatives.
Snes9x is freeware for PERSONAL USE only. Commercial users should
seek permission of the copyright holders first. Commercial use includes,
but is not limited to, charging money for Snes9x or software derived from
Snes9x, including Snes9x or derivatives in commercial game bundles, and/or
using Snes9x as a promotion for your commercial product.
The copyright holders request that bug fixes and improvements to the code
should be forwarded to them so everyone can benefit from the modifications
in future versions.
Super NES and Super Nintendo Entertainment System are trademarks of
Nintendo Co., Limited and its subsidiary companies.
***********************************************************************************/
#include "snes9x.h"
#include "memmap.h"
#include "dma.h"
#include "apu/apu.h"
#include "sdd1emu.h"
#include "spc7110emu.h"
#ifdef DEBUGGER
#include "missing.h"
#endif
#define ADD_CYCLES(n) { CPU.Cycles += (n); }
extern uint8 *HDMAMemPointers[8];
extern int HDMA_ModeByteCounts[8];
extern SPC7110 s7emu;
static uint8 sdd1_decode_buffer[0x10000];
static inline bool8 addCyclesInDMA (uint8);
static inline bool8 HDMAReadLineCount (int);
static inline bool8 addCyclesInDMA (uint8 dma_channel)
{
// Add 8 cycles per byte, sync APU, and do HC related events.
// If HDMA was done in S9xDoHEventProcessing(), check if it used the same channel as DMA.
ADD_CYCLES(SLOW_ONE_CYCLE);
while (CPU.Cycles >= CPU.NextEvent)
S9xDoHEventProcessing();
if (CPU.HDMARanInDMA & (1 << dma_channel))
{
CPU.HDMARanInDMA = 0;
#ifdef DEBUGGER
printf("HDMA and DMA use the same channel %d!\n", dma_channel);
#endif
// If HDMA triggers in the middle of DMA transfer and it uses the same channel,
// it kills the DMA transfer immediately. $43x2 and $43x5 stop updating.
return (FALSE);
}
CPU.HDMARanInDMA = 0;
return (TRUE);
}
bool8 S9xDoDMA (uint8 Channel)
{
CPU.InDMA = TRUE;
CPU.InDMAorHDMA = TRUE;
CPU.CurrentDMAorHDMAChannel = Channel;
SDMA *d = &DMA[Channel];
// Check invalid DMA first
if ((d->ABank == 0x7E || d->ABank == 0x7F) && d->BAddress == 0x80 && !d->ReverseTransfer)
{
// Attempting a DMA from WRAM to $2180 will not work, WRAM will not be written.
// Attempting a DMA from $2180 to WRAM will similarly not work,
// the value written is (initially) the OpenBus value.
// In either case, the address in $2181-3 is not incremented.
// Does an invalid DMA actually take time?
// I'd say yes, since 'invalid' is probably just the WRAM chip
// not being able to read and write itself at the same time
// And no, PPU.WRAM should not be updated.
int32 c = d->TransferBytes;
// Writing $0000 to $43x5 actually results in a transfer of $10000 bytes, not 0.
if (c == 0)
c = 0x10000;
// 8 cycles per channel
ADD_CYCLES(SLOW_ONE_CYCLE);
// 8 cycles per byte
while (c)
{
d->TransferBytes--;
d->AAddress++;
c--;
if (!addCyclesInDMA(Channel))
{
CPU.InDMA = FALSE;
CPU.InDMAorHDMA = FALSE;
CPU.CurrentDMAorHDMAChannel = -1;
return (FALSE);
}
}
#ifdef DEBUGGER
if (Settings.TraceDMA)
{
sprintf(String, "DMA[%d]: WRAM Bank:%02X->$2180", Channel, d->ABank);
S9xMessage(S9X_TRACE, S9X_DMA_TRACE, String);
}
#endif
CPU.InDMA = FALSE;
CPU.InDMAorHDMA = FALSE;
CPU.CurrentDMAorHDMAChannel = -1;
return (TRUE);
}
// Prepare for accessing $2118-2119
switch (d->BAddress)
{
case 0x18:
case 0x19:
if (IPPU.RenderThisFrame)
FLUSH_REDRAW();
break;
}
int32 inc = d->AAddressFixed ? 0 : (!d->AAddressDecrement ? 1 : -1);
int32 count = d->TransferBytes;
// Writing $0000 to $43x5 actually results in a transfer of $10000 bytes, not 0.
if (count == 0)
count = 0x10000;
// Prepare for custom chip DMA
// S-DD1
uint8 *in_sdd1_dma = NULL;
if (Settings.SDD1)
{
if (d->AAddressFixed && Memory.FillRAM[0x4801] > 0)
{
// XXX: Should probably verify that we're DMAing from ROM?
