/*********************************************************************************** Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com), Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2002 - 2004 Matthew Kendora (c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org) (c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/) (c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca), Kris Bleakley (codeviolation@hotmail.com) (c) Copyright 2002 - 2010 Brad Jorsch (anomie@users.sourceforge.net), Nach (n-a-c-h@users.sourceforge.net), zones (kasumitokoduck@yahoo.com) (c) Copyright 2006 - 2007 nitsuja (c) Copyright 2009 - 2010 BearOso, OV2 BS-X C emulator code (c) Copyright 2005 - 2006 Dreamer Nom, zones C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com), Nach, zsKnight (zsknight@zsnes.com) C4 C++ code (c) Copyright 2003 - 2006 Brad Jorsch, Nach DSP-1 emulator code (c) Copyright 1998 - 2006 _Demo_, Andreas Naive (andreasnaive@gmail.com), Gary Henderson, Ivar (ivar@snes9x.com), John Weidman, Kris Bleakley, Matthew Kendora, Nach, neviksti (neviksti@hotmail.com) DSP-2 emulator code (c) Copyright 2003 John Weidman, Kris Bleakley, Lord Nightmare (lord_nightmare@users.sourceforge.net), Matthew Kendora, neviksti DSP-3 emulator code (c) Copyright 2003 - 2006 John Weidman, Kris Bleakley, Lancer, z80 gaiden DSP-4 emulator code (c) Copyright 2004 - 2006 Dreamer Nom, John Weidman, Kris Bleakley, Nach, z80 gaiden OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com), Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code used in 1.39-1.51 (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, Dark Force SPC7110 and RTC C++ emulator code used in 1.52+ (c) Copyright 2009 byuu, neviksti S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive, John Weidman S-RTC C emulator code (c) Copyright 2001 - 2006 byuu, John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, John Weidman, Kris Bleakley, Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 _Demo_, pagefault, zsKnight Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson, John Weidman Sound emulator code used in 1.5-1.51 (c) Copyright 1998 - 2003 Brad Martin (c) Copyright 1998 - 2006 Charles Bilyue' Sound emulator code used in 1.52+ (c) Copyright 2004 - 2007 Shay Green (gblargg@gmail.com) SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) 2xSaI filter (c) Copyright 1999 - 2001 Derek Liauw Kie Fa HQ2x, HQ3x, HQ4x filters (c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com) NTSC filter (c) Copyright 2006 - 2007 Shay Green GTK+ GUI code (c) Copyright 2004 - 2010 BearOso Win32 GUI code (c) Copyright 2003 - 2006 blip, funkyass, Matthew Kendora, Nach, nitsuja (c) Copyright 2009 - 2010 OV2 Mac OS GUI code (c) Copyright 1998 - 2001 John Stiles (c) Copyright 2001 - 2010 zones Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com/ Permission to use, copy, modify and/or distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software or it's derivatives. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes, but is not limited to, charging money for Snes9x or software derived from Snes9x, including Snes9x or derivatives in commercial game bundles, and/or using Snes9x as a promotion for your commercial product. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. ***********************************************************************************/ #include "snes9x.h" #include "memmap.h" #include "dma.h" #include "apu/apu.h" #include "sdd1emu.h" #include "spc7110emu.h" #ifdef DEBUGGER #include "missing.h" #endif #define ADD_CYCLES(n) { CPU.PrevCycles = CPU.Cycles; CPU.Cycles += (n); S9xCheckInterrupts(); } extern uint8 *HDMAMemPointers[8]; extern int HDMA_ModeByteCounts[8]; extern SPC7110 s7emu; static uint8 sdd1_decode_buffer[0x10000]; static inline bool8 addCyclesInDMA (uint8); static inline bool8 HDMAReadLineCount (int); static inline bool8 addCyclesInDMA (uint8 dma_channel) { // Add 8 cycles per byte, sync APU, and do HC related events. // If HDMA was done in S9xDoHEventProcessing(), check if it used the same channel as DMA. ADD_CYCLES(SLOW_ONE_CYCLE); while (CPU.Cycles >= CPU.NextEvent) S9xDoHEventProcessing(); if (CPU.HDMARanInDMA & (1 << dma_channel)) { CPU.HDMARanInDMA = 0; #ifdef DEBUGGER printf("HDMA and DMA use the same channel %d!