/*****************************************************************************\ Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. This file is licensed under the Snes9x License. For further information, consult the LICENSE file in the root directory. \*****************************************************************************/ // This file includes itself. // Top-level compilation. #ifndef _NEWTILE_CPP #define _NEWTILE_CPP #include "snes9x.h" #include "ppu.h" #include "tile.h" static uint32 pixbit[8][16]; static uint8 hrbit_odd[256]; static uint8 hrbit_even[256]; struct BPProgressive { enum { Pitch = 1 }; static uint32 Get(uint32 StartLine) { return StartLine; } }; // Interlace: Only draw every other line, so we'll redefine BPSTART and PITCH to do so. // Otherwise, it's the same as Normal2x1/Hires2x1. struct BPInterlace { enum { Pitch = 2 }; static uint32 Get(uint32 StartLine) { return StartLine * 2 + BG.InterlaceLine; } }; // The 1x1 pixel plotter, for speedhacking modes. template struct Normal1x1Base { enum { Pitch = BPSTART::Pitch }; typedef BPSTART bpstart_t; static void Draw(int N, int M, uint32 Offset, uint32 OffsetInLine, uint8 Pix, uint8 Z1, uint8 Z2) { (void) OffsetInLine; if (Z1 > GFX.DB[Offset + N] && (M)) { GFX.S[Offset + N] = MATH::Calc(GFX.ScreenColors[Pix], GFX.SubScreen[Offset + N], GFX.SubZBuffer[Offset + N]); GFX.DB[Offset + N] = Z2; } } }; template struct Normal1x1 : public Normal1x1Base {}; // The 2x1 pixel plotter, for normal rendering when we've used hires/interlace already this frame. template struct Normal2x1Base { enum { Pitch = BPSTART::Pitch }; typedef BPSTART bpstart_t; static void Draw(int N, int M, uint32 Offset, uint32 OffsetInLine, uint8 Pix, uint8 Z1, uint8 Z2) { (void) OffsetInLine; if (Z1 > GFX.DB[Offset + 2 * N] && (M)) { GFX.S[Offset + 2 * N] = GFX.S[Offset + 2 * N + 1] = MATH::Calc(GFX.ScreenColors[Pix], GFX.SubScreen[Offset + 2 * N], GFX.SubZBuffer[Offset + 2 * N]); GFX.DB[Offset + 2 * N] = GFX.DB[Offset + 2 * N + 1] = Z2; } } }; template struct Normal2x1 : public Normal2x1Base {}; template struct Interlace : public Normal2x1Base {}; // Hires pixel plotter, this combines the main and subscreen pixels as appropriate to render hires or pseudo-hires images. // Use it only on the main screen, subscreen should use Normal2x1 instead. // Hires math: // Main pixel is mathed as normal: Main(x, y) * Sub(x, y). // Sub pixel is mathed somewhat weird: Basically, for Sub(x + 1, y) we apply the same operation we applied to Main(x, y) // (e.g. no math, add fixed, add1/2 subscreen) using Main(x, y) as the "corresponding subscreen pixel". // Also, color window clipping clips Sub(x + 1, y) if Main(x, y) is clipped, not Main(x + 1, y). // We don't know how Sub(0, y) is handled. template struct HiresBase { enum { Pitch = BPSTART::Pitch }; typedef BPSTART bpstart_t; static void Draw(int N, int M, uint32 Offset, uint32 OffsetInLine, uint8 Pix, uint8 Z1, uint8 Z2) { if (Z1 > GFX.DB[Offset + 2 * N] && (M)) { GFX.S[Offset + 2 * N + 1] = MATH::Calc(GFX.ScreenColors[Pix], GFX.SubScreen[Offset + 2 * N], GFX.SubZBuffer[Offset + 2 * N]); if ((OffsetInLine + 2 * N ) != (SNES_WIDTH - 1) << 1) GFX.S[Offset + 2 * N + 2] = MATH::Calc((GFX.ClipColors ? 0 : GFX.SubScreen[Offset + 2 * N + 2]), GFX.RealScreenColors[Pix], GFX.SubZBuffer[Offset + 2 * N]); if ((OffsetInLine + 2 * N) == 0 || (OffsetInLine + 2 * N) == GFX.RealPPL) GFX.S[Offset + 2 * N] = MATH::Calc((GFX.ClipColors ? 