/*********************************************************************************** Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com), Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2002 - 2004 Matthew Kendora (c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org) (c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/) (c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca), Kris Bleakley (codeviolation@hotmail.com) (c) Copyright 2002 - 2010 Brad Jorsch (anomie@users.sourceforge.net), Nach (n-a-c-h@users.sourceforge.net), (c) Copyright 2002 - 2011 zones (kasumitokoduck@yahoo.com) (c) Copyright 2006 - 2007 nitsuja (c) Copyright 2009 - 2016 BearOso, OV2 BS-X C emulator code (c) Copyright 2005 - 2006 Dreamer Nom, zones C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com), Nach, zsKnight (zsknight@zsnes.com) C4 C++ code (c) Copyright 2003 - 2006 Brad Jorsch, Nach DSP-1 emulator code (c) Copyright 1998 - 2006 _Demo_, Andreas Naive (andreasnaive@gmail.com), Gary Henderson, Ivar (ivar@snes9x.com), John Weidman, Kris Bleakley, Matthew Kendora, Nach, neviksti (neviksti@hotmail.com) DSP-2 emulator code (c) Copyright 2003 John Weidman, Kris Bleakley, Lord Nightmare (lord_nightmare@users.sourceforge.net), Matthew Kendora, neviksti DSP-3 emulator code (c) Copyright 2003 - 2006 John Weidman, Kris Bleakley, Lancer, z80 gaiden DSP-4 emulator code (c) Copyright 2004 - 2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com), Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code used in 1.39-1.51 (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, Dark Force SPC7110 and RTC C++ emulator code used in 1.52+ (c) Copyright 2009 byuu, neviksti S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive, John Weidman S-RTC C emulator code (c) Copyright 2001 - 2006 byuu, John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, John Weidman, Kris Bleakley, Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 _Demo_, pagefault, zsKnight Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson, John Weidman Sound emulator code used in 1.5-1.51 (c) Copyright 1998 - 2003 Brad Martin (c) Copyright 1998 - 2006 Charles Bilyue' Sound emulator code used in 1.52+ (c) Copyright 2004 - 2007 Shay Green (gblargg@gmail.com) S-SMP emulator code used in 1.54+ (c) Copyright 2016 byuu SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) 2xSaI filter (c) Copyright 1999 - 2001 Derek Liauw Kie Fa HQ2x, HQ3x, HQ4x filters (c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com) NTSC filter (c) Copyright 2006 - 2007 Shay Green GTK+ GUI code (c) Copyright 2004 - 2016 BearOso Win32 GUI code (c) Copyright 2003 - 2006 blip, funkyass, Matthew Kendora, Nach, nitsuja (c) Copyright 2009 - 2016 OV2 Mac OS GUI code (c) Copyright 1998 - 2001 John Stiles (c) Copyright 2001 - 2011 zones Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com/ Permission to use, copy, modify and/or distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software or it's derivatives. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes, but is not limited to, charging money for Snes9x or software derived from Snes9x, including Snes9x or derivatives in commercial game bundles, and/or using Snes9x as a promotion for your commercial product. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. ***********************************************************************************/ #include "snes9x.h" #include "memmap.h" uint8 SA1OpenBus; static void S9xSA1SetBWRAMMemMap (uint8); static void S9xSetSA1MemMap (uint32, uint8); static void S9xSA1CharConv2 (void); static void S9xSA1DMA (void); static void S9xSA1ReadVariableLengthData (bool8, bool8); void S9xSA1Init (void) { SA1.Cycles = 0; SA1.PrevCycles = 0; SA1.Flags = 0; SA1.WaitingForInterrupt = FALSE; memset(&Memory.FillRAM[0x2200], 0, 0x200); Memory.FillRAM[0x2200] = 0x20; Memory.FillRAM[0x2220] = 0x00; Memory.FillRAM[0x2221] = 0x01; Memory.FillRAM[0x2222] = 0x02; Memory.FillRAM[0x2223] = 0x03; Memory.FillRAM[0x2228] = 0x0f; SA1.in_char_dma = FALSE; SA1.TimerIRQLastState = FALSE; SA1.HTimerIRQPos = 0; SA1.VTimerIRQPos = 0; SA1.HCounter = 0; SA1.VCounter = 0; SA1.PrevHCounter = 0; SA1.arithmetic_op = 0; SA1.op1 = 0; SA1.op2 = 0; SA1.sum = 0; SA1.overflow = FALSE; SA1.VirtualBitmapFormat = 0; SA1.variable_bit_pos = 0; SA1Registers.PBPC = 0; SA1Registers.PB = 0; SA1Registers.PCw = 0; SA1Registers.D.W = 0; SA1Registers.DB = 0; SA1Registers.SH = 1; SA1Registers.SL = 0xFF; SA1Registers.XH = 0; SA1Registers.YH = 0; SA1Registers.P.W = 0; SA1.ShiftedPB = 0; SA1.ShiftedDB = 0; SA1SetFlags(MemoryFlag | IndexFlag | IRQ | Emulation); SA1ClearFlags(Decimal); SA1.MemSpeed = SLOW_ONE_CYCLE; SA1.MemSpeedx2 = SLOW_ONE_CYCLE * 2; SA1.S9xOpcodes = S9xSA1OpcodesM1X1; SA1.S9xOpLengths = S9xOpLengthsM1X1; S9xSA1SetPCBase(SA1Registers.PBPC); S9xSA1UnpackStatus(); S9xSA1FixCycles(); SA1.BWRAM = Memory.SRAM; CPU.IRQExternal = FALSE; } static void S9xSA1SetBWRAMMemMap (uint8 val) { if (val & 0x80) { for (int c = 0; c < 0x400; c += 16) { SA1.Map[c + 6] = SA1.Map[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2; SA1.Map[c + 7] = SA1.Map[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2; SA1.WriteMap[c + 6] = SA1.WriteMap[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2; SA1.WriteMap[c + 7] = SA1.WriteMap[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2; } SA1.BWRAM = Memory.SRAM + (val & 0x7f) * 0x2000 / 4; } else { for (int c = 0; c < 0x400; c += 16) { SA1.Map[c + 6] = SA1.Map[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM; SA1.Map[c + 7] = SA1.Map[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM; SA1.WriteMap[c + 6] = SA1.WriteMap[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM; SA1.WriteMap[c + 7] = SA1.WriteMap[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM; } SA1.BWRAM = Memory.SRAM + (val & 7) * 0x2000; } } void S9xSA1PostLoadState (void) { SA1.ShiftedPB = (uint32) SA1Registers.PB << 16; SA1.ShiftedDB = (uint32) SA1Registers.DB << 16; S9xSA1SetPCBase(SA1Registers.PBPC); S9xSA1UnpackStatus(); S9xSA1FixCycles(); SA1.VirtualBitmapFormat = (Memory.FillRAM[0x223f] & 0x80) ? 