\n", dma_channel); #endif // If HDMA triggers in the middle of DMA transfer and it uses the same channel, // it kills the DMA transfer immediately. $43x2 and $43x5 stop updating. return (FALSE); } CPU.HDMARanInDMA = 0; return (TRUE); } bool8 S9xDoDMA (uint8 Channel) { CPU.InDMA = TRUE; CPU.InDMAorHDMA = TRUE; CPU.CurrentDMAorHDMAChannel = Channel; SDMA *d = &DMA[Channel]; // Check invalid DMA first if ((d->ABank == 0x7E || d->ABank == 0x7F) && d->BAddress == 0x80 && !d->ReverseTransfer) { // Attempting a DMA from WRAM to $2180 will not work, WRAM will not be written. // Attempting a DMA from $2180 to WRAM will similarly not work, // the value written is (initially) the OpenBus value. // In either case, the address in $2181-3 is not incremented. // Does an invalid DMA actually take time? // I'd say yes, since 'invalid' is probably just the WRAM chip // not being able to read and write itself at the same time // And no, PPU.WRAM should not be updated. int32 c = d->TransferBytes; // Writing $0000 to $43x5 actually results in a transfer of $10000 bytes, not 0. if (c == 0) c = 0x10000; // 8 cycles per channel ADD_CYCLES(SLOW_ONE_CYCLE); // 8 cycles per byte while (c) { d->TransferBytes--; d->AAddress++; c--; if (!addCyclesInDMA(Channel)) { CPU.InDMA = FALSE; CPU.InDMAorHDMA = FALSE; CPU.CurrentDMAorHDMAChannel = -1; return (FALSE); } } #ifdef DEBUGGER if (Settings.TraceDMA) { sprintf(String, "DMA[%d]: WRAM Bank:%02X->$2180", Channel, d->ABank); S9xMessage(S9X_TRACE, S9X_DMA_TRACE, String); } #endif CPU.InDMA = FALSE; CPU.InDMAorHDMA = FALSE; CPU.CurrentDMAorHDMAChannel = -1; return (TRUE); } // Prepare for accessing $2118-2119 switch (d->BAddress) { case 0x18: case 0x19: if (IPPU.RenderThisFrame) FLUSH_REDRAW(); break; } int32 inc = d->AAddressFixed ? 0 : (!d->AAddressDecrement ? 1 : -1); int32 count = d->TransferBytes; // Writing $0000 to $43x5 actually results in a transfer of $10000 bytes, not 0. if (count == 0) count = 0x10000; // Prepare for custom chip DMA // S-DD1 uint8 *in_sdd1_dma = NULL; if (Settings.SDD1) { if (d->AAddressFixed && Memory.FillRAM[0x4801] > 0) { // XXX: Should probably verify that we're DMAing from ROM? // And somewhere we should make sure we're not running across a mapping boundary too. // Hacky support for pre-decompressed S-DD1 data inc = !d->AAddressDecrement ? 1 : -1; uint8 *in_ptr = S9xGetBasePointer(((d->ABank << 16) | d->AAddress)); if (in_ptr) { in_ptr += d->AAddress; SDD1_decompress(sdd1_decode_buffer, in_ptr, d->TransferBytes); } #ifdef DEBUGGER else { sprintf(String, "S-DD1: DMA from non-block address $%02X:%04X", d->ABank, d->AAddress); S9xMessage(S9X_WARNING, S9X_DMA_TRACE, String); } #endif in_sdd1_dma = sdd1_decode_buffer; } Memory.FillRAM[0x4801] = 0; } // SPC7110 uint8 *spc7110_dma = NULL; if (Settings.SPC7110) { if (d->AAddress == 0x4800 || d->ABank == 0x50) { spc7110_dma = new uint8[d->TransferBytes]; for (int i = 0; i < d->TransferBytes; i++) spc7110_dma[i] = s7emu.decomp.read(); int32 icount = s7emu.r4809 | (s7emu.r480a << 8); icount -= d->TransferBytes; s7emu.r4809 = icount & 0x00ff; s7emu.r480a = (icount & 0xff00) >> 8; inc = 1; d->AAddress -= count; } } // SA-1 bool8 in_sa1_dma = FALSE; if (Settings.SA1) { if (SA1.in_char_dma && d->BAddress == 0x18 && (d->ABank & 0xf0) == 0x40) { // Perform packed bitmap to PPU character format conversion on the data // before transmitting it to V-RAM via-DMA. int32 num_chars = 1 << ((Memory.FillRAM[0x2231] >> 2) & 7); int32 depth = (Memory.FillRAM[0x2231] & 3) == 0 ? 8 : (Memory.FillRAM[0x2231] & 3) == 1 ? 4 : 2; int32 bytes_per_char = 8 * depth; int32 bytes_per_line = depth * num_chars; int32 char_line_bytes = bytes_per_char * num_chars; uint32 addr = (d->AAddress / char_line_bytes) * char_line_bytes; uint8 *base = S9xGetBasePointer((d->ABank << 16) + addr); if (!base) { sprintf(String, "SA-1: DMA from non-block address $%02X:%04X", d->ABank, addr); S9xMessage(S9X_WARNING, S9X_DMA_TRACE, String); base = Memory.ROM; } base += addr; uint8 *buffer = &Memory.ROM[CMemory::MAX_ROM_SIZE - 0x10000]; uint8 *p = buffer; uint32 inc_sa1 = char_line_bytes - (d->AAddress % char_line_bytes); uint32 char_count = inc_sa1 / bytes_per_char; in_sa1_dma = TRUE; #if 0 printf("SA-1 DMA: %08x,", base); printf("depth = %d, count = %d, bytes_per_char = %d, bytes_per_line = %d, num_chars = %d, char_line_bytes = %d\n", depth, count, bytes_per_char, bytes_per_line, num_chars, char_line_bytes); #endif switch (depth) { case 2: for (int32 i = 0; i < count; i += inc_sa1, base += char_line_bytes, inc_sa1 = char_line_bytes, char_count = num_chars) { uint8 *line = base + (num_chars - char_count) * 2; for (uint32 j = 0; j < char_count && p - buffer < count; j++, line += 2) { uint8 *q = line; for (int32 l = 0; l < 8; l++, q += bytes_per_line) { for (int32 b = 0; b < 2; b++) { uint8 r = *(q + b); *(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1); *(p + 0) = (*(p + 0) << 1) | ((r >> 2) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 3) & 1); *(p + 0) = (*(p + 0) << 1) | ((r >> 4) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 5) & 1); *(p + 0) = (*(p + 0) << 1) | ((r >> 6) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 7) & 1); } p += 2; } } } break; case 4: for (int32 i = 0; i < count; i += inc_sa1, base += char_line_bytes, inc_sa1 = char_line_bytes, char_count = num_chars) { uint8 *line = base + (num_chars - char_count) * 4; for (uint32 j = 0; j < char_count && p - buffer < count; j++, line += 4) { uint8 *q = line; for (int32 l = 0; l < 8; l++, q += bytes_per_line) { for (int32 b = 0; b < 4; b++) { uint8 r = *(q + b); *(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1); *(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1); *(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1); *(p + 0) = (*(p + 0) << 1) | ((r >> 4) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 5) & 1); *(p + 16) = (*(p + 16) << 1) | ((r >> 6) & 1); *(p + 17) = (*(p + 17) << 1) | ((r >> 7) & 1); } p += 2; } p += 32 - 16; } } break; case 8: for (int32 i = 0; i < count; i += inc_sa1, base += char_line_bytes, inc_sa1 = char_line_bytes, char_count = num_chars) { uint8 *line = base + (num_chars - char_count) * 8; for (uint32 j = 0; j < char_count && p - buffer < count; j++, line += 8) { uint8 *q = line; for (int32 l = 0; l < 8; l++, q += bytes_per_line) { for (int32 b = 0; b < 8; b++) { uint8 r = *(q + b); *(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1); *(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1); *(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1); *(p + 32) = (*(p + 32) << 1) | ((r >> 4) & 1); *(p + 33) = (*(p + 33) << 1) | ((r >> 5) & 1); *(p + 48) = (*(p + 48) << 1) | ((r >> 6) & 1); *(p + 49) = (*(p + 49) << 1) | ((r >> 7) & 1); } p += 2; } p += 64 - 16; } } break; } } } #ifdef DEBUGGER if (Settings.TraceDMA) { sprintf(String, "DMA[%d]: %s Mode:%d 0x%02X%04X->0x21%02X Bytes:%d (%s) V:%03d", Channel, d->ReverseTransfer ? "PPU->CPU" : "CPU->PPU", d->TransferMode, d->ABank, d->AAddress, d->BAddress, d->TransferBytes, d->AAddressFixed ? "fixed" : (d->AAddressDecrement ? "dec" : "inc"), CPU.V_Counter); if (d->BAddress == 0x18 || d->BAddress == 0x19 || d->BAddress == 0x39 || d->BAddress == 0x3a) sprintf(String, "%s VRAM: %04X (%d,%d) %s", String, PPU.VMA.Address, PPU.VMA.Increment, PPU.VMA.FullGraphicCount, PPU.VMA.High ? "word" : "byte"); else if (d->BAddress == 0x22 || d->BAddress == 0x3b) sprintf(String, "%s CGRAM: %02X (%x)", String, PPU.CGADD, PPU.CGFLIP); else if (d->BAddress == 0x04 || d->BAddress == 0x38) sprintf(String, "%s OBJADDR: %04X", String, PPU.OAMAddr); S9xMessage(S9X_TRACE, S9X_DMA_TRACE, String); } #endif // Do Transfer uint8 Work; // 8 cycles per channel ADD_CYCLES(SLOW_ONE_CYCLE); if (!d->ReverseTransfer) { // CPU -> PPU int32 b = 0; uint16 p = d->AAddress; uint8 *base = S9xGetBasePointer((d->ABank << 16) + d->AAddress); bool8 inWRAM_DMA; int32 rem = count; // Transfer per block if d->AAdressFixed is FALSE count = d->AAddressFixed ? rem : (d->AAddressDecrement ? ((p & MEMMAP_MASK) + 1) : (MEMMAP_BLOCK_SIZE - (p & MEMMAP_MASK))); // Settings for custom chip DMA if (in_sa1_dma) { base = &Memory.ROM[CMemory::MAX_ROM_SIZE - 0x10000]; p = 0; count = rem; } else if (in_sdd1_dma) { base = in_sdd1_dma; p = 0; count = rem; } else if (spc7110_dma) { base = spc7110_dma; p = 0; count = rem; } inWRAM_DMA = ((!in_sa1_dma && !in_sdd1_dma && !spc7110_dma) && (d->ABank == 0x7e || d->ABank == 0x7f || (!