// And somewhere we should make sure we're not running across a mapping boundary too.
// Hacky support for pre-decompressed S-DD1 data
inc = !d->AAddressDecrement ? 1 : -1;
uint8 *in_ptr = S9xGetBasePointer(((d->ABank << 16) | d->AAddress));
if (in_ptr)
{
in_ptr += d->AAddress;
SDD1_decompress(sdd1_decode_buffer, in_ptr, d->TransferBytes);
}
#ifdef DEBUGGER
else
{
sprintf(String, "S-DD1: DMA from non-block address $%02X:%04X", d->ABank, d->AAddress);
S9xMessage(S9X_WARNING, S9X_DMA_TRACE, String);
}
#endif
in_sdd1_dma = sdd1_decode_buffer;
}
Memory.FillRAM[0x4801] = 0;
}
// SPC7110
uint8 *spc7110_dma = NULL;
if (Settings.SPC7110)
{
if (d->AAddress == 0x4800 || d->ABank == 0x50)
{
spc7110_dma = new uint8[d->TransferBytes];
for (int i = 0; i < d->TransferBytes; i++)
spc7110_dma[i] = s7emu.decomp.read();
int32 icount = s7emu.r4809 | (s7emu.r480a << 8);
icount -= d->TransferBytes;
s7emu.r4809 = icount & 0x00ff;
s7emu.r480a = (icount & 0xff00) >> 8;
inc = 1;
d->AAddress -= count;
}
}
// SA-1
bool8 in_sa1_dma = FALSE;
if (Settings.SA1)
{
if (SA1.in_char_dma && d->BAddress == 0x18 && (d->ABank & 0xf0) == 0x40)
{
// Perform packed bitmap to PPU character format conversion on the data
// before transmitting it to V-RAM via-DMA.
int32 num_chars = 1 << ((Memory.FillRAM[0x2231] >> 2) & 7);
int32 depth = (Memory.FillRAM[0x2231] & 3) == 0 ? 8 : (Memory.FillRAM[0x2231] & 3) == 1 ? 4 : 2;
int32 bytes_per_char = 8 * depth;
int32 bytes_per_line = depth * num_chars;
int32 char_line_bytes = bytes_per_char * num_chars;
uint32 addr = (d->AAddress / char_line_bytes) * char_line_bytes;
uint8 *base = S9xGetBasePointer((d->ABank << 16) + addr);
if (!base)
{
sprintf(String, "SA-1: DMA from non-block address $%02X:%04X", d->ABank, addr);
S9xMessage(S9X_WARNING, S9X_DMA_TRACE, String);
base = Memory.ROM;
}
base += addr;
uint8 *buffer = &Memory.ROM[CMemory::MAX_ROM_SIZE - 0x10000];
uint8 *p = buffer;
uint32 inc_sa1 = char_line_bytes - (d->AAddress % char_line_bytes);
uint32 char_count = inc_sa1 / bytes_per_char;
in_sa1_dma = TRUE;
#if 0
printf("SA-1 DMA: %08x,", base);
printf("depth = %d, count = %d, bytes_per_char = %d, bytes_per_line = %d, num_chars = %d, char_line_bytes = %d\n",
depth, count, bytes_per_char, bytes_per_line, num_chars, char_line_bytes);
#endif
switch (depth)
{
case 2:
for (int32 i = 0; i < count; i += inc_sa1, base += char_line_bytes, inc_sa1 = char_line_bytes, char_count = num_chars)
{
uint8 *line = base + (num_chars - char_count) * 2;
for (uint32 j = 0; j < char_count && p - buffer < count; j++, line += 2)
{
uint8 *q = line;
for (int32 l = 0; l < 8; l++, q += bytes_per_line)
{
for (int32 b = 0; b < 2; b++)
{
uint8 r = *(q + b);
*(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
*(p + 0) = (*(p + 0) << 1) | ((r >> 2) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 3) & 1);
*(p + 0) = (*(p + 0) << 1) | ((r >> 4) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 5) & 1);
*(p + 0) = (*(p + 0) << 1) | ((r >> 6) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 7) & 1);
}
p += 2;
}
}
}
break;
case 4:
for (int32 i = 0; i < count; i += inc_sa1, base += char_line_bytes, inc_sa1 = char_line_bytes, char_count = num_chars)
{
uint8 *line = base + (num_chars - char_count) * 4;
for (uint32 j = 0; j < char_count && p - buffer < count; j++, line += 4)
{
uint8 *q = line;
for (int32 l = 0; l < 8; l++, q += bytes_per_line)
{
for (int32 b = 0; b < 4; b++)
{
uint8 r = *(q + b);
*(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
*(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1);