2 : 4; Memory.BWRAM = Memory.SRAM + (Memory.FillRAM[0x2224] & 7) * 0x2000; S9xSA1SetBWRAMMemMap(Memory.FillRAM[0x2225]); } static void S9xSetSA1MemMap (uint32 which1, uint8 map) { int start = which1 * 0x100 + 0xc00; int start2 = which1 * 0x200; if (which1 >= 2) start2 += 0x400; for (int c = 0; c < 0x100; c += 16) { uint8 *block = &Memory.ROM[(map & 7) * 0x100000 + (c << 12)]; for (int i = c; i < c + 16; i++) Memory.Map[start + i] = SA1.Map[start + i] = block; } for (int c = 0; c < 0x200; c += 16) { // conversion to int is needed here - map is promoted but which1 is not int32 offset = (((map & 0x80) ? map : which1) & 7) * 0x100000 + (c << 11) - 0x8000; uint8 *block = &Memory.ROM[offset]; for (int i = c + 8; i < c + 16; i++) Memory.Map[start2 + i] = SA1.Map[start2 + i] = block; } } uint8 S9xGetSA1 (uint32 address) { switch (address) { case 0x2300: // S-CPU flag return ((Memory.FillRAM[0x2209] & 0x5f) | (Memory.FillRAM[0x2300] & 0xa0)); case 0x2301: // SA-1 flag return ((Memory.FillRAM[0x2200] & 0x0f) | (Memory.FillRAM[0x2301] & 0xf0)); case 0x2302: // H counter (L) SA1.HTimerIRQPos = SA1.HCounter / ONE_DOT_CYCLE; SA1.VTimerIRQPos = SA1.VCounter; return ((uint8) SA1.HTimerIRQPos); case 0x2303: // H counter (H) return ((uint8) (SA1.HTimerIRQPos >> 8)); case 0x2304: // V counter (L) return ((uint8) SA1.VTimerIRQPos); case 0x2305: // V counter (H) return ((uint8) (SA1.VTimerIRQPos >> 8)); case 0x2306: // arithmetic result (LLL) return ((uint8) SA1.sum); case 0x2307: // arithmetic result (LLH) return ((uint8) (SA1.sum >> 8)); case 0x2308: // arithmetic result (LHL) return ((uint8) (SA1.sum >> 16)); case 0x2309: // arithmetic result (LLH) return ((uint8) (SA1.sum >> 24)); case 0x230a: // arithmetic result (HLL) return ((uint8) (SA1.sum >> 32)); case 0x230b: // arithmetic overflow return (SA1.overflow ? 0x80 : 0); case 0x230c: // variable-length data read port (L) return (Memory.FillRAM[0x230c]); case 0x230d: // variable-length data read port (H) { uint8 byte = Memory.FillRAM[0x230d]; if (Memory.FillRAM[0x2258] & 0x80) S9xSA1ReadVariableLengthData(TRUE, FALSE); return (byte); } case 0x230e: // version code register return (0x01); default: break; } return (Memory.FillRAM[address]); } void S9xSetSA1 (uint8 byte, uint32 address) { switch (address) { case 0x2200: // SA-1 control #ifdef DEBUGGER if (byte & 0x60) printf("SA-1 sleep\n"); #endif // SA-1 reset if (!