(d->ABank & 0x40) && d->AAddress < 0x2000))); // 8 cycles per byte #define UPDATE_COUNTERS \ d->TransferBytes--; \ d->AAddress += inc; \ p += inc; \ if (!addCyclesInDMA(Channel)) \ { \ CPU.InDMA = FALSE; \ CPU.InDMAorHDMA = FALSE; \ CPU.InWRAMDMAorHDMA = FALSE; \ CPU.CurrentDMAorHDMAChannel = -1; \ return (FALSE); \ } while (1) { if (count > rem) count = rem; rem -= count; CPU.InWRAMDMAorHDMA = inWRAM_DMA; if (!base) { // DMA SLOW PATH if (d->TransferMode == 0 || d->TransferMode == 2 || d->TransferMode == 6) { do { Work = S9xGetByte((d->ABank << 16) + p); S9xSetPPU(Work, 0x2100 + d->BAddress); UPDATE_COUNTERS; } while (--count > 0); } else if (d->TransferMode == 1 || d->TransferMode == 5) { // This is a variation on Duff's Device. It is legal C/C++. switch (b) { default: while (count > 1) { Work = S9xGetByte((d->ABank << 16) + p); S9xSetPPU(Work, 0x2100 + d->BAddress); UPDATE_COUNTERS; count--; case 1: Work = S9xGetByte((d->ABank << 16) + p); S9xSetPPU(Work, 0x2101 + d->BAddress); UPDATE_COUNTERS; count--; } } if (count == 1) { Work = S9xGetByte((d->ABank << 16) + p); S9xSetPPU(Work, 0x2100 + d->BAddress); UPDATE_COUNTERS; b = 1; } else b = 0; } else if (d->TransferMode == 3 || d->TransferMode == 7) { switch (b) { default: do { Work = S9xGetByte((d->ABank << 16) + p); S9xSetPPU(Work, 0x2100 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 1; break; } case 1: Work = S9xGetByte((d->ABank << 16) + p); S9xSetPPU(Work, 0x2100 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 2; break; } case 2: Work = S9xGetByte((d->ABank << 16) + p); S9xSetPPU(Work, 0x2101 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 3; break; } case 3: Work = S9xGetByte((d->ABank << 16) + p); S9xSetPPU(Work, 0x2101 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 0; break; } } while (1); } } else if (d->TransferMode == 4) { switch (b) { default: do { Work = S9xGetByte((d->ABank << 16) + p); S9xSetPPU(Work, 0x2100 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 1; break; } case 1: Work = S9xGetByte((d->ABank << 16) + p); S9xSetPPU(Work, 0x2101 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 2; break; } case 2: Work = S9xGetByte((d->ABank << 16) + p); S9xSetPPU(Work, 0x2102 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 3; break; } case 3: Work = S9xGetByte((d->ABank << 16) + p); S9xSetPPU(Work, 0x2103 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 0; break; } } while (1); } } #ifdef DEBUGGER else { sprintf(String, "Unknown DMA transfer mode: %d on channel %d\n", d->TransferMode, Channel); S9xMessage(S9X_TRACE, S9X_DMA_TRACE, String); } #endif } else { // DMA FAST PATH if (d->TransferMode == 0 || d->TransferMode == 2 || d->TransferMode == 6) { switch (d->BAddress) { case 0x04: // OAMDATA do { Work = *(base + p); REGISTER_2104(Work); UPDATE_COUNTERS; } while (--count > 0); break; case 0x18: // VMDATAL #ifndef CORRECT_VRAM_READS IPPU.FirstVRAMRead = TRUE; #endif if (!PPU.VMA.FullGraphicCount) { do { Work = *(base + p); REGISTER_2118_linear(Work); UPDATE_COUNTERS; } while (--count > 0); } else { do { Work = *(base + p); REGISTER_2118_tile(Work); UPDATE_COUNTERS; } while (--count > 0); } break; case 0x19: // VMDATAH #ifndef CORRECT_VRAM_READS IPPU.FirstVRAMRead = TRUE; #endif if (!PPU.VMA.FullGraphicCount) { do { Work = *(base + p); REGISTER_2119_linear(Work); UPDATE_COUNTERS; } while (--count > 0); } else { do { Work = *(base + p); REGISTER_2119_tile(Work); UPDATE_COUNTERS; } while (--count > 0); } break; case 0x22: // CGDATA do { Work = *(base + p); REGISTER_2122(Work); UPDATE_COUNTERS; } while (--count > 0); break; case 0x80: // WMDATA if (!CPU.InWRAMDMAorHDMA) { do { Work = *(base + p); REGISTER_2180(Work); UPDATE_COUNTERS; } while (--count > 0); } else { do { UPDATE_COUNTERS; } while (--count > 0); } break; default: do { Work = *(base + p); S9xSetPPU(Work, 0x2100 + d->BAddress); UPDATE_COUNTERS; } while (--count > 0); break; } } else if (d->TransferMode == 1 || d->TransferMode == 5) { if (d->BAddress == 0x18) { // VMDATAL #ifndef CORRECT_VRAM_READS IPPU.FirstVRAMRead = TRUE; #endif if (!PPU.VMA.FullGraphicCount) { switch (b) { default: while (count > 1) { Work = *(base + p); REGISTER_2118_linear(Work); UPDATE_COUNTERS; count--; case 1: Work = *(base + p); REGISTER_2119_linear(Work); UPDATE_COUNTERS; count--; } } if (count == 1) { Work = *(base + p); REGISTER_2118_linear(Work); UPDATE_COUNTERS; b = 1; } else b = 0; } else { switch (b) { default: while (count > 1) { Work = *(base + p); REGISTER_2118_tile(Work); UPDATE_COUNTERS; count--; case 1: Work = *(base + p); REGISTER_2119_tile(Work); UPDATE_COUNTERS; count--; } } if (count == 1) { Work = *(base + p); REGISTER_2118_tile(Work); UPDATE_COUNTERS; b = 1; } else b = 0; } } else { // DMA mode 1 general case switch (b) { default: while (count > 1) { Work = *(base + p); S9xSetPPU(Work, 0x2100 + d->BAddress); UPDATE_COUNTERS; count--; case 1: Work = *(base + p); S9xSetPPU(Work, 0x2101 + d->BAddress); UPDATE_COUNTERS; count--; } } if (count == 1) { Work = *(base + p); S9xSetPPU(Work, 0x2100 + d->BAddress); UPDATE_COUNTERS; b = 1; } else b = 0; } } else if (d->TransferMode == 3 || d->TransferMode == 7) { switch (b) { default: do { Work = *(base + p); S9xSetPPU(Work, 0x2100 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 1; break; } case 1: Work = *(base + p); S9xSetPPU(Work, 0x2100 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 2; break; } case 2: Work = *(base + p); S9xSetPPU(Work, 0x2101 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 3; break; } case 3: Work = *(base + p); S9xSetPPU(Work, 0x2101 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 0; break; } } while (1); } } else if (d->TransferMode == 4) { switch (b) { default: do { Work = *(base + p); S9xSetPPU(Work, 0x2100 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 1; break; } case 1: Work = *(base + p); S9xSetPPU(Work, 0x2101 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 2; break; } case 2: Work = *(base + p); S9xSetPPU(Work, 0x2102 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 3; break; } case 3: Work = *(base + p); S9xSetPPU(Work, 0x2103 + d->BAddress); UPDATE_COUNTERS; if (--count <= 0) { b = 0; break; } } while (1); } } #ifdef DEBUGGER else { sprintf(String, "Unknown DMA transfer mode: %d on channel %d\n", d->TransferMode, Channel); S9xMessage(S9X_TRACE, S9X_DMA_TRACE, String); } #endif } if (rem <= 0) break; base = S9xGetBasePointer((d->ABank << 16) + d->AAddress); count = MEMMAP_BLOCK_SIZE; inWRAM_DMA = ((!in_sa1_dma && !in_sdd1_dma && !spc7110_dma) && (d->ABank == 0x7e || d->ABank == 0x7f || (!(d->ABank & 0x40) && d->AAddress < 0x2000))); } #undef UPDATE_COUNTERS } else { // PPU -> CPU // 8 cycles per byte #define UPDATE_COUNTERS \ d->TransferBytes--; \ d->AAddress += inc; \ if (!addCyclesInDMA(Channel)) \ { \ CPU.InDMA = FALSE; \ CPU.InDMAorHDMA = FALSE; \ CPU.InWRAMDMAorHDMA = FALSE; \ CPU.CurrentDMAorHDMAChannel = -1; \ return (FALSE); \ } if (d->BAddress > 0x80 - 4 && d->BAddress <= 0x83 && !(d->ABank & 0x40)) { // REVERSE-DMA REALLY-SLOW PATH do { switch (d->TransferMode) { case 0: case 2: case 6: CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000); Work = S9xGetPPU(0x2100 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; count--; break; case 1: case 5: CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000); Work = S9xGetPPU(0x2100 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; if (!--count) break; CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000); Work = S9xGetPPU(0x2101 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; count--; break; case 3: case 7: CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000); Work = S9xGetPPU(0x2100 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; if (!--count) break; CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000); Work = S9xGetPPU(0x2100 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; if (!--count) break; CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000); Work = S9xGetPPU(0x2101 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; if (!--count) break; CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000); Work = S9xGetPPU(0x2101 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; count--; break; case 4: CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000); Work = S9xGetPPU(0x2100 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; if (!--count) break; CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000); Work = S9xGetPPU(0x2101 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; if (!--count) break; CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000); Work = S9xGetPPU(0x2102 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; if (!