/*********************************************************************************** Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com), Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2002 - 2004 Matthew Kendora (c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org) (c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/) (c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca), Kris Bleakley (codeviolation@hotmail.com) (c) Copyright 2002 - 2010 Brad Jorsch (anomie@users.sourceforge.net), Nach (n-a-c-h@users.sourceforge.net), (c) Copyright 2002 - 2011 zones (kasumitokoduck@yahoo.com) (c) Copyright 2006 - 2007 nitsuja (c) Copyright 2009 - 2018 BearOso, OV2 (c) Copyright 2017 qwertymodo (c) Copyright 2011 - 2017 Hans-Kristian Arntzen, Daniel De Matteis (Under no circumstances will commercial rights be given) BS-X C emulator code (c) Copyright 2005 - 2006 Dreamer Nom, zones C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com), Nach, zsKnight (zsknight@zsnes.com) C4 C++ code (c) Copyright 2003 - 2006 Brad Jorsch, Nach DSP-1 emulator code (c) Copyright 1998 - 2006 _Demo_, Andreas Naive (andreasnaive@gmail.com), Gary Henderson, Ivar (ivar@snes9x.com), John Weidman, Kris Bleakley, Matthew Kendora, Nach, neviksti (neviksti@hotmail.com) DSP-2 emulator code (c) Copyright 2003 John Weidman, Kris Bleakley, Lord Nightmare (lord_nightmare@users.sourceforge.net), Matthew Kendora, neviksti DSP-3 emulator code (c) Copyright 2003 - 2006 John Weidman, Kris Bleakley, Lancer, z80 gaiden DSP-4 emulator code (c) Copyright 2004 - 2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com), Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code used in 1.39-1.51 (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, Dark Force SPC7110 and RTC C++ emulator code used in 1.52+ (c) Copyright 2009 byuu, neviksti S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive, John Weidman S-RTC C emulator code (c) Copyright 2001 - 2006 byuu, John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, John Weidman, Kris Bleakley, Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 _Demo_, pagefault, zsKnight Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson, John Weidman Sound emulator code used in 1.5-1.51 (c) Copyright 1998 - 2003 Brad Martin (c) Copyright 1998 - 2006 Charles Bilyue' Sound emulator code used in 1.52+ (c) Copyright 2004 - 2007 Shay Green (gblargg@gmail.com) S-SMP emulator code used in 1.54+ (c) Copyright 2016 byuu SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) 2xSaI filter (c) Copyright 1999 - 2001 Derek Liauw Kie Fa HQ2x, HQ3x, HQ4x filters (c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com) NTSC filter (c) Copyright 2006 - 2007 Shay Green GTK+ GUI code (c) Copyright 2004 - 2018 BearOso Win32 GUI code (c) Copyright 2003 - 2006 blip, funkyass, Matthew Kendora, Nach, nitsuja (c) Copyright 2009 - 2018 OV2 Mac OS GUI code (c) Copyright 1998 - 2001 John Stiles (c) Copyright 2001 - 2011 zones Libretro port (c) Copyright 2011 - 2017 Hans-Kristian Arntzen, Daniel De Matteis (Under no circumstances will commercial rights be given) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com/ Permission to use, copy, modify and/or distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software or it's derivatives. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes, but is not limited to, charging money for Snes9x or software derived from Snes9x, including Snes9x or derivatives in commercial game bundles, and/or using Snes9x as a promotion for your commercial product. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. ***********************************************************************************/ #include "snes9x.h" #include "memmap.h" #include "cpuops.h" #include "dma.h" #include "apu/apu.h" #include "fxemu.h" #include "snapshot.h" #ifdef DEBUGGER #include "debug.h" #include "missing.h" #endif static inline void S9xReschedule (void); void S9xMainLoop (void) { #define CHECK_FOR_IRQ_CHANGE() \ if (Timings.IRQFlagChanging) \ { \ if (Timings.IRQFlagChanging == IRQ_CLEAR_FLAG) \ ClearIRQ(); \ else if (Timings.IRQFlagChanging == IRQ_SET_FLAG) \ SetIRQ(); \ Timings.IRQFlagChanging = IRQ_NONE; \ } for (;;) { if (CPU.NMIPending) { #ifdef DEBUGGER if (Settings.TraceHCEvent) S9xTraceFormattedMessage ("Comparing %d to %d\n", Timings.NMITriggerPos, CPU.Cycles); #endif if (Timings.NMITriggerPos <= CPU.Cycles) { CPU.NMIPending = FALSE; Timings.NMITriggerPos = 0xffff; if (CPU.WaitingForInterrupt) { CPU.WaitingForInterrupt = FALSE; Registers.PCw++; CPU.Cycles += ONE_CYCLE; while (CPU.Cycles >= CPU.NextEvent) S9xDoHEventProcessing(); } S9xOpcode_NMI(); } } if (CPU.IRQTransition) { if (CPU.WaitingForInterrupt) { CPU.WaitingForInterrupt = FALSE; Registers.PCw++; CPU.Cycles += ONE_CYCLE; while (CPU.Cycles >= CPU.NextEvent) S9xDoHEventProcessing(); } CPU.IRQTransition = FALSE; CPU.IRQLine = TRUE; } if ((CPU.Cycles >= Timings.NextIRQTimer) && !CPU.IRQLine && !CPU.IRQTransition) { S9xUpdateIRQPositions(); #ifdef DEBUGGER S9xTraceMessage ("Timer triggered\n"); #endif CPU.IRQTransition = TRUE; } if ((CPU.IRQLine || CPU.IRQExternal) && !CheckFlag(IRQ)) { /* The flag pushed onto the stack is the new value */ CHECK_FOR_IRQ_CHANGE(); S9xOpcode_IRQ(); } /* Change IRQ flag for instructions that set it only on last cycle */ CHECK_FOR_IRQ_CHANGE(); #ifdef DEBUGGER if ((CPU.Flags & BREAK_FLAG) && !(CPU.Flags & SINGLE_STEP_FLAG)) { for (int Break = 0; Break != 6; Break++) { if (S9xBreakpoint[Break].Enabled && S9xBreakpoint[Break].Bank == Registers.PB && S9xBreakpoint[Break].Address == Registers.PCw) { if (S9xBreakpoint[Break].Enabled == 2) S9xBreakpoint[Break].Enabled = TRUE; else CPU.Flags |= DEBUG_MODE_FLAG; } } } if (CPU.Flags & DEBUG_MODE_FLAG) break; if (CPU.Flags & TRACE_FLAG) S9xTrace(); if (CPU.Flags & SINGLE_STEP_FLAG) { CPU.Flags &= ~SINGLE_STEP_FLAG; CPU.Flags |= DEBUG_MODE_FLAG; } #endif if (CPU.Flags & SCAN_KEYS_FLAG) break; register uint8 Op; register struct SOpcodes *Opcodes; if (CPU.PCBase) { Op = CPU.PCBase[Registers.PCw]; CPU.Cycles += CPU.MemSpeed; Opcodes = ICPU.S9xOpcodes; } else { Op = S9xGetByte(Registers.PBPC); OpenBus = Op; Opcodes = S9xOpcodesSlow; } if ((Registers.PCw & MEMMAP_MASK) + ICPU.S9xOpLengths[Op] >= MEMMAP_BLOCK_SIZE) { uint8 *oldPCBase = CPU.PCBase; CPU.PCBase = S9xGetBasePointer(ICPU.ShiftedPB + ((uint16) (Registers.PCw + 4))); if (oldPCBase != CPU.PCBase || (Registers.PCw & ~MEMMAP_MASK) == (0xffff & ~MEMMAP_MASK)) Opcodes = S9xOpcodesSlow; } Registers.PCw++; (*Opcodes[Op].S9xOpcode)(); if (Settings.SA1) S9xSA1MainLoop(); } S9xPackStatus(); if (CPU.Flags & SCAN_KEYS_FLAG) { #ifdef DEBUGGER if (!