*(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1);
*(p + 0) = (*(p + 0) << 1) | ((r >> 4) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 5) & 1);
*(p + 16) = (*(p + 16) << 1) | ((r >> 6) & 1);
*(p + 17) = (*(p + 17) << 1) | ((r >> 7) & 1);
}
p += 2;
}
p += 32 - 16;
}
}
break;
case 8:
for (int32 i = 0; i < count; i += inc_sa1, base += char_line_bytes, inc_sa1 = char_line_bytes, char_count = num_chars)
{
uint8 *line = base + (num_chars - char_count) * 8;
for (uint32 j = 0; j < char_count && p - buffer < count; j++, line += 8)
{
uint8 *q = line;
for (int32 l = 0; l < 8; l++, q += bytes_per_line)
{
for (int32 b = 0; b < 8; b++)
{
uint8 r = *(q + b);
*(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
*(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1);
*(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1);
*(p + 32) = (*(p + 32) << 1) | ((r >> 4) & 1);
*(p + 33) = (*(p + 33) << 1) | ((r >> 5) & 1);
*(p + 48) = (*(p + 48) << 1) | ((r >> 6) & 1);
*(p + 49) = (*(p + 49) << 1) | ((r >> 7) & 1);
}
p += 2;
}
p += 64 - 16;
}
}
break;
}
}
}
#ifdef DEBUGGER
if (Settings.TraceDMA)
{
sprintf(String, "DMA[%d]: %s Mode:%d 0x%02X%04X->0x21%02X Bytes:%d (%s) V:%03d",
Channel, d->ReverseTransfer ? "PPU->CPU" : "CPU->PPU", d->TransferMode, d->ABank, d->AAddress, d->BAddress,
d->TransferBytes, d->AAddressFixed ? "fixed" : (d->AAddressDecrement ? "dec" : "inc"), CPU.V_Counter);
if (d->BAddress == 0x18 || d->BAddress == 0x19 || d->BAddress == 0x39 || d->BAddress == 0x3a)
sprintf(String, "%s VRAM: %04X (%d,%d) %s", String,
PPU.VMA.Address, PPU.VMA.Increment, PPU.VMA.FullGraphicCount, PPU.VMA.High ? "word" : "byte");
else
if (d->BAddress == 0x22 || d->BAddress == 0x3b)
sprintf(String, "%s CGRAM: %02X (%x)", String, PPU.CGADD, PPU.CGFLIP);
else
if (d->BAddress == 0x04 || d->BAddress == 0x38)
sprintf(String, "%s OBJADDR: %04X", String, PPU.OAMAddr);
S9xMessage(S9X_TRACE, S9X_DMA_TRACE, String);
}
#endif
// Do Transfer
uint8 Work;
// 8 cycles per channel
ADD_CYCLES(SLOW_ONE_CYCLE);
if (!d->ReverseTransfer)
{
// CPU -> PPU
int32 b = 0;
uint16 p = d->AAddress;
uint8 *base = S9xGetBasePointer((d->ABank << 16) + d->AAddress);
bool8 inWRAM_DMA;
int32 rem = count;
// Transfer per block if d->AAdressFixed is FALSE
count = d->AAddressFixed ? rem : (d->AAddressDecrement ? ((p & MEMMAP_MASK) + 1) : (MEMMAP_BLOCK_SIZE - (p & MEMMAP_MASK)));
// Settings for custom chip DMA
if (in_sa1_dma)
{
base = &Memory.ROM[CMemory::MAX_ROM_SIZE - 0x10000];
p = 0;
count = rem;
}
else
if (in_sdd1_dma)
{
base = in_sdd1_dma;
p = 0;
count = rem;
}
else
if (spc7110_dma)
{
base = spc7110_dma;
p = 0;
count = rem;
}
inWRAM_DMA = ((!in_sa1_dma && !in_sdd1_dma && !spc7110_dma) &&
(d->ABank == 0x7e || d->ABank == 0x7f || (!(d->ABank & 0x40) && d->AAddress < 0x2000)));
// 8 cycles per byte
#define UPDATE_COUNTERS \
d->TransferBytes--; \
d->AAddress += inc; \
p += inc; \
if (!addCyclesInDMA(Channel)) \
{ \
CPU.InDMA = FALSE; \
CPU.InDMAorHDMA = FALSE; \
CPU.InWRAMDMAorHDMA = FALSE; \
CPU.CurrentDMAorHDMAChannel = -1; \
return (FALSE); \
}
while (1)
{
if (count > rem)
count = rem;
rem -= count;
CPU.InWRAMDMAorHDMA = inWRAM_DMA;
if (!base)
{
// DMA SLOW PATH
if (d->TransferMode == 0 || d->TransferMode == 2 || d->TransferMode == 6)
{
do
{
Work = S9xGetByte((d->ABank << 16) + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
UPDATE_COUNTERS;
} while (--count > 0);
}
else
if (d->TransferMode == 1 || d->TransferMode == 5)
{
// This is a variation on Duff's Device. It is legal C/C++.