--count) break; CPU.InWRAMDMAorHDMA = (d->AAddress < 0x2000); Work = S9xGetPPU(0x2103 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; count--; break; default: #ifdef DEBUGGER sprintf(String, "Unknown DMA transfer mode: %d on channel %d\n", d->TransferMode, Channel); S9xMessage(S9X_TRACE, S9X_DMA_TRACE, String); #endif while (count) { UPDATE_COUNTERS; count--; } break; } } while (count); } else { // REVERSE-DMA FASTER PATH CPU.InWRAMDMAorHDMA = (d->ABank == 0x7e || d->ABank == 0x7f); do { switch (d->TransferMode) { case 0: case 2: case 6: Work = S9xGetPPU(0x2100 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; count--; break; case 1: case 5: Work = S9xGetPPU(0x2100 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; if (!--count) break; Work = S9xGetPPU(0x2101 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; count--; break; case 3: case 7: Work = S9xGetPPU(0x2100 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; if (!--count) break; Work = S9xGetPPU(0x2100 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; if (!--count) break; Work = S9xGetPPU(0x2101 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; if (!--count) break; Work = S9xGetPPU(0x2101 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; count--; break; case 4: Work = S9xGetPPU(0x2100 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; if (!--count) break; Work = S9xGetPPU(0x2101 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; if (!--count) break; Work = S9xGetPPU(0x2102 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; if (!--count) break; Work = S9xGetPPU(0x2103 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); UPDATE_COUNTERS; count--; break; default: #ifdef DEBUGGER sprintf(String, "Unknown DMA transfer mode: %d on channel %d\n", d->TransferMode, Channel); S9xMessage(S9X_TRACE, S9X_DMA_TRACE, String); #endif while (count) { UPDATE_COUNTERS; count--; } break; } } while (count); } } if (CPU.NMILine && (Timings.NMITriggerPos != 0xffff)) { Timings.NMITriggerPos = CPU.Cycles + Timings.NMIDMADelay; if (Timings.NMITriggerPos >= Timings.H_Max) Timings.NMITriggerPos -= Timings.H_Max; } // Release the memory used in SPC7110 DMA if (Settings.SPC7110) { if (spc7110_dma) delete [] spc7110_dma; } #if 0 // sanity check if (d->TransferBytes != 0) fprintf(stderr,"DMA[%d] TransferBytes not 0! $21%02x Reverse:%d %04x\n", Channel, d->BAddress, d->ReverseTransfer, d->TransferBytes); #endif CPU.InDMA = FALSE; CPU.InDMAorHDMA = FALSE; CPU.InWRAMDMAorHDMA = FALSE; CPU.CurrentDMAorHDMAChannel = -1; return (TRUE); } static inline bool8 HDMAReadLineCount (int d) { // CPU.InDMA is set, so S9xGetXXX() / S9xSetXXX() incur no charges. uint8 line; line = S9xGetByte((DMA[d].ABank << 16) + DMA[d].Address); ADD_CYCLES(SLOW_ONE_CYCLE); if (!line) { DMA[d].Repeat = FALSE; DMA[d].LineCount = 128; if (DMA[d].HDMAIndirectAddressing) { if (PPU.HDMA & (0xfe << d)) { DMA[d].Address++; ADD_CYCLES(SLOW_ONE_CYCLE << 1); } else ADD_CYCLES(SLOW_ONE_CYCLE); DMA[d].IndirectAddress = S9xGetWord((DMA[d].ABank << 16) + DMA[d].Address); DMA[d].Address++; } DMA[d].Address++; HDMAMemPointers[d] = NULL; return (FALSE); } else if (line == 0x80) { DMA[d].Repeat = TRUE; DMA[d].LineCount = 128; } else { DMA[d].Repeat = !(line & 0x80); DMA[d].LineCount = line & 0x7f; } DMA[d].Address++; DMA[d].DoTransfer = TRUE; if (DMA[d].HDMAIndirectAddressing) { ADD_CYCLES(SLOW_ONE_CYCLE << 1); DMA[d].IndirectAddress = S9xGetWord((DMA[d].ABank << 16) + DMA[d].Address); DMA[d].Address += 2; HDMAMemPointers[d] = S9xGetMemPointer((DMA[d].IndirectBank << 16) + DMA[d].IndirectAddress); } else HDMAMemPointers[d] = S9xGetMemPointer((DMA[d].ABank << 16) + DMA[d].Address); return (TRUE); } void S9xStartHDMA (void) { if (Settings.DisableHDMA) PPU.HDMA = 0; else PPU.HDMA = Memory.FillRAM[0x420c]; #ifdef DEBUGGER missing.hdma_this_frame = PPU.HDMA; #endif PPU.HDMAEnded = 0; int32 tmpch; CPU.InHDMA = TRUE; CPU.InDMAorHDMA = TRUE; tmpch = CPU.CurrentDMAorHDMAChannel; // XXX: Not quite right... if (PPU.HDMA != 0) ADD_CYCLES(Timings.DMACPUSync); for (uint8 i = 0; i < 8; i++) { if (PPU.HDMA & (1 << i)) { CPU.CurrentDMAorHDMAChannel = i; DMA[i].Address = DMA[i].AAddress; if (!HDMAReadLineCount(i)) { PPU.HDMA &= ~(1 << i); PPU.HDMAEnded |= (1 << i); } } else DMA[i].DoTransfer = FALSE; } CPU.InHDMA = FALSE; CPU.InDMAorHDMA = CPU.InDMA; CPU.HDMARanInDMA = CPU.InDMA ? PPU.HDMA : 0; CPU.CurrentDMAorHDMAChannel = tmpch; } uint8 S9xDoHDMA (uint8 byte) { struct SDMA *p = &DMA[0]; uint32 ShiftedIBank; uint16 