/*********************************************************************************** Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com), Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2002 - 2004 Matthew Kendora (c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org) (c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/) (c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca), Kris Bleakley (codeviolation@hotmail.com) (c) Copyright 2002 - 2010 Brad Jorsch (anomie@users.sourceforge.net), Nach (n-a-c-h@users.sourceforge.net), (c) Copyright 2002 - 2011 zones (kasumitokoduck@yahoo.com) (c) Copyright 2006 - 2007 nitsuja (c) Copyright 2009 - 2016 BearOso, OV2 BS-X C emulator code (c) Copyright 2005 - 2006 Dreamer Nom, zones C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com), Nach, zsKnight (zsknight@zsnes.com) C4 C++ code (c) Copyright 2003 - 2006 Brad Jorsch, Nach DSP-1 emulator code (c) Copyright 1998 - 2006 _Demo_, Andreas Naive (andreasnaive@gmail.com), Gary Henderson, Ivar (ivar@snes9x.com), John Weidman, Kris Bleakley, Matthew Kendora, Nach, neviksti (neviksti@hotmail.com) DSP-2 emulator code (c) Copyright 2003 John Weidman, Kris Bleakley, Lord Nightmare (lord_nightmare@users.sourceforge.net), Matthew Kendora, neviksti DSP-3 emulator code (c) Copyright 2003 - 2006 John Weidman, Kris Bleakley, Lancer, z80 gaiden DSP-4 emulator code (c) Copyright 2004 - 2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com), Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code used in 1.39-1.51 (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, Dark Force SPC7110 and RTC C++ emulator code used in 1.52+ (c) Copyright 2009 byuu, neviksti S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive, John Weidman S-RTC C emulator code (c) Copyright 2001 - 2006 byuu, John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, John Weidman, Kris Bleakley, Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 _Demo_, pagefault, zsKnight Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson, John Weidman Sound emulator code used in 1.5-1.51 (c) Copyright 1998 - 2003 Brad Martin (c) Copyright 1998 - 2006 Charles Bilyue' Sound emulator code used in 1.52+ (c) Copyright 2004 - 2007 Shay Green (gblargg@gmail.com) S-SMP emulator code used in 1.54+ (c) Copyright 2016 byuu SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) 2xSaI filter (c) Copyright 1999 - 2001 Derek Liauw Kie Fa HQ2x, HQ3x, HQ4x filters (c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com) NTSC filter (c) Copyright 2006 - 2007 Shay Green GTK+ GUI code (c) Copyright 2004 - 2016 BearOso Win32 GUI code (c) Copyright 2003 - 2006 blip, funkyass, Matthew Kendora, Nach, nitsuja (c) Copyright 2009 - 2016 OV2 Mac OS GUI code (c) Copyright 1998 - 2001 John Stiles (c) Copyright 2001 - 2011 zones Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com/ Permission to use, copy, modify and/or distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software or it's derivatives. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes, but is not limited to, charging money for Snes9x or software derived from Snes9x, including Snes9x or derivatives in commercial game bundles, and/or using Snes9x as a promotion for your commercial product. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. ***********************************************************************************/ #include "snes9x.h" #include "memmap.h" static void DSP2_Op01 (void); static void DSP2_Op03 (void); static void DSP2_Op05 (void); static void DSP2_Op06 (void); static void DSP2_Op09 (void); static void DSP2_Op0D (void); // convert bitmap to bitplane tile static void DSP2_Op01 (void) { // Op01 size is always 32 bytes input and output // The hardware does strange things if you vary the size uint8 c0, c1, c2, c3; uint8 *p1 = DSP2.parameters; uint8 *p2a = DSP2.output; uint8 *p2b = DSP2.output + 16; // halfway // Process 8 blocks of 4 bytes each for (int j = 0; j < 8; j++) { c0 = *p1++; c1 = *p1++; c2 = *p1++; c3 = *p1++; *p2a++ = (c0 & 0x10) << 3 | (c0 & 0x01) << 6 | (c1 & 0x10) << 1 | (c1 & 0x01) << 4 | (c2 & 0x10) >> 1 | (c2 & 0x01) << 2 | (c3 & 0x10) >> 3 | (c3 & 0x01); *p2a++ = (c0 & 0x20) << 2 | (c0 & 0x02) << 5 | (c1 & 0x20) | (c1 & 0x02) << 3 | (c2 & 0x20) >> 2 | (c2 & 0x02) << 1 | (c3 & 0x20) >> 4 | (c3 & 0x02) >> 1; *p2b++ = (c0 & 0x40) << 1 | (c0 & 0x04) << 4 | (c1 & 0x40) >> 1 | (c1 & 0x04) << 2 | (c2 & 0x40) >> 3 | (c2 & 0x04) | (c3 & 0x40) >> 5 | (c3 & 0x04) >> 2; *p2b++ = (c0 & 0x80) | (c0 & 0x08) << 3 | (c1 & 0x80) >> 2 | (c1 & 0x08) << 1 | (c2 & 0x80) >> 4 | (c2 & 0x08) >> 1 | (c3 & 0x80) >> 6 | (c3 & 0x08) >> 3; } } // set transparent color static void DSP2_Op03 (void) { DSP2.Op05Transparent = DSP2.parameters[0]; } // replace bitmap using transparent color static void DSP2_Op05 (void) { // Overlay bitmap with transparency. // Input: // // Bitmap 1: i[0] <=> i[size-1] // Bitmap 2: i[size] <=> i[2*size-1] // // Output: // // Bitmap 3: o[0] <=> o[size-1] // // Processing: // // Process all 4-bit pixels (nibbles) in the bitmap // // if ( BM2_pixel == transparent_color ) // pixelout = BM1_pixel // else // pixelout = BM2_pixel // The max size bitmap is limited to 255 because the size parameter is a byte // I think size=0 is an error. The behavior of the chip on size=0 is to // return the last value written to DR if you read DR on Op05 with // size = 0. I don't think it's worth implementing this quirk unless it's // proven necessary. uint8 color; uint8 c1, c2; uint8 *p1 = DSP2.parameters; uint8 *p2 = DSP2.parameters + DSP2.Op05Len; uint8 *p3 = DSP2.output; color = DSP2.Op05Transparent & 0x0f; for (int32 n = 0; n < DSP2.Op05Len; n++) { c1 = *p1++; c2 = *p2++; *p3++ = (((c2 >> 4) == color) ? c1 & 0xf0: c2 & 0xf0) | (((c2 & 0x0f) == color) ? c1 & 0x0f: c2 & 0x0f); } } // reverse bitmap static void DSP2_Op06 (void) { // Input: // size // bitmap for (int32 i = 0, j = DSP2.Op06Len - 1; i < DSP2.Op06Len; i++, j--) DSP2.output[j] = (DSP2.parameters[i] << 4) | (DSP2.parameters[i] >> 4); } // multiply static void DSP2_Op09 (void) { DSP2.Op09Word1 = DSP2.parameters[0] | (DSP2.parameters[1] << 8); DSP2.Op09Word2 = DSP2.parameters[2] | (DSP2.parameters[3] << 8); uint32 temp = DSP2.Op09Word1 * DSP2.Op09Word2; DSP2.output[0] = temp & 0xFF; DSP2.output[1] = (temp >> 8) & 0xFF; DSP2.output[2] = (temp >> 16) & 0xFF; DSP2.output[3] = (temp >> 24) & 0xFF; } // scale bitmap static void DSP2_Op0D (void) { // Bit accurate hardware algorithm - uses fixed point math // This should match the DSP2 Op0D output exactly // I wouldn't recommend using this unless you're doing hardware debug. // In some situations it has small visual artifacts that // are not readily apparent on a TV screen but show up clearly // on a monitor. Use Overload's scaling instead. // This is for hardware verification testing. // // One note: the HW can do odd byte scaling but since we divide // by two to get the count of bytes this won't work well for // odd byte scaling (in any of the current algorithm implementations). // So far I haven't seen Dungeon Master use it. // If it does we can adjust the parameters