(CPU.Flags & FRAME_ADVANCE_FLAG)) #endif S9xSyncSpeed(); CPU.Flags &= ~SCAN_KEYS_FLAG; } } static inline void S9xReschedule (void) { switch (CPU.WhichEvent) { case HC_HBLANK_START_EVENT: CPU.WhichEvent = HC_HDMA_START_EVENT; CPU.NextEvent = Timings.HDMAStart; break; case HC_HDMA_START_EVENT: CPU.WhichEvent = HC_HCOUNTER_MAX_EVENT; CPU.NextEvent = Timings.H_Max; break; case HC_HCOUNTER_MAX_EVENT: CPU.WhichEvent = HC_HDMA_INIT_EVENT; CPU.NextEvent = Timings.HDMAInit; break; case HC_HDMA_INIT_EVENT: CPU.WhichEvent = HC_RENDER_EVENT; CPU.NextEvent = Timings.RenderPos; break; case HC_RENDER_EVENT: CPU.WhichEvent = HC_WRAM_REFRESH_EVENT; CPU.NextEvent = Timings.WRAMRefreshPos; break; case HC_WRAM_REFRESH_EVENT: CPU.WhichEvent = HC_HBLANK_START_EVENT; CPU.NextEvent = Timings.HBlankStart; break; } } void S9xDoHEventProcessing (void) { #ifdef DEBUGGER static char eventname[7][32] = { "", "HC_HBLANK_START_EVENT", "HC_HDMA_START_EVENT ", "HC_HCOUNTER_MAX_EVENT", "HC_HDMA_INIT_EVENT ", "HC_RENDER_EVENT ", "HC_WRAM_REFRESH_EVENT" }; #endif #ifdef DEBUGGER if (Settings.TraceHCEvent) S9xTraceFormattedMessage("--- HC event processing (%s) expected HC:%04d executed HC:%04d", eventname[CPU.WhichEvent], CPU.NextEvent, CPU.Cycles); #endif switch (CPU.WhichEvent) { case HC_HBLANK_START_EVENT: S9xReschedule(); break; case HC_HDMA_START_EVENT: S9xReschedule(); if (PPU.HDMA && CPU.V_Counter <= PPU.ScreenHeight) { #ifdef DEBUGGER S9xTraceFormattedMessage("*** HDMA Transfer HC:%04d, Channel:%02x", CPU.Cycles, PPU.HDMA); #endif PPU.HDMA = S9xDoHDMA(PPU.HDMA); } break; case HC_HCOUNTER_MAX_EVENT: if (Settings.SuperFX) { if (!SuperFX.oneLineDone) S9xSuperFXExec(); SuperFX.oneLineDone = FALSE; } S9xAPUEndScanline(); CPU.Cycles -= Timings.H_Max; if (Timings.NMITriggerPos != 0xffff) Timings.NMITriggerPos -= Timings.H_Max; if (Timings.NextIRQTimer != 0x0fffffff) Timings.NextIRQTimer -= Timings.H_Max; S9xAPUSetReferenceTime(CPU.Cycles); CPU.V_Counter++; if (CPU.V_Counter >= Timings.V_Max) // V ranges from 0 to Timings.V_Max - 1 { CPU.V_Counter = 0; Timings.InterlaceField ^= 1; // From byuu: // [NTSC] // interlace mode has 525 scanlines: 263 on the even frame, and 262 on the odd. // non-interlace mode has 524 scanlines: 262 scanlines on both even and odd frames. // [PAL] // interlace mode has 625 scanlines: 313 on the even frame, and 312 on the odd. // non-interlace mode has 624 scanlines: 312 scanlines on both even and odd frames. if (IPPU.Interlace && !Timings.InterlaceField) Timings.V_Max = Timings.V_Max_Master + 1; // 263 (NTSC), 313?(PAL) else Timings.V_Max = Timings.V_Max_Master; // 262 (NTSC), 312?