switch (b)
{
default:
while (count > 1)
{
Work = S9xGetByte((d->ABank << 16) + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
UPDATE_COUNTERS;
count--;
// Fall through
case 1:
Work = S9xGetByte((d->ABank << 16) + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
UPDATE_COUNTERS;
count--;
}
}
if (count == 1)
{
Work = S9xGetByte((d->ABank << 16) + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
UPDATE_COUNTERS;
b = 1;
}
else
b = 0;
}
else
if (d->TransferMode == 3 || d->TransferMode == 7)
{
switch (b)
{
default:
do
{
Work = S9xGetByte((d->ABank << 16) + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 1;
break;
}
// Fall through
case 1:
Work = S9xGetByte((d->ABank << 16) + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 2;
break;
}
// Fall through
case 2:
Work = S9xGetByte((d->ABank << 16) + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 3;
break;
}
// Fall through
case 3:
Work = S9xGetByte((d->ABank << 16) + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 0;
break;
}
} while (1);
}
}
else
if (d->TransferMode == 4)
{
switch (b)
{
default:
do
{
Work = S9xGetByte((d->ABank << 16) + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 1;
break;
}
// Fall through
case 1:
Work = S9xGetByte((d->ABank << 16) + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 2;
break;
}
// Fall through
case 2:
Work = S9xGetByte((d->ABank << 16) + p);
S9xSetPPU(Work, 0x2102 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 3;
break;
}
// Fall through
case 3:
Work = S9xGetByte((d->ABank << 16) + p);
S9xSetPPU(Work, 0x2103 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 0;
break;
}
} while (1);
}
}
#ifdef DEBUGGER
else
{
sprintf(String, "Unknown DMA transfer mode: %d on channel %d\n", d->TransferMode, Channel);
S9xMessage(S9X_TRACE, S9X_DMA_TRACE, String);
}
#endif
}
else
{
// DMA FAST PATH
if (d->TransferMode == 0 || d->TransferMode == 2 || d->TransferMode == 6)
{
switch (d->BAddress)
{
case 0x04: // OAMDATA
do
{
Work = *(base + p);
REGISTER_2104(Work);
UPDATE_COUNTERS;
} while (--count > 0);
break;
case 0x18: // VMDATAL
if (!PPU.VMA.FullGraphicCount)
{
do
{
Work = *(base + p);
REGISTER_2118_linear(Work);
UPDATE_COUNTERS;
} while (--count > 0);
}
else
{
do
{
Work = *(base + p);
REGISTER_2118_tile(Work);
UPDATE_COUNTERS;
} while (--count > 0);
}
break;
case 0x19: // VMDATAH
if (!PPU.VMA.FullGraphicCount)
{
do
{
Work = *(base + p);
REGISTER_2119_linear(Work);
UPDATE_COUNTERS;
} while (--count > 0);
}
else
{
do
{
Work = *(base + p);
REGISTER_2119_tile(Work);
UPDATE_COUNTERS;
} while (--count > 0);
}
break;
case 0x22: // CGDATA
do
{
Work = *(base + p);
REGISTER_2122(Work);
UPDATE_COUNTERS;
} while (--count > 0);
break;
case 0x80: // WMDATA
if (!CPU.InWRAMDMAorHDMA)
{
do
{
Work = *(base + p);
REGISTER_2180(Work);
UPDATE_COUNTERS;
} while (--count > 0);
}
else
{
do
{
UPDATE_COUNTERS;
} while (--count > 0);
}
break;
default:
do
{
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
UPDATE_COUNTERS;
} while (--count > 0);
break;
}
}
else
if (d->TransferMode == 1 || d->TransferMode == 5)
{
if (d->BAddress == 0x18)
{
// VMDATAL
if (!PPU.VMA.FullGraphicCount)
{
switch (b)
{
default:
while (count > 1)
{
Work = *(base + p);
REGISTER_2118_linear(Work);
UPDATE_COUNTERS;
count--;
// Fall through
case 1:
OpenBus = *(base + p);
REGISTER_2119_linear(OpenBus);
UPDATE_COUNTERS;
count--;
}
}
if (count == 1)
{
Work = *(base + p);
REGISTER_2118_linear(Work);
UPDATE_COUNTERS;
b = 1;
}
else
b = 0;
}
else
{
switch (b)
{
default:
while (count > 1)
{
Work = *(base + p);
REGISTER_2118_tile(Work);
UPDATE_COUNTERS;
count--;
// Fall through
case 1:
Work = *(base + p);
REGISTER_2119_tile(Work);
UPDATE_COUNTERS;
count--;
}
}
if (count == 1)
{
Work = *(base + p);
REGISTER_2118_tile(Work);
UPDATE_COUNTERS;
b = 1;
}
else
b = 0;
}
}
else
{
// DMA mode 1 general case
switch (b)
{
default:
while (count > 1)
{
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
UPDATE_COUNTERS;
count--;
// Fall through
case 1:
Work = *(base + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
UPDATE_COUNTERS;
count--;
}
}
if (count == 1)
{
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
UPDATE_COUNTERS;
b = 1;
}
else
b = 0;
}
}
else
if (d->TransferMode == 3 || d->TransferMode == 7)
{
switch (b)
{
default:
do
{
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 1;
break;
}
// Fall through
case 1:
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 2;
break;
}
// Fall through
case 2:
Work = *(base + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 3;
break;
}
// Fall through
case 3:
Work = *(base + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 0;
break;
}
} while (1);
}
}
else
if (d->TransferMode == 4)
{
switch (b)
{
default:
do
{
Work = *(base + p);
S9xSetPPU(Work, 0x2100 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 1;
break;
}
// Fall through
case 1:
Work = *(base + p);
S9xSetPPU(Work, 0x2101 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 2;
break;
}
// Fall through
case 2:
Work = *(base + p);
S9xSetPPU(Work, 0x2102 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 3;
break;
}
// Fall through
case 3:
Work = *(base + p);
S9xSetPPU(Work, 0x2103 + d->BAddress);
UPDATE_COUNTERS;
if (--count <= 0)
{
b = 0;
break;
}
} while (1);
}
}
#ifdef DEBUGGER
else
{
sprintf(String, "Unknown DMA transfer mode: %d on channel %d\n", d->TransferMode, Channel);
S9xMessage(S9X_TRACE, S9X_DMA_TRACE, String);
}
#endif
}
if (rem <= 0)
break;
base = S9xGetBasePointer((d->ABank << 16) + d->AAddress);
count = MEMMAP_BLOCK_SIZE;
inWRAM_DMA = ((!in_sa1_dma && !in_sdd1_dma && !spc7110_dma) &&
(d->ABank == 0x7e || d->ABank == 0x7f || (!(d->ABank & 0x40) && d->AAddress < 0x2000)));
}
#undef UPDATE_COUNTERS
}
else
{
// PPU -> CPU
// 8 cycles per byte
#define UPDATE_COUNTERS \
d->TransferBytes--; \
d->AAddress += inc; \
if (!addCyclesInDMA(Channel)) \
{ \
CPU.InDMA = FALSE; \
CPU.InDMAorHDMA = FALSE; \
CPU.InWRAMDMAorHDMA = FALSE; \
CPU.CurrentDMAorHDMAChannel = -1; \
return (FALSE); \
}
if (d->BAddress > 0x80 - 4 && d->BAddress <= 0x83 && !(d->ABank & 0x40))
{
// REVERSE-DMA REALLY-SLOW PATH
do
{
switch (d->TransferMode)
{
case 0:
case 2:
case 6:
CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000);
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
count--;
break;
case 1:
case 5:
CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000);
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
if (!--count)
break;
CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000);
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
count--;
break;
case 3:
case 7:
CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000);
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
if (!--count)
break;
CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000);
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
if (!--count)
break;
CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000);
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
if (!--count)
break;
CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000);
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
count--;
break;
case 4:
CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000);
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
if (!--count)
break;
CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000);
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
if (!--count)
break;
CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000);
Work = S9xGetPPU(0x2102 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
if (!--count)
break;
CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000);
Work = S9xGetPPU(0x2103 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
count--;
break;
default:
#ifdef DEBUGGER
sprintf(String, "Unknown DMA transfer mode: %d on channel %d\n", d->TransferMode, Channel);
S9xMessage(S9X_TRACE, S9X_DMA_TRACE, String);
#endif
while (count)
{
UPDATE_COUNTERS;
count--;
}
break;
}
} while (count);
}
else
{
// REVERSE-DMA FASTER PATH
CPU.InWRAMDMAorHDMA = (d->ABank == 0x7e || d->ABank == 0x7f);
do
{
switch (d->TransferMode)
{
case 0:
case 2:
case 6:
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
count--;
break;
case 1:
case 5:
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
if (!--count)
break;
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
count--;
break;
case 3:
case 7:
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
if (!--count)
break;
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
if (!--count)
break;
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
if (!--count)
break;
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
count--;
break;
case 4:
Work = S9xGetPPU(0x2100 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
if (!--count)
break;
Work = S9xGetPPU(0x2101 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
if (!--count)
break;
Work = S9xGetPPU(0x2102 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
if (!--count)
break;
Work = S9xGetPPU(0x2103 + d->BAddress);
S9xSetByte(Work, (d->ABank << 16) + d->AAddress);
UPDATE_COUNTERS;
count--;
break;
default:
#ifdef DEBUGGER
sprintf(String, "Unknown DMA transfer mode: %d on channel %d\n", d->TransferMode, Channel);
S9xMessage(S9X_TRACE, S9X_DMA_TRACE, String);
#endif
while (count)
{
UPDATE_COUNTERS;
count--;
}
break;
}
} while (count);
}
}
if (CPU.NMIPending && (Timings.NMITriggerPos != 0xffff))
{
Timings.NMITriggerPos = CPU.Cycles + Timings.NMIDMADelay;
}
// Release the memory used in SPC7110 DMA
if (Settings.SPC7110)
{
if (spc7110_dma)
delete [] spc7110_dma;
}
#if 0
// sanity check
if (d->TransferBytes != 0)
fprintf(stderr,"DMA[%d] TransferBytes not 0! $21%02x Reverse:%d %04x\n", Channel, d->BAddress, d->ReverseTransfer, d->TransferBytes);
#endif
CPU.InDMA = FALSE;
CPU.InDMAorHDMA = FALSE;
CPU.InWRAMDMAorHDMA = FALSE;
CPU.CurrentDMAorHDMAChannel = -1;
return (TRUE);
}
static inline bool8 HDMAReadLineCount (int d)
{
// CPU.InDMA is set, so S9xGetXXX() / S9xSetXXX() incur no charges.