(byte & 0x80) && (Memory.FillRAM[0x2200] & 0x20)) { #ifdef DEBUGGER printf("SA-1 reset\n"); #endif SA1Registers.PBPC = 0; SA1Registers.PB = 0; SA1Registers.PCw = Memory.FillRAM[0x2203] | (Memory.FillRAM[0x2204] << 8); S9xSA1SetPCBase(SA1Registers.PBPC); } // SA-1 IRQ control if (byte & 0x80) { Memory.FillRAM[0x2301] |= 0x80; if (Memory.FillRAM[0x220a] & 0x80) Memory.FillRAM[0x220b] &= ~0x80; } // SA-1 NMI control if (byte & 0x10) { Memory.FillRAM[0x2301] |= 0x10; if (Memory.FillRAM[0x220a] & 0x10) Memory.FillRAM[0x220b] &= ~0x10; } break; case 0x2201: // S-CPU interrupt enable // S-CPU IRQ enable if (((byte ^ Memory.FillRAM[0x2201]) & 0x80) && (Memory.FillRAM[0x2300] & byte & 0x80)) { Memory.FillRAM[0x2202] &= ~0x80; CPU.IRQExternal = TRUE; } // S-CPU CHDMA IRQ enable if (((byte ^ Memory.FillRAM[0x2201]) & 0x20) && (Memory.FillRAM[0x2300] & byte & 0x20)) { Memory.FillRAM[0x2202] &= ~0x20; CPU.IRQExternal = TRUE; } break; case 0x2202: // S-CPU interrupt clear // S-CPU IRQ clear if (byte & 0x80) Memory.FillRAM[0x2300] &= ~0x80; // S-CPU CHDMA IRQ clear if (byte & 0x20) Memory.FillRAM[0x2300] &= ~0x20; if (!(Memory.FillRAM[0x2300] & 0xa0)) CPU.IRQExternal = FALSE; break; case 0x2203: // SA-1 reset vector (L) case 0x2204: // SA-1 reset vector (H) case 0x2205: // SA-1 NMI vector (L) case 0x2206: // SA-1 NMI vector (H) case 0x2207: // SA-1 IRQ vector (L) case 0x2208: // SA-1 IRQ vector (H) break; case 0x2209: // S-CPU control // 0x40: S-CPU IRQ overwrite // 0x20: S-CPU NMI overwrite // S-CPU IRQ control if (byte & 0x80) { Memory.FillRAM[0x2300] |= 0x80; if (Memory.FillRAM[0x2201] & 0x80) { Memory.FillRAM[0x2202] &= ~0x80; CPU.IRQExternal = TRUE; } } break; case 0x220a: // SA-1 interrupt enable // SA-1 IRQ enable if (((byte ^ Memory.FillRAM[0x220a]) & 0x80) && (Memory.FillRAM[0x2301] & byte & 0x80)) Memory.FillRAM[0x220b] &= ~0x80; // SA-1 timer IRQ enable if (((byte ^ Memory.FillRAM[0x220a]) & 0x40) && (Memory.FillRAM[0x2301] & byte & 0x40)) Memory.FillRAM[0x220b] &= ~0x40; // SA-1 DMA IRQ enable if (((byte ^ Memory.FillRAM[0x220a]) & 0x20) && (Memory.FillRAM[0x2301] & byte & 0x20)) Memory.FillRAM[0x220b] &= ~0x20; // SA-1 NMI enable if (((byte ^ Memory.FillRAM[0x220a]) & 0x10) && (Memory.FillRAM[0x2301] & byte & 0x10)) Memory.FillRAM[0x220b] &= ~0x10; break; case 0x220b: // SA-1 interrupt clear // SA-1 IRQ clear if (byte & 0x80) Memory.FillRAM[0x2301] &= ~0x80; // SA-1 timer IRQ clear if (byte & 0x40) Memory.FillRAM[0x2301] &= ~0x40; // SA-1 DMA IRQ clear if (byte & 0x20) Memory.FillRAM[0x2301] &= ~0x20; // SA-1 NMI clear if (byte & 0x10) Memory.FillRAM[0x2301] &= ~0x10; break; case 0x220c: // S-CPU NMI vector (L) case 0x220d: // S-CPU NMI vector (H) case 0x220e: // S-CPU IRQ vector (L) case 0x220f: // S-CPU IRQ vector (H) break; case 0x2210: // SA-1 timer control // 0x80: mode (linear / HV) // 0x02: V timer enable // 0x01: H timer enable #ifdef DEBUGGER printf("SA-1 timer control write:%02x\n", byte); #endif break; case 0x2211: // SA-1 timer reset SA1.HCounter = 0; SA1.VCounter = 0; break; case 0x2212: // SA-1 H-timer (L) SA1.HTimerIRQPos = byte | (Memory.FillRAM[0x2213] << 8); break; case 0x2213: // SA-1 H-timer (H) SA1.HTimerIRQPos = (byte << 8) | Memory.FillRAM[0x2212]; break; case 0x2214: // SA-1 V-timer (L) SA1.VTimerIRQPos = byte | (Memory.FillRAM[0x2215] << 