and code to work with it uint32 multiplier; // Any size int >= 32-bits uint32 pixloc; // match size of multiplier uint8 pixelarray[512]; if (DSP2.Op0DInLen <= DSP2.Op0DOutLen) multiplier = 0x10000; // In our self defined fixed point 0x10000 == 1 else multiplier = (DSP2.Op0DInLen << 17) / ((DSP2.Op0DOutLen << 1) + 1); pixloc = 0; for (int32 i = 0; i < DSP2.Op0DOutLen * 2; i++) { int32 j = pixloc >> 16; if (j & 1) pixelarray[i] = DSP2.parameters[j >> 1] & 0x0f; else pixelarray[i] = (DSP2.parameters[j >> 1] & 0xf0) >> 4; pixloc += multiplier; } for (int32 i = 0; i < DSP2.Op0DOutLen; i++) DSP2.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1]; } /* static void DSP2_Op0D (void) { // Overload's algorithm - use this unless doing hardware testing // One note: the HW can do odd byte scaling but since we divide // by two to get the count of bytes this won't work well for // odd byte scaling (in any of the current algorithm implementations). // So far I haven't seen Dungeon Master use it. // If it does we can adjust the parameters and code to work with it int32 pixel_offset; uint8 pixelarray[512]; for (int32 i = 0; i < DSP2.Op0DOutLen * 2; i++) { pixel_offset = (i * DSP2.Op0DInLen) / DSP2.Op0DOutLen; if ((pixel_offset & 1) == 0) pixelarray[i] = DSP2.parameters[pixel_offset >> 1] >> 4; else pixelarray[i] = DSP2.parameters[pixel_offset >> 1] & 0x0f; } for (int32 i = 0; i < DSP2.Op0DOutLen; i++) DSP2.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1]; } */ void DSP2SetByte (uint8 byte, uint16 address) { if ((address & 0xf000) == 0x6000 || (address >= 0x8000 && address < 0xc000)) { if (DSP2.waiting4command) { DSP2.command = byte; DSP2.in_index = 0; DSP2.waiting4command = FALSE; switch (byte) { case 0x01: DSP2.in_count = 32; break; case 0x03: DSP2.in_count = 1; break; case 0x05: DSP2.in_count = 1; break; case 0x06: DSP2.in_count = 1; break; case 0x09: DSP2.in_count = 4; break; case 0x0D: DSP2.in_count = 2; break; default: #ifdef DEBUGGER //printf("Op%02X\n", byte); #endif case 0x0f: DSP2.in_count = 0; break; } } else { DSP2.parameters[DSP2.in_index] = byte; DSP2.in_index++; } if (DSP2.in_count == DSP2.in_index) { DSP2.waiting4command = TRUE; DSP2.out_index = 0; switch (DSP2.command) { case 0x01: DSP2.out_count = 32; DSP2_Op01(); break; case 0x03: DSP2_Op03(); break; case 0x05: if (DSP2.Op05HasLen) { DSP2.Op05HasLen = FALSE; DSP2.out_count = DSP2.Op05Len; DSP2_Op05(); } else { DSP2.Op05Len = DSP2.parameters[0]; DSP2.in_index = 0; DSP2.in_count = 2 * DSP2.Op05Len; DSP2.Op05HasLen = TRUE; if (byte) DSP2.waiting4command = FALSE; } break; case 0x06: if (DSP2.Op06HasLen) { DSP2.Op06HasLen = FALSE; DSP2.out_count = DSP2.Op06Len; DSP2_Op06(); } else { DSP2.Op06Len = DSP2.parameters[0]; DSP2.in_index = 0; DSP2.in_count = DSP2.Op06Len; DSP2.Op06HasLen = TRUE; if (byte) DSP2.waiting4command = FALSE; } break; case 0x09: DSP2.out_count = 4; DSP2_Op09(); break; case 0x0D: if (DSP2.Op0DHasLen) { DSP2.Op0DHasLen = FALSE; DSP2.out_count = DSP2.Op0DOutLen; DSP2_Op0D(); } else { DSP2.Op0DInLen = DSP2.parameters[0]; DSP2.Op0DOutLen = DSP2.parameters[1]; DSP2.in_index = 0; DSP2.in_count = (DSP2.Op0DInLen + 1) >> 1; DSP2.Op0DHasLen = TRUE; if (byte) DSP2.waiting4command = FALSE; } break; case 0x0f: default: break; } } } } uint8 DSP2GetByte (uint16 address) { uint8 t; if ((address & 0xf000) == 0x6000 || (address >= 0x8000 && address < 0xc000)) { if (DSP2.out_count) { t = (uint8) DSP2.output[DSP2.out_index]; DSP2.out_index++; if (DSP2.out_count == DSP2.out_index) DSP2.out_count = 0; } else t = 0xff; } else t = 0x80; return (t); }