/*********************************************************************************** Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com), Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2002 - 2004 Matthew Kendora (c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org) (c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/) (c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca), Kris Bleakley (codeviolation@hotmail.com) (c) Copyright 2002 - 2010 Brad Jorsch (anomie@users.sourceforge.net), Nach (n-a-c-h@users.sourceforge.net), (c) Copyright 2002 - 2011 zones (kasumitokoduck@yahoo.com) (c) Copyright 2006 - 2007 nitsuja (c) Copyright 2009 - 2017 BearOso, OV2 (c) Copyright 2017 qwertymodo (c) Copyright 2011 - 2017 Hans-Kristian Arntzen, Daniel De Matteis (Under no circumstances will commercial rights be given) BS-X C emulator code (c) Copyright 2005 - 2006 Dreamer Nom, zones C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com), Nach, zsKnight (zsknight@zsnes.com) C4 C++ code (c) Copyright 2003 - 2006 Brad Jorsch, Nach DSP-1 emulator code (c) Copyright 1998 - 2006 _Demo_, Andreas Naive (andreasnaive@gmail.com), Gary Henderson, Ivar (ivar@snes9x.com), John Weidman, Kris Bleakley, Matthew Kendora, Nach, neviksti (neviksti@hotmail.com) DSP-2 emulator code (c) Copyright 2003 John Weidman, Kris Bleakley, Lord Nightmare (lord_nightmare@users.sourceforge.net), Matthew Kendora, neviksti DSP-3 emulator code (c) Copyright 2003 - 2006 John Weidman, Kris Bleakley, Lancer, z80 gaiden DSP-4 emulator code (c) Copyright 2004 - 2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com), Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code used in 1.39-1.51 (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, Dark Force SPC7110 and RTC C++ emulator code used in 1.52+ (c) Copyright 2009 byuu, neviksti S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive, John Weidman S-RTC C emulator code (c) Copyright 2001 - 2006 byuu, John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, John Weidman, Kris Bleakley, Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 _Demo_, pagefault, zsKnight Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson, John Weidman Sound emulator code used in 1.5-1.51 (c) Copyright 1998 - 2003 Brad Martin (c) Copyright 1998 - 2006 Charles Bilyue' Sound emulator code used in 1.52+ (c) Copyright 2004 - 2007 Shay Green (gblargg@gmail.com) S-SMP emulator code used in 1.54+ (c) Copyright 2016 byuu SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) 2xSaI filter (c) Copyright 1999 - 2001 Derek Liauw Kie Fa HQ2x, HQ3x, HQ4x filters (c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com) NTSC filter (c) Copyright 2006 - 2007 Shay Green GTK+ GUI code (c) Copyright 2004 - 2017 BearOso Win32 GUI code (c) Copyright 2003 - 2006 blip, funkyass, Matthew Kendora, Nach, nitsuja (c) Copyright 2009 - 2017 OV2 Mac OS GUI code (c) Copyright 1998 - 2001 John Stiles (c) Copyright 2001 - 2011 zones Libretro port (c) Copyright 2011 - 2017 Hans-Kristian Arntzen, Daniel De Matteis (Under no circumstances will commercial rights be given) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com/ Permission to use, copy, modify and/or distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software or it's derivatives. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes, but is not limited to, charging money for Snes9x or software derived from Snes9x, including Snes9x or derivatives in commercial game bundles, and/or using Snes9x as a promotion for your commercial product. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. ***********************************************************************************/ #ifndef _PPU_H_ #define _PPU_H_ #define FIRST_VISIBLE_LINE 1 #define TILE_2BIT 0 #define TILE_4BIT 1 #define TILE_8BIT 2 #define TILE_2BIT_EVEN 3 #define TILE_2BIT_ODD 4 #define TILE_4BIT_EVEN 5 #define TILE_4BIT_ODD 6 #define MAX_2BIT_TILES 4096 #define MAX_4BIT_TILES 2048 #define MAX_8BIT_TILES 1024 #define CLIP_OR 0 #define CLIP_AND 1 #define CLIP_XOR 2 #define CLIP_XNOR 3 struct ClipData { uint8 Count; uint8 DrawMode[6]; uint16 Left[6]; uint16 Right[6]; }; struct InternalPPU { struct ClipData Clip[2][6]; bool8 ColorsChanged; bool8 OBJChanged; uint8 *TileCache[7]; uint8 *TileCached[7]; uint16 VRAMReadBuffer; bool8 Interlace; bool8 InterlaceOBJ; bool8 PseudoHires; bool8 DoubleWidthPixels; bool8 DoubleHeightPixels; int CurrentLine; int PreviousLine; uint8 *XB; uint32 Red[256]; uint32 Green[256]; uint32 Blue[256]; uint16 ScreenColors[256]; uint8 MaxBrightness; bool8 RenderThisFrame; int RenderedScreenWidth; int RenderedScreenHeight; uint32 FrameCount; uint32 RenderedFramesCount; uint32 DisplayedRenderedFrameCount; uint32 TotalEmulatedFrames; uint32 SkippedFrames; uint32 FrameSkip; }; struct SOBJ { int16 HPos; uint16 VPos; uint8 HFlip; uint8 VFlip; uint16 Name; uint8 Priority; uint8 Palette; uint8 Size; }; struct SPPU { struct { bool8 High; uint8 Increment; uint16 Address; uint16 Mask1; uint16 FullGraphicCount; uint16 Shift; } VMA; uint32 WRAM; struct { uint16 SCBase; uint16 HOffset; uint16 VOffset; uint8 BGSize; uint16 NameBase; uint16 SCSize; } BG[4]; uint8 BGMode; uint8 BG3Priority; bool8 CGFLIP; uint8 CGFLIPRead; uint8 CGADD; uint16 CGDATA[256]; struct SOBJ OBJ[128]; bool8 OBJThroughMain; bool8 OBJThroughSub; bool8 OBJAddition; uint16 OBJNameBase; uint16 OBJNameSelect; uint8 OBJSizeSelect; uint16 OAMAddr; uint16 SavedOAMAddr; uint8 OAMPriorityRotation; uint8 OAMFlip; uint8 OAMReadFlip; uint16 OAMTileAddress; uint16 OAMWriteRegister; uint8 OAMData[512 + 32]; uint8 FirstSprite; uint8 LastSprite; uint8 RangeTimeOver; bool8 HTimerEnabled; bool8 VTimerEnabled; short HTimerPosition; short VTimerPosition; uint16 IRQHBeamPos; uint16 IRQVBeamPos; uint8 HBeamFlip; uint8 VBeamFlip; uint16 HBeamPosLatched; uint16 VBeamPosLatched; uint16 GunHLatch; uint16 GunVLatch; uint8 HVBeamCounterLatched; bool8 Mode7HFlip; bool8 Mode7VFlip; uint8 Mode7Repeat; short MatrixA; short MatrixB; short MatrixC; short MatrixD; short CentreX; short CentreY; short M7HOFS; short M7VOFS; uint8 Mosaic; uint8 MosaicStart; bool8 BGMosaic[4]; uint8 