uint8 line;
line = S9xGetByte((DMA[d].ABank << 16) + DMA[d].Address);
ADD_CYCLES(SLOW_ONE_CYCLE);
if (!line)
{
DMA[d].Repeat = FALSE;
DMA[d].LineCount = 128;
if (DMA[d].HDMAIndirectAddressing)
{
if (PPU.HDMA & (0xfe << d))
{
DMA[d].Address++;
ADD_CYCLES(SLOW_ONE_CYCLE << 1);
}
else
ADD_CYCLES(SLOW_ONE_CYCLE);
DMA[d].IndirectAddress = S9xGetWord((DMA[d].ABank << 16) + DMA[d].Address);
DMA[d].Address++;
}
DMA[d].Address++;
HDMAMemPointers[d] = NULL;
return (FALSE);
}
else
if (line == 0x80)
{
DMA[d].Repeat = TRUE;
DMA[d].LineCount = 128;
}
else
{
DMA[d].Repeat = !(line & 0x80);
DMA[d].LineCount = line & 0x7f;
}
DMA[d].Address++;
DMA[d].DoTransfer = TRUE;
if (DMA[d].HDMAIndirectAddressing)
{
ADD_CYCLES(SLOW_ONE_CYCLE << 1);
DMA[d].IndirectAddress = S9xGetWord((DMA[d].ABank << 16) + DMA[d].Address);
DMA[d].Address += 2;
HDMAMemPointers[d] = S9xGetMemPointer((DMA[d].IndirectBank << 16) + DMA[d].IndirectAddress);
}
else
HDMAMemPointers[d] = S9xGetMemPointer((DMA[d].ABank << 16) + DMA[d].Address);
return (TRUE);
}
void S9xStartHDMA (void)
{
PPU.HDMA = Memory.FillRAM[0x420c];
#ifdef DEBUGGER
missing.hdma_this_frame = PPU.HDMA;
#endif
PPU.HDMAEnded = 0;
int32 tmpch;
CPU.InHDMA = TRUE;
CPU.InDMAorHDMA = TRUE;
tmpch = CPU.CurrentDMAorHDMAChannel;
// XXX: Not quite right...
if (PPU.HDMA != 0)
ADD_CYCLES(Timings.DMACPUSync);
for (uint8 i = 0; i < 8; i++)
{
if (PPU.HDMA & (1 << i))
{
CPU.CurrentDMAorHDMAChannel = i;
DMA[i].Address = DMA[i].AAddress;
if (!HDMAReadLineCount(i))
{
PPU.HDMA &= ~(1 << i);
PPU.HDMAEnded |= (1 << i);
}
}
else
DMA[i].DoTransfer = FALSE;
}
CPU.InHDMA = FALSE;
CPU.InDMAorHDMA = CPU.InDMA;
CPU.HDMARanInDMA = CPU.InDMA ? PPU.HDMA : 0;
CPU.CurrentDMAorHDMAChannel = tmpch;
}
uint8 S9xDoHDMA (uint8 byte)
{
struct SDMA *p;
uint32 ShiftedIBank;
uint16 IAddr;
bool8 temp;
int32 tmpch;
int d;
uint8 mask;
CPU.InHDMA = TRUE;
CPU.InDMAorHDMA = TRUE;
CPU.HDMARanInDMA = CPU.InDMA ? byte : 0;
temp = CPU.InWRAMDMAorHDMA;
tmpch = CPU.CurrentDMAorHDMAChannel;
// XXX: Not quite right...