8); break; case 0x2215: // SA-1 V-timer (H) SA1.VTimerIRQPos = (byte << 8) | Memory.FillRAM[0x2214]; break; case 0x2220: // MMC bank C case 0x2221: // MMC bank D case 0x2222: // MMC bank E case 0x2223: // MMC bank F S9xSetSA1MemMap(address - 0x2220, byte); break; case 0x2224: // S-CPU BW-RAM mapping Memory.BWRAM = Memory.SRAM + (byte & 7) * 0x2000; break; case 0x2225: // SA-1 BW-RAM mapping if (byte != Memory.FillRAM[0x2225]) S9xSA1SetBWRAMMemMap(byte); break; case 0x2226: // S-CPU BW-RAM write enable case 0x2227: // SA-1 BW-RAM write enable case 0x2228: // BW-RAM write-protected area case 0x2229: // S-CPU I-RAM write protection case 0x222a: // SA-1 I-RAM write protection break; case 0x2230: // DMA control // 0x80: enable // 0x40: priority (DMA / SA-1) // 0x20: character conversion / normal // 0x10: BW-RAM -> I-RAM / SA-1 -> I-RAM // 0x04: destinatin (BW-RAM / I-RAM) // 0x03: source break; case 0x2231: // character conversion DMA parameters // 0x80: CHDEND (complete / incomplete) // 0x03: color mode // (byte >> 2) & 7: virtual VRAM width if (byte & 0x80) SA1.in_char_dma = FALSE; break; case 0x2232: // DMA source start address (LL) case 0x2233: // DMA source start address (LH) case 0x2234: // DMA source start address (HL) break; case 0x2235: // DMA destination start address (LL) break; case 0x2236: // DMA destination start address (LH) Memory.FillRAM[0x2236] = byte; if ((Memory.FillRAM[0x2230] & 0xa4) == 0x80) // Normal DMA to I-RAM S9xSA1DMA(); else if ((Memory.FillRAM[0x2230] & 0xb0) == 0xb0) // CC1 { SA1.in_char_dma = TRUE; Memory.FillRAM[0x2300] |= 0x20; if (Memory.FillRAM[0x2201] & 0x20) { Memory.FillRAM[0x2202] &= ~0x20; CPU.IRQExternal = TRUE; } } break; case 0x2237: // DMA destination start address (HL) Memory.FillRAM[0x2237] = byte; if ((Memory.FillRAM[0x2230] & 0xa4) == 0x84) // Normal DMA to BW-RAM S9xSA1DMA(); break; case 0x2238: // DMA terminal counter (L) case 0x2239: // DMA terminal counter (H) break; case 0x223f: // BW-RAM bitmap format SA1.VirtualBitmapFormat = (byte & 0x80) ? 2 : 4; break; case 0x2240: // bitmap register 0 case 0x2241: // bitmap register 1 case 0x2242: // bitmap register 2 case 0x2243: // bitmap register 3 case 0x2244: // bitmap register 4 case 0x2245: // bitmap register 5 case 0x2246: // bitmap register 6 case 0x2247: // bitmap register 7 case 0x2248: // bitmap register 8 case 0x2249: // bitmap register 9 case 0x224a: // bitmap register A case 0x224b: // bitmap register B case 0x224c: // bitmap register C case 0x224d: // bitmap register D case 0x224e: // bitmap register E break; case 0x224f: // bitmap register F Memory.FillRAM[0x224f] = byte; if ((Memory.FillRAM[0x2230] & 0xb0) == 0xa0) // CC2 { memmove(&Memory.ROM[CMemory::MAX_ROM_SIZE - 0x10000] + SA1.in_char_dma * 16, &Memory.FillRAM[0x2240], 16); SA1.in_char_dma = (SA1.in_char_dma + 1) & 7; if ((SA1.in_char_dma & 3) == 0) S9xSA1CharConv2(); } break; case 0x2250: // arithmetic control if (byte & 2) SA1.sum = 0; SA1.arithmetic_op = byte & 3; break; case 0x2251: // multiplicand / dividend (L) SA1.op1 = (SA1.op1 & 0xff00) | byte; break; case 0x2252: // multiplicand / dividend (H) SA1.op1 = (SA1.op1 & 0x00ff) | (byte << 8); break; case 0x2253: // multiplier / divisor (L) SA1.op2 = (SA1.op2 & 0xff00) | byte; break; case 0x2254: // multiplier / divisor (H) SA1.op2 = (SA1.op2 & 0x00ff) | (byte << 8); switch (SA1.arithmetic_op) { case 0: // signed multiplication SA1.sum = (int16) SA1.op1 * (int16) SA1.op2; SA1.op2 = 0; break; case 1: // unsigned division if (SA1.op2 == 0) SA1.sum = 0; else { int16 quotient = (int16) SA1.op1 / (uint16) SA1.op2; uint16 remainder = (int16) SA1.op1 % (uint16) SA1.op2; SA1.sum = (remainder << 16) | quotient; } SA1.op1 = 0; SA1.op2 = 0; break; case 2: // cumulative sum default: SA1.sum += (int16) SA1.op1 * (int16) SA1.op2; SA1.overflow = (SA1.sum >= (1ULL << 40)); SA1.sum &= (1ULL << 40) - 1; SA1.op2 = 0; break; } break; case 0x2258: // variable bit-field length / auto inc / start Memory.FillRAM[0x2258] = byte; S9xSA1ReadVariableLengthData(TRUE, FALSE); return; case 0x2259: // variable bit-field start address (LL) case 0x225a: // variable bit-field start address (LH) case 0x225b: // variable bit-field start address (HL) Memory.FillRAM[address] = byte; // XXX: ??? SA1.variable_bit_pos = 0; S9xSA1ReadVariableLengthData(FALSE, TRUE); return; default: break; } if (address >= 0x2200 && address <= 0x22ff) Memory.FillRAM[address] = byte; } static void S9xSA1CharConv2 (void) { uint32 dest = Memory.FillRAM[0x2235] | (Memory.FillRAM[0x2236] << 8); uint32 offset = (SA1.in_char_dma & 7) ? 0 : 1; int depth = (Memory.FillRAM[0x2231] & 3) == 0 ? 8 : (Memory.FillRAM[0x2231] & 3) == 1 ? 4 : 2; int bytes_per_char = 8 * depth; uint8 *p = &Memory.FillRAM[0x3000] + (dest & 0x7ff) + offset * bytes_per_char; uint8 *q = &Memory.ROM[CMemory::MAX_ROM_SIZE - 0x10000] + offset * 64; switch (depth) { case 2: for (int l = 0; l < 8; l++, q += 8) { for (int b = 0; b < 8; b++) { uint8 r = *(q + b); *(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1); } p += 2; } break; case 4: for (int l = 0; l < 8; l++, q += 8) { for (int b = 0; b < 8; b++) { uint8 r = *(q + b); *(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1); *(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1); *(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1); } p += 2; } break; case 8: for (int l = 0; l < 8; l++, q += 8) { for (int b = 0; b < 8; b++) { uint8 r = *(q + b); *(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1); *(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1); *(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1); *(p + 32) = (*(p + 32) << 1) | ((r >> 4) & 1); *(p + 33) = (*(p + 33) << 1) | ((r >> 5) & 1); *(p + 48) = (*(p + 48) << 1) | ((r >> 6) & 1); *(p + 49) = (*(p + 49) << 1) | ((r >> 7) & 1); } p += 2; } break; } } static void S9xSA1DMA (void) { uint32 src = Memory.FillRAM[0x2232] | (Memory.FillRAM[0x2233] << 