/*****************************************************************************\ Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. This file is licensed under the Snes9x License. For further information, consult the LICENSE file in the root directory. \*****************************************************************************/ #include #include #include "../snes9x.h" #include "apu.h" #include "../msu1.h" #include "../snapshot.h" #include "../display.h" #include "resampler.h" #include "bapu/snes/snes.hpp" static const int APU_DEFAULT_INPUT_RATE = 31920; // ~59.94Hz static const int APU_SAMPLE_BLOCK = 48; static const int APU_NUMERATOR_NTSC = 5632; static const int APU_DENOMINATOR_NTSC = 118125; static const int APU_NUMERATOR_PAL = 35527; static const int APU_DENOMINATOR_PAL = 738343; // Max number of samples we'll ever generate before call to port API and // moving the samples to the resampler. // This is 535 sample frames, which corresponds to 1 video frame + some leeway // for use with SoundSync, multiplied by 2, for left and right samples. static const int MINIMUM_BUFFER_SIZE = 550 * 2; namespace SNES { #include "bapu/dsp/blargg_endian.h" CPU cpu; } // namespace SNES namespace spc { static apu_callback callback = NULL; static void *callback_data = NULL; static bool8 sound_in_sync = TRUE; static bool8 sound_enabled = FALSE; static Resampler *resampler = NULL; static int32 reference_time; static uint32 remainder; static const int timing_hack_numerator = 256; static int timing_hack_denominator = 256; /* Set these to NTSC for now. Will change to PAL in S9xAPUTimingSetSpeedup if necessary on game load. */ static uint32 ratio_numerator = APU_NUMERATOR_NTSC; static uint32 ratio_denominator = APU_DENOMINATOR_NTSC; static double dynamic_rate_multiplier = 1.0; } // namespace spc namespace msu { // Always 16-bit, Stereo; 1.5x dsp buffer to never overflow static Resampler *resampler = NULL; static std::vector resample_buffer; } // namespace msu static void UpdatePlaybackRate(void); static void SPCSnapshotCallback(void); static inline int S9xAPUGetClock(int32); static inline int S9xAPUGetClockRemainder(int32); bool8 S9xMixSamples(uint8 *dest, int sample_count) { int16 *out = (int16 *)dest; if (Settings.Mute) { memset(out, 0, sample_count << 1); S9xClearSamples(); } else { if (spc::resampler->avail() >= sample_count) { spc::resampler->read((short *)out, sample_count); if (Settings.MSU1) { if (msu::resampler->avail() >= sample_count) { if ((int)msu::resample_buffer.size() < sample_count) msu::resample_buffer.resize(sample_count); msu::resampler->read((short *)msu::resample_buffer.data(), sample_count); for (int i = 0; i < sample_count; ++i) out[i] += msu::resample_buffer[i]; } else // should never occur assert(0); } } else { memset(out, 0, sample_count << 1); return false; } } if (spc::resampler->space_empty() >= 535 * 2 || !Settings.SoundSync || Settings.TurboMode || Settings.Mute) spc::sound_in_sync = true; else spc::sound_in_sync = false; return true; } int S9xGetSampleCount(void) { return spc::resampler->avail(); } void S9xLandSamples(void) { if (spc::callback != NULL) spc::callback(spc::callback_data); if (spc::resampler->space_empty() >= 535 * 2 || !Settings.SoundSync || Settings.TurboMode || Settings.Mute) spc::sound_in_sync = true; else spc::sound_in_sync = false; } void S9xClearSamples(void) { spc::resampler->clear(); if (Settings.MSU1) msu::resampler->clear(); } bool8 S9xSyncSound(void) { if (!Settings.SoundSync || spc::sound_in_sync) return (TRUE); S9xLandSamples(); return (spc::sound_in_sync); } void S9xSetSamplesAvailableCallback(apu_callback callback, void *data) { spc::callback = callback; spc::callback_data = data; } void S9xUpdateDynamicRate(int avail, int buffer_size) { spc::dynamic_rate_multiplier = 1.0 + (Settings.DynamicRateLimit * (buffer_size - 2 * avail)) / (double)(1000 * buffer_size); UpdatePlaybackRate(); } static void UpdatePlaybackRate(void) { if (Settings.SoundInputRate == 0) Settings.SoundInputRate = APU_DEFAULT_INPUT_RATE; double time_ratio = (double)Settings.SoundInputRate * spc::timing_hack_numerator / (Settings.SoundPlaybackRate * spc::timing_hack_denominator); if (Settings.DynamicRateControl) { time_ratio *= spc::dynamic_rate_multiplier; } spc::resampler->time_ratio(time_ratio); if (Settings.MSU1) { time_ratio = (44100.0 / Settings.SoundPlaybackRate) * (Settings.SoundInputRate / 32000.0); msu::resampler->time_ratio(time_ratio); } } bool8 S9xInitSound(int buffer_ms, int unused2) { // The resampler and spc unit use samples (16-bit short) as arguments. int buffer_size_samples = MINIMUM_BUFFER_SIZE; int requested_buffer_size_samples = Settings.SoundPlaybackRate * buffer_ms * 2 / 1000; if (requested_buffer_size_samples > buffer_size_samples) buffer_size_samples = requested_buffer_size_samples; if (!spc::resampler) { spc::resampler = new Resampler(buffer_size_samples); if (!spc::resampler) return (FALSE); } else spc::resampler->resize(buffer_size_samples); if (!msu::resampler) { msu::resampler = new Resampler(buffer_size_samples * 3 / 2); if (!msu::resampler) return (FALSE); } else msu::resampler->resize(buffer_size_samples * 3 / 2); SNES::dsp.spc_dsp.set_output(spc::resampler); S9xMSU1SetOutput(msu::resampler); UpdatePlaybackRate(); spc::sound_enabled = S9xOpenSoundDevice(); return (spc::sound_enabled); } void S9xSetSoundControl(uint8 voice_switch) { SNES::dsp.spc_dsp.set_stereo_switch(voice_switch << 8 | voice_switch); } void S9xSetSoundMute(bool8 mute) { Settings.Mute = mute; if (!spc::sound_enabled) Settings.Mute = TRUE; } void S9xDumpSPCSnapshot(void) { SNES::dsp.spc_dsp.dump_spc_snapshot(); } static void SPCSnapshotCallback(void) { S9xSPCDump(S9xGetFilenameInc((".spc"), SPC_DIR)); printf("Dumped key-on triggered spc snapshot.\n"); } bool8 S9xInitAPU(void) { spc::resampler = NULL; msu::resampler = NULL; return (TRUE); } void S9xDeinitAPU(void) { if (spc::resampler) { delete spc::resampler; spc::resampler = NULL; } if (msu::resampler) { delete msu::resampler; msu::resampler = NULL; } S9xMSU1DeInit(); } static inline int S9xAPUGetClock(int32 cpucycles) { return (spc::ratio_numerator * (cpucycles - spc::reference_time) + spc::remainder) / spc::ratio_denominator; } static inline int S9xAPUGetClockRemainder(int32 cpucycles) { return (spc::ratio_numerator * (cpucycles - spc::reference_time) + spc::remainder) % spc::ratio_denominator; } uint8 S9xAPUReadPort(int port) { S9xAPUExecute(); return ((uint8)SNES::smp.port_read(port & 3)); } void S9xAPUWritePort(int port, uint8 byte) { S9xAPUExecute(); SNES::cpu.port_write(port & 3, byte); } void S9xAPUSetReferenceTime(int32 cpucycles) { spc::reference_time = cpucycles; } void S9xAPUExecute(void) { SNES::smp.clock -= S9xAPUGetClock(CPU.Cycles); SNES::smp.enter(); spc::remainder = S9xAPUGetClockRemainder(CPU.Cycles); S9xAPUSetReferenceTime(CPU.Cycles); } void S9xAPUEndScanline(void) { S9xAPUExecute(); SNES::dsp.synchronize(); if (spc::resampler->space_filled() >= APU_SAMPLE_BLOCK || !spc::sound_in_sync) S9xLandSamples(); } void S9xAPUTimingSetSpeedup(int ticks) { if (ticks != 0) printf("APU speedup hack: %d\n", ticks); spc::timing_hack_denominator = 256 - ticks; spc::ratio_numerator = Settings.PAL ? APU_NUMERATOR_PAL : APU_NUMERATOR_NTSC; spc::ratio_denominator = Settings.PAL ? APU_DENOMINATOR_PAL : APU_DENOMINATOR_NTSC; spc::ratio_denominator = spc::ratio_denominator * spc::timing_hack_denominator / spc::timing_hack_numerator; UpdatePlaybackRate(); } void S9xResetAPU(void) { spc::reference_time = 0; spc::remainder = 0; SNES::cpu.reset(); SNES::cpu.frequency = (int)(Settings.PAL ? PAL_MASTER_CLOCK : NTSC_MASTER_CLOCK); SNES::smp.power(); SNES::dsp.power(); SNES::dsp.spc_dsp.set_spc_snapshot_callback(SPCSnapshotCallback); S9xClearSamples(); } void S9xSoftResetAPU(void) { spc::reference_time = 0; spc::remainder = 0; SNES::cpu.reset(); SNES::smp.reset(); SNES::dsp.reset(); S9xClearSamples(); } void S9xAPUSaveState(uint8 *block) { uint8 *ptr = block; SNES::smp.save_state(&ptr); SNES::dsp.save_state(&ptr); SNES::set_le32(ptr, spc::reference_time); ptr += sizeof(int32); SNES::set_le32(ptr, spc::remainder); ptr += sizeof(int32); SNES::set_le32(ptr, SNES::dsp.clock); ptr += sizeof(int32); memcpy(ptr, SNES::cpu.registers, 4); ptr += sizeof(int32); memset(ptr, 0, SPC_SAVE_STATE_BLOCK_SIZE - (ptr - block)); } void S9xAPULoadState(uint8 *block) { uint8 *ptr = block; SNES::smp.load_state(&ptr); SNES::dsp.load_state(&ptr); spc::reference_time = SNES::get_le32(ptr); ptr += sizeof(int32); spc::remainder = SNES::get_le32(ptr); ptr += sizeof(int32); SNES::dsp.clock = SNES::get_le32(ptr); ptr += sizeof(int32); memcpy(SNES::cpu.registers, ptr, 4); } static void to_var_from_buf(uint8 **buf, void *var, size_t size) { memcpy(var, *buf, size); *buf += size; } #undef IF_0_THEN_256 #define IF_0_THEN_256(n) ((uint8)((n)-1) + 1) void S9xAPULoadBlarggState(uint8 *oldblock) { uint8 *ptr = oldblock; SNES::SPC_State_Copier copier(&ptr, to_var_from_buf); copier.copy(SNES::smp.apuram, 0x10000); // RAM uint8 regs_in[0x10]; uint8 regs[0x10]; uint16 pc, spc_time, dsp_time; uint8 a, x, y, psw, sp; copier.copy(regs, 0x10); // REGS copier.copy(regs_in, 0x10); // REGS_IN // CPU Regs pc = copier.copy_int(0, sizeof(uint16)); a = copier.copy_int(0, sizeof(uint8)); x = copier.copy_int(0, sizeof(uint8)); y = copier.copy_int(0, sizeof(uint8)); psw = copier.copy_int(0, sizeof(uint8)); sp = copier.copy_int(0, sizeof(uint8)); copier.extra(); // times spc_time = copier.copy_int(0, sizeof(uint16)); dsp_time = copier.copy_int(0, sizeof(uint16)); int cur_time = S9xAPUGetClock(CPU.Cycles); // spc_time is absolute, dsp_time is relative // smp.clock is relative, dsp.clock relative but counting upwards SNES::smp.clock = spc_time - cur_time; SNES::dsp.clock = -1 * dsp_time; // DSP SNES::dsp.load_state(&ptr); // Timers uint16 next_time[3]; uint8 divider[3], counter[3]; for (int i = 0; i < 3; i++) { next_time[i] = copier.copy_int(0, sizeof(uint16)); divider[i] = copier.copy_int(0, sizeof(uint8)); counter[i] = copier.copy_int(0, sizeof(uint8)); copier.extra(); } // construct timers out of available parts from blargg smp SNES::smp.timer0.enable = regs[1] >> 0 & 1; // regs[1] = CONTROL SNES::smp.timer0.target = IF_0_THEN_256(regs[10]); // regs[10+i] = TiTARGET // blargg counts time, get ticks through timer frequency // (assume tempo = 256) SNES::smp.timer0.stage1_ticks = 128 - (next_time[0] - cur_time) / 128; SNES::smp.timer0.stage2_ticks = divider[0]; SNES::smp.timer0.stage3_ticks = counter[0]; SNES::smp.timer1.enable = regs[1] >> 1 & 1; SNES::smp.timer1.target = IF_0_THEN_256(regs[11]); SNES::smp.timer1.stage1_ticks = 128 - (next_time[1] - cur_time) / 128; SNES::smp.timer1.stage2_ticks = divider[0]; SNES::smp.timer1.stage3_ticks = counter[0]; SNES::smp.timer2.enable = regs[1] >> 2 & 1; SNES::smp.timer2.target = IF_0_THEN_256(regs[12]); SNES::smp.timer2.stage1_ticks = 16 - (next_time[2] - cur_time) / 16; SNES::smp.timer2.stage2_ticks = divider[0]; SNES::smp.timer2.stage3_ticks = counter[0]; copier.extra(); SNES::smp.opcode_number = 0; SNES::smp.opcode_cycle = 0; SNES::smp.regs.pc = pc; SNES::smp.regs.sp = sp; SNES::smp.regs.B.a = a; SNES::smp.regs.x = x; SNES::smp.regs.B.y = y; // blargg's psw has same layout as byuu's flags SNES::smp.regs.p = psw; // blargg doesn't explicitly store iplrom_enable SNES::smp.status.iplrom_enable = regs[1] & 0x80; SNES::smp.status.dsp_addr = regs[2]; SNES::smp.status.ram00f8 = regs_in[8]; SNES::smp.status.ram00f9 = regs_in[9]; // default to 0 - we are on an opcode boundary, shouldn't matter SNES::smp.rd = SNES::smp.wr = SNES::smp.dp = SNES::smp.sp = SNES::smp.ya = SNES::smp.bit = 0; spc::reference_time = SNES::get_le32(ptr); ptr += sizeof(int32); spc::remainder = SNES::get_le32(ptr); // blargg stores CPUIx in regs_in memcpy(SNES::cpu.registers, regs_in + 4, 4); } bool8 S9xSPCDump(const char *filename) { FILE *fs; uint8 buf[SPC_FILE_SIZE]; size_t ignore; fs = fopen(filename, "wb"); if (!fs) return (FALSE); S9xSetSoundMute(TRUE); SNES::smp.save_spc(buf); ignore = fwrite(buf, SPC_FILE_SIZE, 1, fs); if (ignore == 0) { fprintf(stderr, "Couldn't write file %s.\n", filename); } fclose(fs); S9xSetSoundMute(FALSE); return (TRUE); }