ADD_CYCLES(Timings.DMACPUSync);
for (mask = 1, p = &DMA[0], d = 0; mask; mask <<= 1, p++, d++)
{
if (byte & mask)
{
CPU.InWRAMDMAorHDMA = FALSE;
CPU.CurrentDMAorHDMAChannel = d;
if (p->HDMAIndirectAddressing)
{
ShiftedIBank = (p->IndirectBank << 16);
IAddr = p->IndirectAddress;
}
else
{
ShiftedIBank = (p->ABank << 16);
IAddr = p->Address;
}
if (!HDMAMemPointers[d])
HDMAMemPointers[d] = S9xGetMemPointer(ShiftedIBank + IAddr);
if (p->DoTransfer)
{
// XXX: Hack for Uniracers, because we don't understand
// OAM Address Invalidation
if (p->BAddress == 0x04)
{
if (SNESGameFixes.Uniracers)
{
PPU.OAMAddr = 0x10c;
PPU.OAMFlip = 0;
}
}
#ifdef DEBUGGER
if (Settings.TraceHDMA && p->DoTransfer)
{
sprintf(String, "H-DMA[%d] %s (%d) 0x%06X->0x21%02X %s, Count: %3d, Rep: %s, V-LINE: %3ld %02X%04X",
p-DMA, p->ReverseTransfer? "read" : "write",
p->TransferMode, ShiftedIBank+IAddr, p->BAddress,
p->HDMAIndirectAddressing ? "ind" : "abs",
p->LineCount,
p->Repeat ? "yes" : "no ", (long) CPU.V_Counter,
p->ABank, p->Address);
S9xMessage(S9X_TRACE, S9X_HDMA_TRACE, String);
}
#endif
if (!p->ReverseTransfer)
{
if ((IAddr & MEMMAP_MASK) + HDMA_ModeByteCounts[p->TransferMode] >= MEMMAP_BLOCK_SIZE)
{
// HDMA REALLY-SLOW PATH
HDMAMemPointers[d] = NULL;
#define DOBYTE(Addr, RegOff) \
CPU.InWRAMDMAorHDMA = (ShiftedIBank == 0x7e0000 || ShiftedIBank == 0x7f0000 || \
(!(ShiftedIBank & 0x400000) && ((uint16) (Addr)) < 0x2000)); \
S9xSetPPU(S9xGetByte(ShiftedIBank + ((uint16) (Addr))), 0x2100 + p->BAddress + (RegOff));
switch (p->TransferMode)
{
case 0:
DOBYTE(IAddr, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
case 5:
DOBYTE(IAddr + 0, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 1, 1);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 2, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 3, 1);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
case 1:
DOBYTE(IAddr + 0, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 1, 1);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
case 2:
case 6:
DOBYTE(IAddr + 0, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 1, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
case 3:
case 7:
DOBYTE(IAddr + 0, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 1, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 2, 1);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 3, 1);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
case 4:
DOBYTE(IAddr + 0, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 1, 1);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 2, 2);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 3, 3);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
}
#undef DOBYTE
}
else
{
CPU.InWRAMDMAorHDMA = (ShiftedIBank == 0x7e0000 || ShiftedIBank == 0x7f0000 ||
(!(ShiftedIBank & 0x400000) && IAddr < 0x2000));
if (!HDMAMemPointers[d])
{
// HDMA SLOW PATH
uint32 Addr = ShiftedIBank + IAddr;
switch (p->TransferMode)
{
case 0:
S9xSetPPU(S9xGetByte(Addr), 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
case 5:
S9xSetPPU(S9xGetByte(Addr + 0), 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(S9xGetByte(Addr + 1), 0x2101 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
Addr += 2;
/* fall through */
case 1:
S9xSetPPU(S9xGetByte(Addr + 0), 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(S9xGetByte(Addr + 1), 0x2101 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
case 2:
case 6:
S9xSetPPU(S9xGetByte(Addr + 0), 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(S9xGetByte(Addr + 1), 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
case 3:
case 7:
S9xSetPPU(S9xGetByte(Addr + 0), 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(S9xGetByte(Addr + 1), 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(S9xGetByte(Addr + 2), 0x2101 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(S9xGetByte(Addr + 3), 0x2101 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
case 4:
S9xSetPPU(S9xGetByte(Addr + 0), 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(S9xGetByte(Addr + 1), 0x2101 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(S9xGetByte(Addr + 2), 0x2102 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(S9xGetByte(Addr + 3), 0x2103 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
}
}
else
{
// HDMA FAST PATH
switch (p->TransferMode)
{
case 0:
S9xSetPPU(*HDMAMemPointers[d]++, 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
case 5:
S9xSetPPU(*(HDMAMemPointers[d] + 0), 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(*(HDMAMemPointers[d] + 1), 0x2101 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
HDMAMemPointers[d] += 2;
/* fall through */
case 1:
S9xSetPPU(*(HDMAMemPointers[d] + 0), 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
// XXX: All HDMA should read to MDR first. This one just
// happens to fix Speedy Gonzales.