0 : GFX.SubScreen[Offset + 2 * N]), GFX.RealScreenColors[Pix], GFX.SubZBuffer[Offset + 2 * N]); GFX.DB[Offset + 2 * N] = GFX.DB[Offset + 2 * N + 1] = Z2; } } }; template struct Hires : public HiresBase {}; template struct HiresInterlace : public HiresBase {}; void S9xInitTileRenderer (void) { int i; for (i = 0; i < 16; i++) { uint32 b = 0; #ifdef LSB_FIRST if (i & 8) b |= 1; if (i & 4) b |= 1 << 8; if (i & 2) b |= 1 << 16; if (i & 1) b |= 1 << 24; #else if (i & 8) b |= 1 << 24; if (i & 4) b |= 1 << 16; if (i & 2) b |= 1 << 8; if (i & 1) b |= 1; #endif for (uint8 bitshift = 0; bitshift < 8; bitshift++) pixbit[bitshift][i] = b << bitshift; } for (i = 0; i < 256; i++) { uint8 m = 0; uint8 s = 0; if (i & 0x80) s |= 8; if (i & 0x40) m |= 8; if (i & 0x20) s |= 4; if (i & 0x10) m |= 4; if (i & 0x08) s |= 2; if (i & 0x04) m |= 2; if (i & 0x02) s |= 1; if (i & 0x01) m |= 1; hrbit_odd[i] = m; hrbit_even[i] = s; } } // Here are the tile converters, selected by S9xSelectTileConverter(). // Really, except for the definition of DOBIT and the number of times it is called, they're all the same. #define DOBIT(n, i) \ if ((pix = *(tp + (n)))) \ { \ p1 |= pixbit[(i)][pix >> 4]; \ p2 |= pixbit[(i)][pix & 0xf]; \ } static uint8 ConvertTile2 (uint8 *pCache, uint32 TileAddr, uint32) { uint8 *tp = &Memory.VRAM[TileAddr]; uint32 *p = (uint32 *) pCache; uint32 non_zero = 0; uint8 line; for (line = 8; line != 0; line--, tp += 2) { uint32 p1 = 0; uint32 p2 = 0; uint8 pix; DOBIT( 0, 0); DOBIT( 1, 1); *p++ = p1; *p++ = p2; non_zero |= p1 | p2; } return (non_zero ? TRUE : BLANK_TILE); } static uint8 ConvertTile4 (uint8 *pCache, uint32 TileAddr, uint32) { uint8 *tp = &Memory.VRAM[TileAddr]; uint32 *p = (uint32 *) pCache; uint32 non_zero = 0; uint8 line; for (line = 8; line != 0; line--, tp += 2) { uint32 p1 = 0; uint32 p2 = 0; uint8 pix; DOBIT( 0, 0); DOBIT( 1, 1); DOBIT(16, 2); DOBIT(17, 3); *p++ = p1; *p++ = p2; non_zero |= p1 | p2; } return (non_zero ? TRUE : BLANK_TILE); } static uint8 ConvertTile8 (uint8 *pCache, uint32 TileAddr, uint32) { uint8 *tp = &Memory.VRAM[TileAddr]; uint32 *p = (uint32 *) pCache; uint32 non_zero = 0; uint8 line; for (line = 8; line != 0; line--, tp += 2) { uint32 p1 = 0; uint32 p2 = 0; uint8 pix; DOBIT( 0, 0); DOBIT( 1, 1); DOBIT(16, 2); DOBIT(17, 3); DOBIT(32, 4); DOBIT(33, 5); DOBIT(48, 6); DOBIT(49, 7); *p++ = p1; *p++ = p2; non_zero |= p1 | p2; } return (non_zero ? TRUE : BLANK_TILE); } #undef DOBIT #define DOBIT(n, i) \ if ((pix = hrbit_odd[*(tp1 + (n))])) \ p1 |= pixbit[(i)][pix]; \ if ((pix = hrbit_odd[*(tp2 + (n))])) \ p2 |= pixbit[(i)][pix]; static uint8 ConvertTile2h_odd (uint8 *pCache, uint32 TileAddr, uint32 Tile) { uint8 *tp1 = &Memory.VRAM[TileAddr], *tp2; uint32 *p = (uint32 *) pCache; uint32 non_zero = 0; uint8 line; if (Tile == 0x3ff) tp2 = tp1 - (0x3ff << 4); else tp2 = tp1 + (1 << 4); for (line = 8; line != 0; line--, tp1 += 2, tp2 += 2) { uint32 p1 = 0; uint32 p2 = 0; uint8 pix; DOBIT( 0, 0); DOBIT( 1, 1); *p++ = p1; *p++ = p2; non_zero |= p1 | p2; } return (non_zero ? TRUE : BLANK_TILE); } static uint8 ConvertTile4h_odd (uint8 *pCache, uint32 TileAddr, uint32 Tile) { uint8 *tp1 = &Memory.VRAM[TileAddr], *tp2; uint32 *p = (uint32 *) pCache; uint32 non_zero = 0; uint8 line; if (Tile == 0x3ff) tp2 = tp1 - (0x3ff << 5); else tp2 = tp1 + (1 << 5); for (line = 8; line != 0; line--, tp1 += 2, tp2 += 2) { uint32 p1 = 0; uint32 p2 = 0; uint8 pix; DOBIT( 0, 0); DOBIT( 1, 1); DOBIT(16, 2); DOBIT(17, 3); *p++ = p1; *p++ = p2; non_zero |= p1 | p2; } return (non_zero ? TRUE : BLANK_TILE); } #undef DOBIT #define DOBIT(n, i) \ if ((pix = hrbit_even[*(tp1 + (n))])) \ p1 |= pixbit[(i)][pix]; \ if ((pix = hrbit_even[*(tp2 + (n))])) \ p2 |= pixbit[(i)][pix]; static uint8 ConvertTile2h_even (uint8 *pCache, uint32 TileAddr, uint32 Tile) { uint8 *tp1 = &Memory.VRAM[TileAddr], *tp2; uint32 *p = (uint32 *) pCache; uint32 non_zero = 0; uint8 line; if (Tile == 0x3ff) tp2 = tp1 - (0x3ff << 4); else tp2 = tp1 + (1 << 4); for (line = 8; line != 0; line--, tp1 += 2, tp2 += 2) { uint32 p1 = 0; uint32 p2 = 0; uint8 pix; DOBIT( 0, 0); DOBIT( 1, 1); *p++ = p1; *p++ = p2; non_zero |= p1 | p2; } return (non_zero ? TRUE : BLANK_TILE); } static uint8 ConvertTile4h_even (uint8 *pCache, uint32 TileAddr, uint32 Tile) { uint8 *tp1 = &Memory.VRAM[TileAddr], *tp2; uint32 *p = (uint32 *) pCache; uint32 non_zero = 0; uint8 line; if (Tile == 0x3ff) tp2 = tp1 - (0x3ff << 5); else tp2 = tp1 + (1 << 5); for (line = 8; line != 0; line--, tp1 += 2, tp2 += 2) { uint32 p1 = 0; uint32 p2 = 0; uint8 pix; DOBIT( 0, 0); DOBIT( 1, 1); DOBIT(16, 2); DOBIT(17, 3); *p++ = p1; *p++ = p2; non_zero |= p1 | p2; } return (non_zero ? TRUE : BLANK_TILE); } #undef DOBIT // First-level include: Get all the renderers. #include "tile.cpp" // Functions to select which converter and renderer to use. void S9xSelectTileRenderers (int BGMode, bool8 sub, bool8 obj) { void (**DT) (uint32, uint32, uint32, uint32); void (**DCT) (uint32, uint32, uint32, uint32, uint32, uint32); void (**DMP) (uint32, uint32, uint32, uint32, uint32, uint32); void (**DB) (uint32, uint32, uint32); void (**DM7BG1) (uint32, uint32, int); void (**DM7BG2) (uint32, uint32, int); bool8 M7M1, M7M2; M7M1 = PPU.BGMosaic[0] && PPU.Mosaic > 1; M7M2 = PPU.BGMosaic[1] && PPU.Mosaic > 1; bool8 interlace = obj ? FALSE : IPPU.Interlace; bool8 hires = !sub && (BGMode == 5 || BGMode == 6 || IPPU.PseudoHires); if (!IPPU.DoubleWidthPixels) // normal width { DT = Renderers::Functions; DCT = Renderers::Functions; DMP = Renderers::Functions; DB = Renderers::Functions; DM7BG1 = M7M1 ? Renderers::Functions : Renderers::Functions; DM7BG2 = M7M2 ? Renderers::Functions : Renderers::Functions; GFX.LinesPerTile = 8; } else if(hires) // hires double width { if (interlace) { DT = Renderers::Functions; DCT = Renderers::Functions; DMP = Renderers::Functions; DB = Renderers::Functions; DM7BG1 = M7M1 ? Renderers::Functions : Renderers::Functions; DM7BG2 = M7M2 ? Renderers::Functions : Renderers::Functions; GFX.LinesPerTile = 4; } else { DT = Renderers::Functions; DCT = Renderers::Functions; DMP = Renderers::Functions; DB = Renderers::Functions; DM7BG1 = M7M1 ? Renderers::Functions : Renderers::Functions; DM7BG2 = M7M2 ? Renderers::Functions : Renderers::Functions; GFX.LinesPerTile = 8; } } else // normal double width { if (interlace) { DT = Renderers::Functions; DCT = Renderers::Functions; DMP = Renderers::Functions; DB = Renderers::Functions; DM7BG1 = M7M1 ? Renderers::Functions : Renderers::Functions; DM7BG2 = M7M2 ? Renderers::Functions : Renderers::Functions; GFX.LinesPerTile = 4; } else { DT = Renderers::Functions; DCT = Renderers::Functions; DMP = Renderers::Functions; DB = Renderers::Functions; DM7BG1 = M7M1 ? Renderers::Functions : Renderers::Functions; DM7BG2 = M7M2 ? Renderers::Functions : Renderers::Functions; GFX.LinesPerTile = 8; } } GFX.DrawTileNomath = DT[0]; GFX.DrawClippedTileNomath = DCT[0]; GFX.DrawMosaicPixelNomath = DMP[0]; GFX.DrawBackdropNomath = DB[0]; GFX.DrawMode7BG1Nomath = DM7BG1[0]; GFX.DrawMode7BG2Nomath = DM7BG2[0]; int i; if (!Settings.Transparency) i = 0; else { i = (Memory.FillRAM[0x2131] & 0x80) ? 4 : 1; if (Memory.FillRAM[0x2131] & 0x40) { i++; if (Memory.FillRAM[0x2130] & 2) i++; } if (IPPU.MaxBrightness != 0xf) { if (i == 1) i = 7; else if (i == 3) i = 8; } } GFX.DrawTileMath = DT[i]; GFX.DrawClippedTileMath = DCT[i]; GFX.DrawMosaicPixelMath = DMP[i]; GFX.DrawBackdropMath = DB[i]; GFX.DrawMode7BG1Math = DM7BG1[i]; GFX.DrawMode7BG2Math = DM7BG2[i]; } void S9xSelectTileConverter (int depth, bool8 hires, bool8 sub, bool8 mosaic) { switch (depth) { case 8: BG.ConvertTile = BG.ConvertTileFlip = ConvertTile8; BG.Buffer = BG.BufferFlip = IPPU.TileCache[TILE_8BIT]; BG.Buffered = BG.BufferedFlip = IPPU.TileCached[TILE_8BIT]; BG.TileShift = 6; BG.PaletteShift = 0; BG.PaletteMask = 0; BG.DirectColourMode = Memory.FillRAM[0x2130] & 1; break; case 4: if (hires) { if (sub || mosaic) { BG.ConvertTile = ConvertTile4h_even; BG.Buffer = IPPU.TileCache[TILE_4BIT_EVEN]; BG.Buffered = IPPU.TileCached[TILE_4BIT_EVEN]; BG.ConvertTileFlip = ConvertTile4h_odd; BG.BufferFlip = IPPU.TileCache[TILE_4BIT_ODD]; BG.BufferedFlip = IPPU.TileCached[TILE_4BIT_ODD]; } else { BG.ConvertTile = ConvertTile4h_odd; BG.Buffer = IPPU.TileCache[TILE_4BIT_ODD]; BG.Buffered = IPPU.TileCached[TILE_4BIT_ODD]; BG.ConvertTileFlip = ConvertTile4h_even; BG.BufferFlip = IPPU.TileCache[TILE_4BIT_EVEN]; BG.BufferedFlip = IPPU.TileCached[TILE_4BIT_EVEN]; } } else { BG.ConvertTile = BG.ConvertTileFlip = ConvertTile4; BG.Buffer = BG.BufferFlip = IPPU.TileCache[TILE_4BIT]; BG.Buffered = BG.BufferedFlip = IPPU.TileCached[TILE_4BIT]; } BG.TileShift = 5; BG.PaletteShift = 10 - 4; BG.PaletteMask = 7 << 4; BG.DirectColourMode = FALSE; break; case 2: if (hires) { if (sub || mosaic) { BG.ConvertTile = ConvertTile2h_even; BG.Buffer = IPPU.TileCache[TILE_2BIT_EVEN]; BG.Buffered = IPPU.TileCached[TILE_2BIT_EVEN]; BG.ConvertTileFlip = ConvertTile2h_odd; BG.BufferFlip = IPPU.TileCache[TILE_2BIT_ODD]; BG.BufferedFlip = IPPU.TileCached[TILE_2BIT_ODD]; } else { BG.ConvertTile = ConvertTile2h_odd; BG.Buffer = IPPU.TileCache[TILE_2BIT_ODD]; BG.Buffered = IPPU.TileCached[TILE_2BIT_ODD]; BG.ConvertTileFlip = ConvertTile2h_even; BG.BufferFlip = IPPU.TileCache[TILE_2BIT_EVEN]; BG.BufferedFlip = IPPU.TileCached[TILE_2BIT_EVEN]; } } else { BG.ConvertTile = BG.ConvertTileFlip = ConvertTile2; BG.Buffer = BG.BufferFlip = IPPU.TileCache[TILE_2BIT]; BG.Buffered = BG.BufferedFlip = IPPU.TileCached[TILE_2BIT]; } BG.TileShift = 4; BG.PaletteShift = 10 - 2; BG.PaletteMask = 7 << 2; BG.DirectColourMode = FALSE; break; } } /*****************************************************************************/ #else #ifndef NAME1 // First-level: Get all the renderers. /*****************************************************************************/ #define GET_CACHED_TILE() \ uint32 TileNumber; \ uint32 TileAddr = BG.TileAddress + ((Tile & 0x3ff) << BG.TileShift); \ if (Tile & 0x100) \ TileAddr += BG.NameSelect; \ TileAddr &= 0xffff; \ TileNumber = TileAddr >> BG.TileShift; \ if (Tile & H_FLIP) \ { \ pCache = &BG.BufferFlip[TileNumber << 6]; \ if (!BG.BufferedFlip[TileNumber]) \ BG.BufferedFlip[TileNumber] = BG.ConvertTileFlip(pCache, TileAddr, Tile & 0x3ff); \ } \ else \ { \ pCache = &BG.Buffer[TileNumber << 6]; \ if (!BG.Buffered[TileNumber]) \ BG.Buffered[TileNumber] = BG.ConvertTile(pCache, TileAddr, Tile & 0x3ff); \ } #define IS_BLANK_TILE() \ ( ( (Tile & H_FLIP) ? BG.BufferedFlip[TileNumber] : BG.Buffered[TileNumber]) == BLANK_TILE) #define SELECT_PALETTE() \ if (BG.DirectColourMode) \ { \ GFX.RealScreenColors = DirectColourMaps[(Tile >> 10) & 7]; \ } \ else \ GFX.RealScreenColors = &IPPU.ScreenColors[((Tile >> BG.PaletteShift) & BG.PaletteMask) + BG.StartPalette]; \ GFX.ScreenColors = GFX.ClipColors ? BlackColourMap : GFX.RealScreenColors struct NOMATH { static uint16 Calc(uint16 Main, uint16 Sub, uint8 SD) { return Main; } }; typedef NOMATH Blend_None; template struct REGMATH { static uint16 Calc(uint16 Main, uint16 Sub, uint8 SD) { return Op::fn(Main, (SD & 0x20) ? Sub : GFX.FixedColour); } }; typedef REGMATH Blend_Add; typedef REGMATH Blend_Sub; typedef REGMATH Blend_AddBrightness; template struct MATHF1_2 { static uint16 Calc(uint16 Main, uint16 Sub, uint8 SD) { return GFX.ClipColors ? Op::fn(Main, GFX.FixedColour) : Op::fn1_2(Main, GFX.FixedColour); } }; typedef MATHF1_2 