Window1Left; uint8 Window1Right; uint8 Window2Left; uint8 Window2Right; bool8 RecomputeClipWindows; uint8 ClipCounts[6]; uint8 ClipWindowOverlapLogic[6]; uint8 ClipWindow1Enable[6]; uint8 ClipWindow2Enable[6]; bool8 ClipWindow1Inside[6]; bool8 ClipWindow2Inside[6]; bool8 ForcedBlanking; uint8 FixedColourRed; uint8 FixedColourGreen; uint8 FixedColourBlue; uint8 Brightness; uint16 ScreenHeight; bool8 Need16x8Mulitply; uint8 BGnxOFSbyte; uint8 M7byte; uint8 HDMA; uint8 HDMAEnded; uint8 OpenBus1; uint8 OpenBus2; }; extern uint16 SignExtend[2]; extern struct SPPU PPU; extern struct InternalPPU IPPU; void S9xResetPPU (void); void S9xSoftResetPPU (void); void S9xSetPPU (uint8, uint16); uint8 S9xGetPPU (uint16); void S9xSetCPU (uint8, uint16); uint8 S9xGetCPU (uint16); void S9xUpdateIRQPositions (void); void S9xFixColourBrightness (void); void S9xDoAutoJoypad (void); #include "gfx.h" #include "memmap.h" typedef struct { uint8 _5C77; uint8 _5C78; uint8 _5A22; } SnesModel; extern SnesModel *Model; extern SnesModel M1SNES; extern SnesModel M2SNES; #define MAX_5C77_VERSION 0x01 #define MAX_5C78_VERSION 0x03 #define MAX_5A22_VERSION 0x02 static inline void FLUSH_REDRAW (void) { if (IPPU.PreviousLine != IPPU.CurrentLine) S9xUpdateScreen(); } static inline void REGISTER_2104 (uint8 Byte) { if (PPU.OAMAddr & 0x100) { int addr = ((PPU.OAMAddr & 0x10f) << 1) + (PPU.OAMFlip & 1); if (Byte != PPU.OAMData[addr]) { FLUSH_REDRAW(); PPU.OAMData[addr] = Byte; IPPU.OBJChanged = TRUE; // X position high bit, and sprite size (x4) struct SOBJ *pObj = &PPU.OBJ[(addr & 0x1f) * 4]; pObj->HPos = (pObj->HPos & 0xFF) | SignExtend[(Byte >> 0) & 1]; pObj++->Size = Byte & 2; pObj->HPos = (pObj->HPos & 0xFF) | SignExtend[(Byte >> 2) & 1]; pObj++->Size = Byte & 8; pObj->HPos = (pObj->HPos & 0xFF) | SignExtend[(Byte >> 4) & 1]; pObj++->Size = Byte & 32; pObj->HPos = (pObj->HPos & 0xFF) | SignExtend[(Byte >> 6) & 1]; pObj->Size = Byte & 128; } PPU.OAMFlip ^= 1; if (!(PPU.OAMFlip & 1)) { ++PPU.OAMAddr; PPU.OAMAddr &= 0x1ff; if (PPU.OAMPriorityRotation && PPU.FirstSprite != (PPU.OAMAddr >> 1)) { PPU.FirstSprite = (PPU.OAMAddr & 0xfe) >> 1; IPPU.OBJChanged = TRUE; } } else { if (PPU.OAMPriorityRotation && (PPU.OAMAddr & 1)) IPPU.OBJChanged = TRUE; } } else if (!(PPU.OAMFlip & 1)) { PPU.OAMWriteRegister &= 0xff00; PPU.OAMWriteRegister |= Byte; PPU.OAMFlip |= 1; if (PPU.OAMPriorityRotation && (PPU.OAMAddr & 1)) IPPU.OBJChanged = TRUE; } else { PPU.OAMWriteRegister &= 0x00ff; uint8 lowbyte = (uint8) (PPU.OAMWriteRegister); uint8 highbyte = Byte; PPU.OAMWriteRegister |= Byte << 8; int addr = (PPU.OAMAddr << 1); if (lowbyte != PPU.OAMData[addr] || highbyte != PPU.OAMData[addr + 1]) { FLUSH_REDRAW(); PPU.OAMData[addr] = lowbyte; PPU.OAMData[addr + 1] = highbyte; IPPU.OBJChanged = TRUE; if (addr & 2) { // Tile PPU.OBJ[addr = PPU.OAMAddr >> 1].Name = PPU.OAMWriteRegister & 0x1ff; // priority, h and v flip. PPU.OBJ[addr].Palette = (highbyte >> 1) & 7; PPU.OBJ[addr].Priority = (highbyte >> 4) & 3; PPU.OBJ[addr].HFlip = (highbyte >> 6) & 1; PPU.OBJ[addr].VFlip = (highbyte >> 7) & 1; } else { // X position (low) PPU.OBJ[addr = PPU.OAMAddr >> 1].HPos &= 0xff00; PPU.OBJ[addr].HPos |= lowbyte; // Sprite Y position PPU.OBJ[addr].VPos = highbyte; } } PPU.OAMFlip &= ~1; ++PPU.OAMAddr; if (PPU.OAMPriorityRotation && PPU.FirstSprite != (PPU.OAMAddr >> 1)) { PPU.FirstSprite = (PPU.OAMAddr & 0xfe) >> 1; IPPU.OBJChanged = TRUE; } } } // This code is correct, however due to Snes9x's inaccurate timings, some games might be broken by this chage. :( #ifdef DEBUGGER #define CHECK_INBLANK() \ if (!PPU.ForcedBlanking && CPU.V_Counter < PPU.ScreenHeight + FIRST_VISIBLE_LINE) \ { \ printf("Invalid VRAM acess at (%04d, %04d) blank:%d\n", CPU.Cycles, CPU.V_Counter, PPU.ForcedBlanking); \ if (Settings.BlockInvalidVRAMAccess) \ return; \ } #else #define CHECK_INBLANK() \ if (Settings.BlockInvalidVRAMAccess && !PPU.ForcedBlanking && CPU.V_Counter < PPU.ScreenHeight + FIRST_VISIBLE_LINE) \ return; #endif static inline void REGISTER_2118 (uint8 Byte) { CHECK_INBLANK(); uint32 address; if (PPU.VMA.FullGraphicCount) { uint32 rem = PPU.VMA.Address & PPU.VMA.Mask1; address = (((PPU.VMA.Address & ~PPU.VMA.Mask1) + (rem >> PPU.VMA.Shift) + ((rem & (PPU.VMA.FullGraphicCount - 1)) << 3)) << 1) & 0xffff; Memory.VRAM[address] = Byte; } else Memory.VRAM[address = (PPU.VMA.Address << 1) & 0xffff] = Byte; IPPU.TileCached[TILE_2BIT][address >> 4] = FALSE; IPPU.TileCached[TILE_4BIT][address >> 5] = FALSE; IPPU.TileCached[TILE_8BIT][address >> 6] = FALSE; IPPU.TileCached[TILE_2BIT_EVEN][address >> 4] = FALSE; IPPU.TileCached[TILE_2BIT_EVEN][((address >> 4) - 1) & (MAX_2BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_2BIT_ODD] [address >> 4] = FALSE; IPPU.TileCached[TILE_2BIT_ODD] [((address >> 4) - 1) & (MAX_2BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_4BIT_EVEN][address >> 5] = FALSE; IPPU.TileCached[TILE_4BIT_EVEN][((address >> 5) - 1) & (MAX_4BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_4BIT_ODD] [address >> 5] = FALSE; IPPU.TileCached[TILE_4BIT_ODD] [((address >> 5) - 1) & (MAX_4BIT_TILES - 1)] = FALSE; if (!PPU.VMA.High) { #ifdef DEBUGGER if (Settings.TraceVRAM && !CPU.InDMAorHDMA) printf("VRAM write byte: $%04X (%d, %d)\n", PPU.VMA.Address, Memory.FillRAM[0x2115] & 3, (Memory.FillRAM[0x2115] & 0x0c) >> 2); #endif PPU.VMA.Address += PPU.VMA.Increment; } } static inline void REGISTER_2119 (uint8 Byte) { CHECK_INBLANK(); uint32 address; if (PPU.VMA.FullGraphicCount) { uint32 rem = PPU.VMA.Address & PPU.VMA.Mask1; address = ((((PPU.VMA.Address & ~PPU.VMA.Mask1) + (rem >> PPU.VMA.Shift) + ((rem & (PPU.VMA.FullGraphicCount - 1)) << 3)) << 1) + 1) & 0xffff; Memory.VRAM[address] = Byte; } else Memory.VRAM[address = ((PPU.VMA.Address << 1) + 1) & 0xffff] = Byte; IPPU.TileCached[TILE_2BIT][address >> 4] = FALSE; IPPU.TileCached[TILE_4BIT][address >> 5] = FALSE; IPPU.TileCached[TILE_8BIT][address >> 6] = FALSE; IPPU.TileCached[TILE_2BIT_EVEN][address >> 4] = FALSE; IPPU.TileCached[TILE_2BIT_EVEN][((address >> 4) - 1) & (MAX_2BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_2BIT_ODD] [address >> 4] = FALSE; IPPU.TileCached[TILE_2BIT_ODD] [((address >> 4) - 1) & (MAX_2BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_4BIT_EVEN][address >> 5] = FALSE; IPPU.TileCached[TILE_4BIT_EVEN][((address >> 5) - 1) & (MAX_4BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_4BIT_ODD] [address >> 5] = FALSE; IPPU.TileCached[TILE_4BIT_ODD] [((address >> 5) - 1) & (MAX_4BIT_TILES - 1)] = FALSE; if (PPU.VMA.High) { #ifdef DEBUGGER if (Settings.TraceVRAM && !CPU.InDMAorHDMA) printf("VRAM write word: $%04X (%d, %d)\n", PPU.VMA.Address, Memory.FillRAM[0x2115] & 3, (Memory.FillRAM[0x2115] & 0x0c) >> 2); #endif PPU.VMA.Address += PPU.VMA.Increment; } } static inline void REGISTER_2118_tile (uint8 Byte) { CHECK_INBLANK(); uint32 rem = PPU.VMA.Address & PPU.VMA.Mask1; uint32 address = (((PPU.VMA.Address & ~PPU.VMA.Mask1) + (rem >> PPU.VMA.Shift) + ((rem & (PPU.VMA.FullGraphicCount - 1)) << 3)) << 1) & 0xffff; Memory.VRAM[address] = Byte; IPPU.TileCached[TILE_2BIT][address >> 4] = FALSE; IPPU.TileCached[TILE_4BIT][address >> 5] = FALSE; IPPU.TileCached[TILE_8BIT][address >> 6] = FALSE; IPPU.TileCached[TILE_2BIT_EVEN][address >> 4] = FALSE; IPPU.TileCached[TILE_2BIT_EVEN][((address >> 4) - 1) & (MAX_2BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_2BIT_ODD] [address >> 4] = FALSE; IPPU.TileCached[TILE_2BIT_ODD] [((address >> 4) - 1) & (MAX_2BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_4BIT_EVEN][address >> 5] = FALSE; IPPU.TileCached[TILE_4BIT_EVEN][((address >> 5) - 1) & (MAX_4BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_4BIT_ODD] [address >> 5] = FALSE; IPPU.TileCached[TILE_4BIT_ODD] [((address >> 5) - 1) & (MAX_4BIT_TILES - 1)] = FALSE; if (!PPU.VMA.High) PPU.VMA.Address += PPU.VMA.Increment; } static inline void REGISTER_2119_tile (uint8 Byte) { CHECK_INBLANK(); uint32 rem = PPU.VMA.Address & PPU.VMA.Mask1; uint32 address = ((((PPU.VMA.Address & ~PPU.VMA.Mask1) + (rem >> PPU.VMA.Shift) + ((rem & (PPU.VMA.FullGraphicCount - 1)) << 3)) << 1) + 1) & 0xffff; Memory.VRAM[address] = Byte; IPPU.TileCached[TILE_2BIT][address >> 4] = FALSE; IPPU.TileCached[TILE_4BIT][address >> 5] = FALSE; IPPU.TileCached[TILE_8BIT][address >> 6] = FALSE; IPPU.TileCached[TILE_2BIT_EVEN][address >> 4] = FALSE; IPPU.TileCached[TILE_2BIT_EVEN][((address >> 4) - 1) & (MAX_2BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_2BIT_ODD] [address >> 4] = FALSE; IPPU.TileCached[TILE_2BIT_ODD] [((address >> 4) - 1) & (MAX_2BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_4BIT_EVEN][address >> 5] = FALSE; IPPU.TileCached[TILE_4BIT_EVEN][((address >> 5) - 1) & (MAX_4BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_4BIT_ODD] [address >> 5] = FALSE; IPPU.TileCached[TILE_4BIT_ODD] [((address >> 5) - 1) & (MAX_4BIT_TILES - 1)] = FALSE; if (PPU.VMA.High) PPU.VMA.Address += PPU.VMA.Increment; } static inline void REGISTER_2118_linear (uint8 Byte) { CHECK_INBLANK(); uint32 address; Memory.VRAM[address = (PPU.VMA.Address << 1) & 0xffff] = Byte; IPPU.TileCached[TILE_2BIT][address >> 4] = FALSE; IPPU.TileCached[TILE_4BIT][address >> 5] = FALSE; IPPU.TileCached[TILE_8BIT][address >> 6] = FALSE; IPPU.TileCached[TILE_2BIT_EVEN][address >> 4] = FALSE; IPPU.TileCached[TILE_2BIT_EVEN][((address >> 4) - 1) & (MAX_2BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_2BIT_ODD] [address >> 4] = FALSE; IPPU.TileCached[TILE_2BIT_ODD] [((address >> 4) - 1) & (MAX_2BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_4BIT_EVEN][address >> 5] = FALSE; IPPU.TileCached[TILE_4BIT_EVEN][((address >> 5) - 1) & (MAX_4BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_4BIT_ODD] [address >> 5] = FALSE; IPPU.TileCached[TILE_4BIT_ODD] [((address >> 5) - 1) & (MAX_4BIT_TILES - 1)] = FALSE; if (!PPU.VMA.High) PPU.VMA.Address += PPU.VMA.Increment; } static inline void REGISTER_2119_linear (uint8 Byte) { CHECK_INBLANK(); uint32 address; Memory.VRAM[address = ((PPU.VMA.Address << 1) + 1) & 0xffff] = Byte; IPPU.TileCached[TILE_2BIT][address >> 4] = FALSE; IPPU.TileCached[TILE_4BIT][address >> 5] = FALSE; IPPU.TileCached[TILE_8BIT][address >> 6] = FALSE; IPPU.TileCached[TILE_2BIT_EVEN][address >> 4] = FALSE; IPPU.TileCached[TILE_2BIT_EVEN][((address >> 4) - 1) & (MAX_2BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_2BIT_ODD] [address >> 4] = FALSE; IPPU.TileCached[TILE_2BIT_ODD] [((address >> 4) - 1) & (MAX_2BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_4BIT_EVEN][address >> 5] = FALSE; IPPU.TileCached[TILE_4BIT_EVEN][((address >> 5) - 1) & (MAX_4BIT_TILES - 1)] = FALSE; IPPU.TileCached[TILE_4BIT_ODD] [address >> 5] = FALSE; IPPU.TileCached[TILE_4BIT_ODD] [((address >> 5) - 1) & (MAX_4BIT_TILES - 1)] = FALSE; if (PPU.VMA.High) PPU.VMA.Address += PPU.VMA.Increment; } static inline void REGISTER_2122 (uint8 Byte) { if (PPU.CGFLIP) { if ((Byte & 0x7f) != (PPU.CGDATA[PPU.CGADD] >> 8)) { FLUSH_REDRAW(); PPU.CGDATA[PPU.CGADD] &= 0x00ff; PPU.CGDATA[PPU.CGADD] |= (Byte & 0x7f) << 8; IPPU.ColorsChanged = TRUE; IPPU.Blue[PPU.CGADD] = IPPU.XB[(Byte >> 2) & 0x1f]; IPPU.Green[PPU.CGADD] = IPPU.XB[(PPU.CGDATA[PPU.CGADD] >> 5) & 0x1f]; IPPU.ScreenColors[PPU.CGADD] = (uint16) BUILD_PIXEL(IPPU.Red[PPU.CGADD], IPPU.Green[PPU.CGADD], IPPU.Blue[PPU.CGADD]); } PPU.CGADD++; } else { if (Byte != (uint8) (PPU.CGDATA[PPU.CGADD] & 0xff)) { FLUSH_REDRAW(); PPU.CGDATA[PPU.CGADD] &= 0x7f00; PPU.CGDATA[PPU.CGADD] |= Byte; IPPU.ColorsChanged = TRUE; IPPU.Red[PPU.CGADD] = IPPU.XB[Byte & 0x1f]; IPPU.Green[PPU.CGADD] = IPPU.XB[(PPU.CGDATA[PPU.CGADD] >> 5) & 0x1f]; IPPU.ScreenColors[PPU.CGADD] = (uint16) BUILD_PIXEL(IPPU.Red[PPU.CGADD], IPPU.Green[PPU.CGADD], IPPU.Blue[PPU.CGADD]); } } PPU.CGFLIP ^= 1; } static inline void REGISTER_2180 (uint8 Byte) { Memory.RAM[PPU.WRAM++] = Byte; PPU.WRAM &= 0x1ffff; } static inline uint8 REGISTER_4212 (void) { uint8 byte = 0; if ((CPU.V_Counter >= PPU.ScreenHeight + FIRST_VISIBLE_LINE) && (CPU.V_Counter < PPU.ScreenHeight + FIRST_VISIBLE_LINE + 3)) byte = 1; if ((CPU.Cycles < Timings.HBlankEnd) || (CPU.Cycles >= Timings.HBlankStart)) byte |= 0x40; if (CPU.V_Counter >= PPU.ScreenHeight + FIRST_VISIBLE_LINE) byte |= 0x80; return (byte); } #endif