IAddr; bool8 temp; int32 tmpch; int d = 0; CPU.InHDMA = TRUE; CPU.InDMAorHDMA = TRUE; CPU.HDMARanInDMA = CPU.InDMA ? byte : 0; temp = CPU.InWRAMDMAorHDMA; tmpch = CPU.CurrentDMAorHDMAChannel; // XXX: Not quite right... ADD_CYCLES(Timings.DMACPUSync); for (uint8 mask = 1; mask; mask <<= 1, p++, d++) { if (byte & mask) { CPU.InWRAMDMAorHDMA = FALSE; CPU.CurrentDMAorHDMAChannel = d; if (p->HDMAIndirectAddressing) { ShiftedIBank = (p->IndirectBank << 16); IAddr = p->IndirectAddress; } else { ShiftedIBank = (p->ABank << 16); IAddr = p->Address; } if (!HDMAMemPointers[d]) HDMAMemPointers[d] = S9xGetMemPointer(ShiftedIBank + IAddr); if (p->DoTransfer) { // XXX: Hack for Uniracers, because we don't understand // OAM Address Invalidation if (p->BAddress == 0x04) { if (SNESGameFixes.Uniracers) { PPU.OAMAddr = 0x10c; PPU.OAMFlip = 0; } } #ifdef DEBUGGER if (Settings.TraceHDMA && p->DoTransfer) { sprintf(String, "H-DMA[%d] %s (%d) 0x%06X->0x21%02X %s, Count: %3d, Rep: %s, V-LINE: %3ld %02X%04X", p-DMA, p->ReverseTransfer? "read" : "write", p->TransferMode, ShiftedIBank+IAddr, p->BAddress, p->HDMAIndirectAddressing ? "ind" : "abs", p->LineCount, p->Repeat ? "yes" : "no ", (long) CPU.V_Counter, p->ABank, p->Address); S9xMessage(S9X_TRACE, S9X_HDMA_TRACE, String); } #endif if (!p->ReverseTransfer) { if ((IAddr & MEMMAP_MASK) + HDMA_ModeByteCounts[p->TransferMode] >= MEMMAP_BLOCK_SIZE) { // HDMA REALLY-SLOW PATH HDMAMemPointers[d] = NULL; #define DOBYTE(Addr, RegOff) \ CPU.InWRAMDMAorHDMA = (ShiftedIBank == 0x7e0000 || ShiftedIBank == 0x7f0000 || \ (!(ShiftedIBank & 0x400000) && ((uint16) (Addr)) < 0x2000)); \ S9xSetPPU(S9xGetByte(ShiftedIBank + ((uint16) (Addr))), 0x2100 + p->BAddress + (RegOff)); switch (p->TransferMode) { case 0: DOBYTE(IAddr, 0); ADD_CYCLES(SLOW_ONE_CYCLE); break; case 5: DOBYTE(IAddr + 0, 0); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 1, 1); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 2, 0); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 3, 1); ADD_CYCLES(SLOW_ONE_CYCLE); break; case 1: DOBYTE(IAddr + 0, 0); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 1, 1); ADD_CYCLES(SLOW_ONE_CYCLE); break; case 2: case 6: DOBYTE(IAddr + 0, 0); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 1, 0); ADD_CYCLES(SLOW_ONE_CYCLE); break; case 3: case 7: DOBYTE(IAddr + 0, 0); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 1, 0); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 2, 1); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 3, 1); ADD_CYCLES(SLOW_ONE_CYCLE); break; case 4: DOBYTE(IAddr + 0, 0); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 1, 1); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 2, 2); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 3, 3); ADD_CYCLES(SLOW_ONE_CYCLE); break; } #undef DOBYTE } else { CPU.InWRAMDMAorHDMA = (ShiftedIBank == 0x7e0000 || ShiftedIBank == 0x7f0000 || (!(ShiftedIBank & 0x400000) && IAddr < 0x2000)); if (!HDMAMemPointers[d]) { // HDMA SLOW PATH uint32 Addr = ShiftedIBank + IAddr; switch (p->TransferMode) { case 0: S9xSetPPU(S9xGetByte(Addr), 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); break; case 5: S9xSetPPU(S9xGetByte(Addr + 0), 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(S9xGetByte(Addr + 1), 0x2101 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); Addr += 2; /* fall through */ case 1: S9xSetPPU(S9xGetByte(Addr + 0), 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(S9xGetByte(Addr + 1), 0x2101 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); break; case 2: case 6: S9xSetPPU(S9xGetByte(Addr + 0), 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(S9xGetByte(Addr + 1), 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); break; case 3: case 7: S9xSetPPU(S9xGetByte(Addr + 0), 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(S9xGetByte(Addr + 1), 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(S9xGetByte(Addr + 2), 0x2101 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(S9xGetByte(Addr + 3), 0x2101 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); break; case 4: S9xSetPPU(S9xGetByte(Addr + 0), 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(S9xGetByte(Addr + 1), 0x2101 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(S9xGetByte(Addr + 2), 0x2102 