(PAL) Memory.FillRAM[0x213F] ^= 0x80; PPU.RangeTimeOver = 0; // FIXME: reading $4210 will wait 2 cycles, then perform reading, then wait 4 more cycles. Memory.FillRAM[0x4210] = Model->_5A22; ICPU.Frame++; PPU.HVBeamCounterLatched = 0; } // From byuu: // In non-interlace mode, there are 341 dots per scanline, and 262 scanlines per frame. // On odd frames, scanline 240 is one dot short. // In interlace mode, there are always 341 dots per scanline. Even frames have 263 scanlines, // and odd frames have 262 scanlines. // Interlace mode scanline 240 on odd frames is not missing a dot. if (CPU.V_Counter == 240 && !IPPU.Interlace && Timings.InterlaceField) // V=240 Timings.H_Max = Timings.H_Max_Master - ONE_DOT_CYCLE; // HC=1360 else Timings.H_Max = Timings.H_Max_Master; // HC=1364 if (Model->_5A22 == 2) { if (CPU.V_Counter != 240 || IPPU.Interlace || !Timings.InterlaceField) // V=240 { if (Timings.WRAMRefreshPos == SNES_WRAM_REFRESH_HC_v2 - ONE_DOT_CYCLE) // HC=534 Timings.WRAMRefreshPos = SNES_WRAM_REFRESH_HC_v2; // HC=538 else Timings.WRAMRefreshPos = SNES_WRAM_REFRESH_HC_v2 - ONE_DOT_CYCLE; // HC=534 } } else Timings.WRAMRefreshPos = SNES_WRAM_REFRESH_HC_v1; if (CPU.V_Counter == PPU.ScreenHeight + FIRST_VISIBLE_LINE) // VBlank starts from V=225(240). { S9xEndScreenRefresh(); CPU.Flags |= SCAN_KEYS_FLAG; PPU.HDMA = 0; // Bits 7 and 6 of $4212 are computed when read in S9xGetPPU. #ifdef DEBUGGER missing.dma_this_frame = 0; #endif IPPU.MaxBrightness = PPU.Brightness; PPU.ForcedBlanking = (Memory.FillRAM[0x2100] >> 7) & 1; if (!PPU.ForcedBlanking) { PPU.OAMAddr = PPU.SavedOAMAddr; uint8 tmp = 0; if (PPU.OAMPriorityRotation) tmp = (PPU.OAMAddr & 0xFE) >> 1; if ((PPU.OAMFlip & 1) || PPU.FirstSprite != tmp) { PPU.FirstSprite = tmp; IPPU.OBJChanged = TRUE; } PPU.OAMFlip = 0; } // FIXME: writing to $4210 will wait 6 cycles. Memory.FillRAM[0x4210] = 0x80 | Model->_5A22; if (Memory.FillRAM[0x4200] & 0x80) { #ifdef DEBUGGER if (Settings.TraceHCEvent) S9xTraceFormattedMessage ("NMI Scheduled for next scanline."); #endif // FIXME: triggered at HC=6, checked just before the final CPU cycle, // then, when to call S9xOpcode_NMI()? CPU.NMIPending = TRUE; Timings.NMITriggerPos = 6 + 6; } } if (CPU.V_Counter == PPU.ScreenHeight + 3) // FIXME: not true { if (Memory.FillRAM[0x4200] & 1) S9xDoAutoJoypad(); } if (CPU.V_Counter == FIRST_VISIBLE_LINE) // V=1 S9xStartScreenRefresh(); S9xReschedule(); break; case HC_HDMA_INIT_EVENT: S9xReschedule(); if (CPU.V_Counter == 0) { #ifdef DEBUGGER S9xTraceFormattedMessage("*** HDMA Init HC:%04d, Channel:%02x", CPU.Cycles, PPU.HDMA); #endif S9xStartHDMA(); } break; case HC_RENDER_EVENT: if (CPU.V_Counter >= FIRST_VISIBLE_LINE && CPU.V_Counter <= PPU.ScreenHeight) RenderLine((uint8) (CPU.V_Counter - FIRST_VISIBLE_LINE)); S9xReschedule(); break; case HC_WRAM_REFRESH_EVENT: #ifdef DEBUGGER S9xTraceFormattedMessage("*** WRAM Refresh HC:%04d", CPU.Cycles); #endif CPU.Cycles += SNES_WRAM_REFRESH_CYCLES; S9xReschedule(); break; } #ifdef DEBUGGER if (Settings.TraceHCEvent) S9xTraceFormattedMessage("--- HC event rescheduled (%s) expected HC:%04d current HC:%04d", eventname[CPU.WhichEvent], CPU.NextEvent, CPU.Cycles); #endif }