OpenBus = *(HDMAMemPointers[d] + 1);
S9xSetPPU(OpenBus, 0x2101 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
HDMAMemPointers[d] += 2;
break;
case 2:
case 6:
S9xSetPPU(*(HDMAMemPointers[d] + 0), 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(*(HDMAMemPointers[d] + 1), 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
HDMAMemPointers[d] += 2;
break;
case 3:
case 7:
S9xSetPPU(*(HDMAMemPointers[d] + 0), 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(*(HDMAMemPointers[d] + 1), 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(*(HDMAMemPointers[d] + 2), 0x2101 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(*(HDMAMemPointers[d] + 3), 0x2101 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
HDMAMemPointers[d] += 4;
break;
case 4:
S9xSetPPU(*(HDMAMemPointers[d] + 0), 0x2100 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(*(HDMAMemPointers[d] + 1), 0x2101 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(*(HDMAMemPointers[d] + 2), 0x2102 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
S9xSetPPU(*(HDMAMemPointers[d] + 3), 0x2103 + p->BAddress);
ADD_CYCLES(SLOW_ONE_CYCLE);
HDMAMemPointers[d] += 4;
break;
}
}
}
}
else
{
// REVERSE HDMA REALLY-SLOW PATH
// anomie says: Since this is apparently never used
// (otherwise we would have noticed before now), let's not bother with faster paths.
HDMAMemPointers[d] = NULL;
#define DOBYTE(Addr, RegOff) \
CPU.InWRAMDMAorHDMA = (ShiftedIBank == 0x7e0000 || ShiftedIBank == 0x7f0000 || \
(!(ShiftedIBank & 0x400000) && ((uint16) (Addr)) < 0x2000)); \
S9xSetByte(S9xGetPPU(0x2100 + p->BAddress + (RegOff)), ShiftedIBank + ((uint16) (Addr)));
switch (p->TransferMode)
{
case 0:
DOBYTE(IAddr, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
case 5:
DOBYTE(IAddr + 0, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 1, 1);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 2, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 3, 1);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
case 1:
DOBYTE(IAddr + 0, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 1, 1);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
case 2:
case 6:
DOBYTE(IAddr + 0, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 1, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
case 3:
case 7:
DOBYTE(IAddr + 0, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 1, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 2, 1);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 3, 1);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
case 4:
DOBYTE(IAddr + 0, 0);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 1, 1);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 2, 2);
ADD_CYCLES(SLOW_ONE_CYCLE);
DOBYTE(IAddr + 3, 3);
ADD_CYCLES(SLOW_ONE_CYCLE);
break;
}
#undef DOBYTE
}
}
}
}
for (mask = 1, p = &DMA[0], d = 0; mask; mask <<= 1, p++, d++)
{
if (byte & mask)
{
if (p->DoTransfer)
{
if (p->HDMAIndirectAddressing)
p->IndirectAddress += HDMA_ModeByteCounts[p->TransferMode];
else
p->Address += HDMA_ModeByteCounts[p->TransferMode];
}
p->DoTransfer = !p->Repeat;
if (!--p->LineCount)
{
if (!HDMAReadLineCount(d))
{
byte &= ~mask;
PPU.HDMAEnded |= mask;
p->DoTransfer = FALSE;
}
}
else
ADD_CYCLES(SLOW_ONE_CYCLE);
}
}
CPU.InHDMA = FALSE;
CPU.InDMAorHDMA = CPU.InDMA;
CPU.InWRAMDMAorHDMA = temp;
CPU.CurrentDMAorHDMAChannel = tmpch;
return (byte);
}
void S9xResetDMA (void)
{
for (int d = 0; d < 8; d++)
{
DMA[d].ReverseTransfer = TRUE;
DMA[d].HDMAIndirectAddressing = TRUE;
DMA[d].AAddressFixed = TRUE;
DMA[d].AAddressDecrement = TRUE;
DMA[d].TransferMode = 7;
DMA[d].BAddress = 0xff;
DMA[d].AAddress = 0xffff;
DMA[d].ABank = 0xff;
DMA[d].DMACount_Or_HDMAIndirectAddress = 0xffff;
DMA[d].IndirectBank = 0xff;
DMA[d].Address = 0xffff;
DMA[d].Repeat = FALSE;
DMA[d].LineCount = 0x7f;
DMA[d].UnknownByte = 0xff;
DMA[d].DoTransfer = FALSE;
DMA[d].UnusedBit43x0 = 1;
}
}