Blend_AddF1_2; typedef MATHF1_2 Blend_SubF1_2; template struct MATHS1_2 { static uint16 Calc(uint16 Main, uint16 Sub, uint8 SD) { return GFX.ClipColors ? REGMATH::Calc(Main, Sub, SD) : (SD & 0x20) ? Op::fn1_2(Main, Sub) : Op::fn(Main, GFX.FixedColour); } }; typedef MATHS1_2 Blend_AddS1_2; typedef MATHS1_2 Blend_SubS1_2; typedef MATHS1_2 Blend_AddS1_2Brightness; template< template class TILE, template class PIXEL > struct Renderers { enum { Pitch = PIXEL::Pitch }; typedef typename TILE< PIXEL >::call_t call_t; static call_t Functions[9]; }; template< template class TILE, template class PIXEL > typename Renderers::call_t Renderers::Functions[9] = { TILE< PIXEL >::Draw, TILE< PIXEL >::Draw, TILE< PIXEL >::Draw, TILE< PIXEL >::Draw, TILE< PIXEL >::Draw, TILE< PIXEL >::Draw, TILE< PIXEL >::Draw, TILE< PIXEL >::Draw, TILE< PIXEL >::Draw, }; // Basic routine to render an unclipped tile. // Input parameters: // BPSTART = either StartLine or (StartLine * 2 + BG.InterlaceLine), // so interlace modes can render every other line from the tile. // PITCH = 1 or 2, again so interlace can count lines properly. // DRAW_PIXEL(N, M) is a routine to actually draw the pixel. N is the pixel in the row to draw, // and M is a test which if false means the pixel should be skipped. // Z1 is the "draw if Z1 > cur_depth". // Z2 is the "cur_depth = new_depth". OBJ need the two separate. // Pix is the pixel to draw. #define OFFSET_IN_LINE \ uint32 OffsetInLine = Offset % GFX.RealPPL; #define DRAW_PIXEL(N, M) PIXEL::Draw(N, M, Offset, OffsetInLine, Pix, Z1, Z2) #define Z1 GFX.Z1 #define Z2 GFX.Z2 template struct DrawTile16 { typedef void (*call_t)(uint32, uint32, uint32, uint32); enum { Pitch = PIXEL::Pitch }; typedef typename PIXEL::bpstart_t bpstart_t; static void Draw(uint32 Tile, uint32 Offset, uint32 StartLine, uint32 LineCount) { uint8 *pCache; int32 l; uint8 *bp, Pix; GET_CACHED_TILE(); if (IS_BLANK_TILE()) return; SELECT_PALETTE(); if (!(Tile & (V_FLIP | H_FLIP))) { bp = pCache + bpstart_t::Get(StartLine); OFFSET_IN_LINE; for (l = LineCount; l > 0; l--, bp += 8 * Pitch, Offset += GFX.PPL) { for (int x = 0; x < 8; x++) { Pix = bp[x]; DRAW_PIXEL(x, Pix); } } } else if (!(Tile & V_FLIP)) { bp = pCache + bpstart_t::Get(StartLine); OFFSET_IN_LINE; for (l = LineCount; l > 0; l--, bp += 8 * Pitch, Offset += GFX.PPL) { for (int x = 0; x < 8; x++) { Pix = bp[7 - x]; DRAW_PIXEL(x, Pix); } } } else if (!(Tile & H_FLIP)) { bp = pCache + 56 - bpstart_t::Get(StartLine); OFFSET_IN_LINE; for (l = LineCount; l > 0; l--, bp -= 8 * Pitch, Offset += GFX.PPL) { for (int x = 0; x < 8; x++) { Pix = bp[x]; DRAW_PIXEL(x, Pix); } } } else { bp = pCache + 56 - bpstart_t::Get(StartLine); OFFSET_IN_LINE; for (l = LineCount; l > 0; l--, bp -= 8 * Pitch, Offset += GFX.PPL) { for (int x = 0; x < 8; x++) { Pix = bp[7 - x]; DRAW_PIXEL(x, Pix); } } } } }; #undef Z1 #undef Z2 // Basic routine to render a clipped tile. Inputs same as above. #define Z1 GFX.Z1 #define Z2 GFX.Z2 template struct DrawClippedTile16 { typedef void (*call_t)(uint32, uint32, uint32, uint32, uint32, uint32); enum { Pitch = PIXEL::Pitch }; typedef typename PIXEL::bpstart_t bpstart_t; static void Draw(uint32 Tile, uint32 Offset, uint32 StartPixel, uint32 Width, uint32 StartLine, uint32 LineCount) { uint8 *pCache; int32 l; uint8 *bp, Pix, w; GET_CACHED_TILE(); if (IS_BLANK_TILE()) return; SELECT_PALETTE(); if (!(Tile & (V_FLIP | H_FLIP))) { bp = pCache + bpstart_t::Get(StartLine); OFFSET_IN_LINE; for (l = LineCount; l > 0; l--, bp += 8 * Pitch, Offset += GFX.PPL) { w = Width; switch (StartPixel) { case 0: Pix = bp[0]; DRAW_PIXEL(0, Pix); if (!--w) break; /* Fall through */ case 1: Pix = bp[1]; DRAW_PIXEL(1, Pix); if (!