8) | (Memory.FillRAM[0x2234] << 16); uint32 dst = Memory.FillRAM[0x2235] | (Memory.FillRAM[0x2236] << 8) | (Memory.FillRAM[0x2237] << 16); uint32 len = Memory.FillRAM[0x2238] | (Memory.FillRAM[0x2239] << 8); uint8 *s, *d; switch (Memory.FillRAM[0x2230] & 3) { case 0: // ROM s = SA1.Map[((src & 0xffffff) >> MEMMAP_SHIFT)]; if (s >= (uint8 *) CMemory::MAP_LAST) s += (src & 0xffff); else s = Memory.ROM + (src & 0xffff); break; case 1: // BW-RAM src &= Memory.SRAMMask; len &= Memory.SRAMMask; s = Memory.SRAM + src; break; default: case 2: src &= 0x3ff; len &= 0x3ff; s = &Memory.FillRAM[0x3000] + src; break; } if (Memory.FillRAM[0x2230] & 4) { dst &= Memory.SRAMMask; len &= Memory.SRAMMask; d = Memory.SRAM + dst; } else { dst &= 0x3ff; len &= 0x3ff; d = &Memory.FillRAM[0x3000] + dst; } memmove(d, s, len); // SA-1 DMA IRQ control Memory.FillRAM[0x2301] |= 0x20; if (Memory.FillRAM[0x220a] & 0x20) Memory.FillRAM[0x220b] &= ~0x20; } static void S9xSA1ReadVariableLengthData (bool8 inc, bool8 no_shift) { uint32 addr = Memory.FillRAM[0x2259] | (Memory.FillRAM[0x225a] << 8) | (Memory.FillRAM[0x225b] << 16); uint8 shift = Memory.FillRAM[0x2258] & 15; if (no_shift) shift = 0; else if (shift == 0) shift = 16; uint8 s = shift + SA1.variable_bit_pos; if (s >= 16) { addr += (s >> 4) << 1; s &= 15; } uint32 data = S9xSA1GetWord(addr) | (S9xSA1GetWord(addr + 2) << 16); data >>= s; Memory.FillRAM[0x230c] = (uint8) data; Memory.FillRAM[0x230d] = (uint8) (data >> 8); if (inc) { SA1.variable_bit_pos = (SA1.variable_bit_pos + shift) & 15; Memory.FillRAM[0x2259] = (uint8) addr; Memory.FillRAM[0x225a] = (uint8) (addr >> 8); Memory.FillRAM[0x225b] = (uint8) (addr >> 16); } } uint8 S9xSA1GetByte (uint32 address) { uint8 *GetAddress = SA1.Map[(address & 0xffffff) >> MEMMAP_SHIFT]; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) return (*(GetAddress + (address & 0xffff))); switch ((pint) GetAddress) { case CMemory::MAP_PPU: return (S9xGetSA1(address & 0xffff)); case CMemory::MAP_LOROM_SRAM: case CMemory::MAP_SA1RAM: return (*(Memory.SRAM + (address & 0xffff))); case CMemory::MAP_BWRAM: return (*(SA1.BWRAM + ((address & 0x7fff) - 0x6000))); case CMemory::MAP_BWRAM_BITMAP: address -= 0x600000; if (SA1.VirtualBitmapFormat == 2) return ((Memory.SRAM[(address >> 2) & 0xffff] >> ((address & 3) << 1)) & 3); else return ((Memory.SRAM[(address >> 1) & 0xffff] >> ((address & 1) << 2)) & 15); case CMemory::MAP_BWRAM_BITMAP2: address = (address & 0xffff) - 0x6000; if (SA1.VirtualBitmapFormat == 2) return ((SA1.BWRAM[(address >> 2) & 0xffff] >> ((address & 3) << 1)) & 3); else return ((SA1.BWRAM[(address >> 1) & 0xffff] >> ((address & 1) << 2)) & 15); default: return (SA1OpenBus); } } uint16 S9xSA1GetWord (uint32 address, s9xwrap_t w) { PC_t a; SA1OpenBus = S9xSA1GetByte(address); switch (w) { case WRAP_PAGE: a.xPBPC = address; a.B.xPCl++; return (SA1OpenBus | (S9xSA1GetByte(a.xPBPC) << 8)); case WRAP_BANK: a.xPBPC = address; a.W.xPC++; return (SA1OpenBus | (S9xSA1GetByte(a.xPBPC) << 8)); case WRAP_NONE: default: return (SA1OpenBus | (S9xSA1GetByte(address + 1) << 8)); } } void S9xSA1SetByte (uint8 byte, uint32 address) { uint8 *SetAddress = SA1.WriteMap[(address & 0xffffff) >> MEMMAP_SHIFT]; if (SetAddress >= (uint8 *) CMemory::MAP_LAST) { *(SetAddress + (address & 0xffff)) = byte; return; } switch ((pint) SetAddress) { case CMemory::MAP_PPU: S9xSetSA1(byte, address & 0xffff); return; case CMemory::MAP_LOROM_SRAM: case CMemory::MAP_SA1RAM: *(Memory.SRAM + (address & 0xffff)) = byte; return; case CMemory::MAP_BWRAM: *(SA1.BWRAM + ((address & 0x7fff) - 0x6000)) = byte; return; case CMemory::MAP_BWRAM_BITMAP: address -= 0x600000; if (SA1.VirtualBitmapFormat == 2) { uint8 *ptr = &Memory.SRAM[(address >> 2) & 0xffff]; *ptr &= ~(3 << ((address & 3) << 1)); *ptr |= (byte & 3) << ((address & 3) << 1); } else { uint8 *ptr = &Memory.SRAM[(address >> 1) & 0xffff]; *ptr &= ~(15 << ((address & 1) << 2)); *ptr |= (byte & 15) << ((address & 1) << 2); } return; case CMemory::MAP_BWRAM_BITMAP2: address = (address & 0xffff) - 0x6000; if (SA1.VirtualBitmapFormat == 2) { uint8 *ptr = &SA1.BWRAM[(address >> 2) & 0xffff]; *ptr &= ~(3 << ((address & 3) << 1)); *ptr |= (byte & 3) << ((address & 3) << 1); } else { uint8 *ptr = &SA1.BWRAM[(address >> 1) & 0xffff]; *ptr &= ~(15 << ((address & 1) << 2)); *ptr |= (byte & 15) << ((address & 1) << 2); } return; default: return; } } void S9xSA1SetWord (uint16 Word, uint32 address, enum s9xwrap_t w, enum s9xwriteorder_t o) { PC_t a; if (!o) S9xSA1SetByte((uint8) Word, address); switch (w) { case WRAP_PAGE: a.xPBPC = address; a.B.xPCl++; S9xSA1SetByte(Word >> 8, a.xPBPC); break; case WRAP_BANK: a.xPBPC = address; a.W.xPC++; S9xSA1SetByte(Word >> 8, a.xPBPC); break; case WRAP_NONE: default: S9xSA1SetByte(Word >> 8, address + 1); break; } if (o) S9xSA1SetByte((uint8) Word, address); } void S9xSA1SetPCBase (uint32 address) { SA1Registers.PBPC = address & 0xffffff; SA1.ShiftedPB = address & 0xff0000; // FIXME SA1.MemSpeed = memory_speed(address); SA1.MemSpeedx2 = SA1.MemSpeed << 1; uint8 *GetAddress = SA1.Map[(address & 0xffffff) >> MEMMAP_SHIFT]; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) { SA1.PCBase = GetAddress; return; } switch ((pint) GetAddress) { case CMemory::MAP_LOROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) SA1.PCBase = NULL; else SA1.PCBase = (Memory.SRAM + ((((address & 0xff0000) >> 1) | (address & 0x7fff)) & Memory.SRAMMask)) - (address & 0xffff); return; case CMemory::MAP_HIROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) SA1.PCBase = NULL; else SA1.PCBase = (Memory.SRAM + (((address & 0x7fff) - 0x6000 + ((address & 0xf0000) >> 3)) & Memory.SRAMMask)) - (address & 0xffff); return; case CMemory::MAP_BWRAM: SA1.PCBase = SA1.BWRAM - 0x6000 - (address & 0x8000); return; case CMemory::MAP_SA1RAM: SA1.PCBase = Memory.SRAM; return; default: SA1.PCBase = NULL; return; } }