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(S9xGetByte(Addr + 3), 0x2103 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); break; } } else { // HDMA FAST PATH switch (p->TransferMode) { case 0: S9xSetPPU(*HDMAMemPointers[d]++, 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); break; case 5: S9xSetPPU(*(HDMAMemPointers[d] + 0), 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(*(HDMAMemPointers[d] + 1), 0x2101 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); HDMAMemPointers[d] += 2; /* fall through */ case 1: S9xSetPPU(*(HDMAMemPointers[d] + 0), 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(*(HDMAMemPointers[d] + 1), 0x2101 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); HDMAMemPointers[d] += 2; break; case 2: case 6: S9xSetPPU(*(HDMAMemPointers[d] + 0), 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(*(HDMAMemPointers[d] + 1), 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); HDMAMemPointers[d] += 2; break; case 3: case 7: S9xSetPPU(*(HDMAMemPointers[d] + 0), 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(*(HDMAMemPointers[d] + 1), 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(*(HDMAMemPointers[d] + 2), 0x2101 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(*(HDMAMemPointers[d] + 3), 0x2101 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); HDMAMemPointers[d] += 4; break; case 4: S9xSetPPU(*(HDMAMemPointers[d] + 0), 0x2100 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(*(HDMAMemPointers[d] + 1), 0x2101 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(*(HDMAMemPointers[d] + 2), 0x2102 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); S9xSetPPU(*(HDMAMemPointers[d] + 3), 0x2103 + p->BAddress); ADD_CYCLES(SLOW_ONE_CYCLE); HDMAMemPointers[d] += 4; break; } } } } else { // REVERSE HDMA REALLY-SLOW PATH // anomie says: Since this is apparently never used // (otherwise we would have noticed before now), let's not bother with faster paths. HDMAMemPointers[d] = NULL; #define DOBYTE(Addr, RegOff) \ CPU.InWRAMDMAorHDMA = (ShiftedIBank == 0x7e0000 || ShiftedIBank == 0x7f0000 || \ (!(ShiftedIBank & 0x400000) && ((uint16) (Addr)) < 0x2000)); \ S9xSetByte(S9xGetPPU(0x2100 + p->BAddress + (RegOff)), ShiftedIBank + ((uint16) (Addr))); switch (p->TransferMode) { case 0: DOBYTE(IAddr, 0); ADD_CYCLES(SLOW_ONE_CYCLE); break; case 5: DOBYTE(IAddr + 0, 0); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 1, 1); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 2, 0); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 3, 1); ADD_CYCLES(SLOW_ONE_CYCLE); break; case 1: DOBYTE(IAddr + 0, 0); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 1, 1); ADD_CYCLES(SLOW_ONE_CYCLE); break; case 2: case 6: DOBYTE(IAddr + 0, 0); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 1, 0); ADD_CYCLES(SLOW_ONE_CYCLE); break; case 3: case 7: DOBYTE(IAddr + 0, 0); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 1, 0); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 2, 1); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 3, 1); ADD_CYCLES(SLOW_ONE_CYCLE); break; case 4: DOBYTE(IAddr + 0, 0); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 1, 1); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 2, 2); ADD_CYCLES(SLOW_ONE_CYCLE); DOBYTE(IAddr + 3, 3); ADD_CYCLES(SLOW_ONE_CYCLE); break; } #undef DOBYTE } if (p->HDMAIndirectAddressing) p->IndirectAddress += HDMA_ModeByteCounts[p->TransferMode]; else p->Address += HDMA_ModeByteCounts[p->TransferMode]; } p->DoTransfer = !p->Repeat; if (!--p->LineCount) { if (!HDMAReadLineCount(d)) { byte &= ~mask; PPU.HDMAEnded |= mask; p->DoTransfer = FALSE; continue; } } else ADD_CYCLES(SLOW_ONE_CYCLE); } } CPU.InHDMA = FALSE; CPU.InDMAorHDMA = CPU.InDMA; CPU.InWRAMDMAorHDMA = temp; CPU.CurrentDMAorHDMAChannel = tmpch; return (byte); } void S9xResetDMA (void) { for (int d = 0; d < 8; d++) { DMA[d].ReverseTransfer = TRUE; DMA[d].HDMAIndirectAddressing = TRUE; DMA[d].AAddressFixed = TRUE; DMA[d].AAddressDecrement = TRUE; DMA[d].TransferMode = 7; DMA[d].BAddress = 0xff; DMA[d].AAddress = 0xffff; DMA[d].ABank = 0xff; DMA[d].DMACount_Or_HDMAIndirectAddress = 0xffff; DMA[d].IndirectBank = 0xff; DMA[d].Address = 0xffff; DMA[d].Repeat = FALSE; DMA[d].LineCount = 0x7f; DMA[d].UnknownByte = 0xff; DMA[d].DoTransfer = FALSE; DMA[d].UnusedBit43x0 = 1; } }