--w) break; /* Fall through */ case 2: Pix = bp[2]; DRAW_PIXEL(2, Pix); if (!--w) break; /* Fall through */ case 3: Pix = bp[3]; DRAW_PIXEL(3, Pix); if (!--w) break; /* Fall through */ case 4: Pix = bp[4]; DRAW_PIXEL(4, Pix); if (!--w) break; /* Fall through */ case 5: Pix = bp[5]; DRAW_PIXEL(5, Pix); if (!--w) break; /* Fall through */ case 6: Pix = bp[6]; DRAW_PIXEL(6, Pix); if (!--w) break; /* Fall through */ case 7: Pix = bp[7]; DRAW_PIXEL(7, Pix); break; } } } else if (!(Tile & V_FLIP)) { bp = pCache + bpstart_t::Get(StartLine); OFFSET_IN_LINE; for (l = LineCount; l > 0; l--, bp += 8 * Pitch, Offset += GFX.PPL) { w = Width; switch (StartPixel) { case 0: Pix = bp[7]; DRAW_PIXEL(0, Pix); if (!--w) break; /* Fall through */ case 1: Pix = bp[6]; DRAW_PIXEL(1, Pix); if (!--w) break; /* Fall through */ case 2: Pix = bp[5]; DRAW_PIXEL(2, Pix); if (!--w) break; /* Fall through */ case 3: Pix = bp[4]; DRAW_PIXEL(3, Pix); if (!--w) break; /* Fall through */ case 4: Pix = bp[3]; DRAW_PIXEL(4, Pix); if (!--w) break; /* Fall through */ case 5: Pix = bp[2]; DRAW_PIXEL(5, Pix); if (!--w) break; /* Fall through */ case 6: Pix = bp[1]; DRAW_PIXEL(6, Pix); if (!--w) break; /* Fall through */ case 7: Pix = bp[0]; DRAW_PIXEL(7, Pix); break; } } } else if (!(Tile & H_FLIP)) { bp = pCache + 56 - bpstart_t::Get(StartLine); OFFSET_IN_LINE; for (l = LineCount; l > 0; l--, bp -= 8 * Pitch, Offset += GFX.PPL) { w = Width; switch (StartPixel) { case 0: Pix = bp[0]; DRAW_PIXEL(0, Pix); if (!--w) break; /* Fall through */ case 1: Pix = bp[1]; DRAW_PIXEL(1, Pix); if (!--w) break; /* Fall through */ case 2: Pix = bp[2]; DRAW_PIXEL(2, Pix); if (!--w) break; /* Fall through */ case 3: Pix = bp[3]; DRAW_PIXEL(3, Pix); if (!--w) break; /* Fall through */ case 4: Pix = bp[4]; DRAW_PIXEL(4, Pix); if (!--w) break; /* Fall through */ case 5: Pix = bp[5]; DRAW_PIXEL(5, Pix); if (!--w) break; /* Fall through */ case 6: Pix = bp[6]; DRAW_PIXEL(6, Pix); if (!--w) break; /* Fall through */ case 7: Pix = bp[7]; DRAW_PIXEL(7, Pix); break; } } } else { bp = pCache + 56 - bpstart_t::Get(StartLine); OFFSET_IN_LINE; for (l = LineCount; l > 0; l--, bp -= 8 * Pitch, Offset += GFX.PPL) { w = Width; switch (StartPixel) { case 0: Pix = bp[7]; DRAW_PIXEL(0, Pix); if (!--w) break; /* Fall through */ case 1: Pix = bp[6]; DRAW_PIXEL(1, Pix); if (!--w) break; /* Fall through */ case 2: Pix = bp[5]; DRAW_PIXEL(2, Pix); if (!--w) break; /* Fall through */ case 3: Pix = bp[4]; DRAW_PIXEL(3, Pix); if (!--w) break; /* Fall through */ case 4: Pix = bp[3]; DRAW_PIXEL(4, Pix); if (!--w) break; /* Fall through */ case 5: Pix = bp[2]; DRAW_PIXEL(5, Pix); if (!--w) break; /* Fall through */ case 6: Pix = bp[1]; DRAW_PIXEL(6, Pix); if (!--w) break; /* Fall through */ case 7: Pix = bp[0]; DRAW_PIXEL(7, Pix); break; } } } } }; #undef Z1 #undef Z2 // Basic routine to render a single mosaic pixel. // DRAW_PIXEL, BPSTART, Z1, Z2 and Pix are the same as above, but PITCH is not used. #define Z1 GFX.Z1 #define Z2 GFX.Z2 template struct DrawMosaicPixel16 { typedef void (*call_t)(uint32, uint32, uint32, uint32, uint32, uint32); typedef typename PIXEL::bpstart_t bpstart_t; static void Draw(uint32 Tile, uint32 Offset, uint32 StartLine, uint32 StartPixel, uint32 Width, uint32 LineCount) { uint8 *pCache; int32 l, w; uint8 Pix; GET_CACHED_TILE(); if (IS_BLANK_TILE()) return; SELECT_PALETTE(); if (Tile & H_FLIP) StartPixel = 7 - StartPixel; if (Tile & V_FLIP) Pix = pCache[56 - bpstart_t::Get(StartLine) + StartPixel]; else Pix = pCache[bpstart_t::Get(StartLine) + StartPixel]; if (Pix) { OFFSET_IN_LINE; for (l = LineCount; l > 0; l--, Offset += GFX.PPL) { for (w = Width - 1; w >= 0; w--) DRAW_PIXEL(w, 1); } } } }; #undef Z1 #undef Z2 // Basic routine to render the backdrop. // DRAW_PIXEL is the same as above, but since we're just replicating a single pixel there's no need for PITCH or BPSTART // (or interlace at all, really). // The backdrop is always depth = 1, so Z1 = Z2 = 1. And backdrop is always color 0. #define Z1 1 #define Z2 1 #define Pix 0 #define ARGS uint32 Offset, uint32 Left, uint32 Right template struct DrawBackdrop16 { typedef void (*call_t)(uint32 Offset, uint32 Left, uint32 Right); static void Draw(uint32 Offset, uint32 Left, uint32 Right) { uint32 l, x; GFX.RealScreenColors = IPPU.ScreenColors; GFX.ScreenColors = GFX.ClipColors ? BlackColourMap : GFX.RealScreenColors; OFFSET_IN_LINE; for (l = GFX.StartY; l <= GFX.EndY; l++, Offset += GFX.PPL) { for (x = Left; x < Right; x++) DRAW_PIXEL(x, 1); } } }; #undef Pix #undef Z1 #undef Z2 #undef DRAW_PIXEL // Basic routine to render a chunk of a Mode 7 BG. // Mode 7 has no interlace, so BPSTART and PITCH are unused. // We get some new parameters, so we can use the same DRAW_TILE to do BG1 or BG2: // DCMODE tests if Direct Color should apply. // BG is the BG, so we use the right clip window. // MASK is 0xff or 0x7f, the 'color' portion of the pixel. // We define Z1/Z2 to either be constant 5 or to vary depending on the 'priority' portion of the pixel. #define CLIP_10_BIT_SIGNED(a) (((a) & 0x2000) ? ((a) | ~0x3ff) : ((a) & 0x3ff)) extern struct SLineMatrixData LineMatrixData[240]; #define DRAW_PIXEL(N, M) PIXEL::Draw(N, M, Offset, OffsetInLine, Pix, OP::Z1(D, b), OP::Z2(D, b)) struct DrawMode7BG1_OP { enum { MASK = 0xff, BG = 0 }; static uint8 Z1(int D, uint8 b) { return D + 7; } static uint8 Z2(int D, uint8 b) { return D + 7; } static uint8 DCMODE() { return Memory.FillRAM[0x2130] & 1; } }; struct DrawMode7BG2_OP { enum { MASK = 0x7f, BG = 1 }; static uint8 Z1(int D, uint8 b) { return D + ((b & 0x80) ? 11 : 3); } static uint8 Z2(int D, uint8 b) { return D + ((b & 0x80) ? 11 : 3); } static uint8 DCMODE() { return 0; } }; template struct DrawTileNormal { typedef void (*call_t)(uint32 Left, uint32 Right, int D); static void Draw(uint32 Left, uint32 Right, int D) { uint8 *VRAM1 = Memory.VRAM + 1; if (OP::DCMODE()) { GFX.RealScreenColors = DirectColourMaps[0]; } else GFX.RealScreenColors = IPPU.ScreenColors; GFX.ScreenColors = GFX.ClipColors ? BlackColourMap : GFX.RealScreenColors; int aa, cc; int startx; uint32 Offset = GFX.StartY * GFX.PPL; struct SLineMatrixData *l = &LineMatrixData[GFX.StartY]; OFFSET_IN_LINE; for (uint32 Line = GFX.StartY; Line <= GFX.EndY; Line++, Offset += GFX.PPL, l++) { int yy, starty; int32 HOffset = ((int32) l->M7HOFS << 19) >> 19; int32 VOffset = ((int32) l->M7VOFS << 19) >> 19; int32 CentreX = ((int32) l->CentreX << 19) >> 19; int32 CentreY = ((int32) l->CentreY << 19) >> 19; if (PPU.Mode7VFlip) starty = 255 - (int) (Line + 1); else starty = Line + 1; yy = CLIP_10_BIT_SIGNED(VOffset - CentreY); int BB = ((l->MatrixB * starty) & ~63) + ((l->MatrixB * yy) & ~63) + (CentreX << 8); int DD = ((l->MatrixD * starty) & ~63) + ((l->MatrixD * yy) & ~63) + (CentreY << 8); if (PPU.Mode7HFlip) { startx = Right - 1; aa = -l->MatrixA; cc = -l->MatrixC; } else { startx = Left; aa = l->MatrixA; cc = l->MatrixC; } int xx = CLIP_10_BIT_SIGNED(HOffset - CentreX); int AA = l->MatrixA * startx + ((l->MatrixA * xx) & ~63); int CC = l->MatrixC * startx + ((l->MatrixC * xx) & ~63); uint8 Pix; if (!PPU.Mode7Repeat) { for (uint32 x = Left; x < Right; x++, AA += aa, CC += cc) { int X = ((AA + BB) >> 8) & 0x3ff; int Y = ((CC + DD) >> 8) & 0x3ff; uint8 *TileData = VRAM1 + (Memory.VRAM[((Y & ~7) << 5) + ((X >> 2) & ~1)] << 7); uint8 b = *(TileData + ((Y & 7) << 4) + ((X & 7) << 1)); Pix = b & OP::MASK; DRAW_PIXEL(x, Pix); } } else { for (uint32 x = Left; x < Right; x++, AA += aa, CC += cc) { int X = ((AA + BB) >> 8); int Y = ((CC + DD) >> 8); uint8 b; if (((X | Y) & ~0x3ff) == 0) { uint8 *TileData = VRAM1 + (Memory.VRAM[((Y & ~7) << 5) + ((X >> 2) & ~1)] << 7); b = *(TileData + ((Y & 7) << 4) + ((X & 7) << 1)); } else if (PPU.Mode7Repeat == 3) b = *(VRAM1 + ((Y & 7) << 4) + ((X & 7) << 1)); else continue; Pix = b & OP::MASK; DRAW_PIXEL(x, Pix); } } } } }; template struct DrawMode7BG1 : public DrawTileNormal {}; template struct DrawMode7BG2 : public DrawTileNormal {}; template struct DrawTileMosaic { typedef void (*call_t)(uint32 Left, uint32 Right, int D); static void Draw(uint32 Left, uint32 Right, int D) { uint8 *VRAM1 = Memory.VRAM + 1; if (OP::DCMODE()) { GFX.RealScreenColors = DirectColourMaps[0]; } else GFX.RealScreenColors = IPPU.ScreenColors; GFX.ScreenColors = GFX.ClipColors ? BlackColourMap : GFX.RealScreenColors; int aa, cc; int startx, StartY = GFX.StartY; int HMosaic = 1, VMosaic = 1, MosaicStart = 0; int32 MLeft = Left, MRight = Right; if (PPU.BGMosaic[0]) { VMosaic = PPU.Mosaic; MosaicStart = ((uint32) GFX.StartY - PPU.MosaicStart) % VMosaic; StartY -= MosaicStart; } if (PPU.BGMosaic[OP::BG]) { HMosaic = PPU.Mosaic; MLeft -= MLeft % HMosaic; MRight += HMosaic - 1; MRight -= MRight % HMosaic; } uint32 Offset = StartY * GFX.PPL; struct SLineMatrixData *l = &LineMatrixData[StartY]; OFFSET_IN_LINE; for (uint32 Line = StartY; Line <= GFX.EndY; Line += VMosaic, Offset += VMosaic * GFX.PPL, l += VMosaic) { if (Line + VMosaic > GFX.EndY) VMosaic = GFX.EndY - Line + 1; int yy, starty; int32 HOffset = ((int32) l->M7HOFS << 19) >> 19; int32 VOffset = ((int32) l->M7VOFS << 19) >> 19; int32 CentreX = ((int32) l->CentreX << 19) >> 19; int32 CentreY = ((int32) l->CentreY << 19) >> 19; if (PPU.Mode7VFlip) starty = 255 - (int) (Line + 1); else starty = Line + 1; yy = CLIP_10_BIT_SIGNED(VOffset - CentreY); int BB = ((l->MatrixB * starty) & ~63) + ((l->MatrixB * yy) & ~63) + (CentreX << 8); int DD = ((l->MatrixD * starty) & ~63) + ((l->MatrixD * yy) & ~63) + (CentreY << 8); if (PPU.Mode7HFlip) { startx = MRight - 1; aa = -l->MatrixA; cc = -l->MatrixC; } else { startx = MLeft; aa = l->MatrixA; cc = l->MatrixC; } int xx = CLIP_10_BIT_SIGNED(HOffset - CentreX); int AA = l->MatrixA * startx + ((l->MatrixA * xx) & ~63); int CC = l->MatrixC * startx + ((l->MatrixC * xx) & ~63); uint8 Pix; uint8 ctr = 1; if (!PPU.Mode7Repeat) { for (int32 x = MLeft; x < MRight; x++, AA += aa, CC += cc) { if (--ctr) continue; ctr = HMosaic; int X = ((AA + BB) >> 8) & 0x3ff; int Y = ((CC + DD) >> 8) & 0x3ff; uint8 *TileData = VRAM1 + (Memory.VRAM[((Y & ~7) << 5) + ((X >> 2) & ~1)] << 7); uint8 b = *(TileData + ((Y & 7) << 4) + ((X & 7) << 1)); if ((Pix = (b & OP::MASK))) { for (int32 h = MosaicStart; h < VMosaic; h++) { for (int32 w = x + HMosaic - 1; w >= x; w--) DRAW_PIXEL(w + h * GFX.PPL, (w >= (int32) Left && w < (int32) Right)); } } } } else { for (int32 x = MLeft; x < MRight; x++, AA += aa, CC += cc) { if (--ctr) continue; ctr = HMosaic; int X = ((AA + BB) >> 8); int Y = ((CC + DD) >> 8); uint8 b; if (((X | Y) & ~0x3ff) == 0) { uint8 *TileData = VRAM1 + (Memory.VRAM[((Y & ~7) << 5) + ((X >> 2) & ~1)] << 7); b = *(TileData + ((Y & 7) << 4) + ((X & 7) << 1)); } else if (PPU.Mode7Repeat == 3) b = *(VRAM1 + ((Y & 7) << 4) + ((X & 7) << 1)); else continue; if ((Pix = (b & OP::MASK))) { for (int32 h = MosaicStart; h < VMosaic; h++) { for (int32 w = x + HMosaic - 1; w >= x; w--) DRAW_PIXEL(w + h * GFX.PPL, (w >= (int32) Left && w < (int32) Right)); } } } } MosaicStart = 0; } } }; template struct DrawMode7MosaicBG1 : public DrawTileMosaic {}; template struct DrawMode7MosaicBG2 : public DrawTileMosaic {}; #undef DRAW_PIXEL #endif #endif