From 54bfd407bbdd9b2d60b751444e4aca065ea9e569 Mon Sep 17 00:00:00 2001 From: OV2 Date: Tue, 24 Jun 2014 21:53:00 +0200 Subject: [PATCH] win32: add xbrz --- filter/xbrz-config.h | 40 ++ filter/xbrz-license.txt | 621 ++++++++++++++++++++ filter/xbrz.cpp | 1184 +++++++++++++++++++++++++++++++++++++++ filter/xbrz.h | 88 +++ win32/render.cpp | 169 ++++++ win32/snes9xw.vcproj | 12 + win32/wsnes9x.h | 1 + 7 files changed, 2115 insertions(+) create mode 100644 filter/xbrz-config.h create mode 100644 filter/xbrz-license.txt create mode 100644 filter/xbrz.cpp create mode 100644 filter/xbrz.h diff --git a/filter/xbrz-config.h b/filter/xbrz-config.h new file mode 100644 index 00000000..ae11f7a0 --- /dev/null +++ b/filter/xbrz-config.h @@ -0,0 +1,40 @@ +// **************************************************************************** +// * This file is part of the HqMAME project. It is distributed under * +// * GNU General Public License: http://www.gnu.org/licenses/gpl.html * +// * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved * +// * * +// * Additionally and as a special exception, the author gives permission * +// * to link the code of this program with the MAME library (or with modified * +// * versions of MAME that use the same license as MAME), and distribute * +// * linked combinations including the two. You must obey the GNU General * +// * Public License in all respects for all of the code used other than MAME. * +// * If you modify this file, you may extend this exception to your version * +// * of the file, but you are not obligated to do so. If you do not wish to * +// * do so, delete this exception statement from your version. * +// **************************************************************************** + +#ifndef XBRZ_CONFIG_HEADER_284578425345 +#define XBRZ_CONFIG_HEADER_284578425345 + +//do NOT include any headers here! used by xBRZ_dll!!! + +namespace xbrz +{ +struct ScalerCfg +{ + ScalerCfg() : + luminanceWeight_(1), + equalColorTolerance_(30), + dominantDirectionThreshold(3.6), + steepDirectionThreshold(2.2), + newTestAttribute_(0) {} + + double luminanceWeight_; + double equalColorTolerance_; + double dominantDirectionThreshold; + double steepDirectionThreshold; + double newTestAttribute_; //unused; test new parameters +}; +} + +#endif \ No newline at end of file diff --git a/filter/xbrz-license.txt b/filter/xbrz-license.txt new file mode 100644 index 00000000..94a04532 --- /dev/null +++ b/filter/xbrz-license.txt @@ -0,0 +1,621 @@ + GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS diff --git a/filter/xbrz.cpp b/filter/xbrz.cpp new file mode 100644 index 00000000..5fbf0701 --- /dev/null +++ b/filter/xbrz.cpp @@ -0,0 +1,1184 @@ +// **************************************************************************** +// * This file is part of the HqMAME project. It is distributed under * +// * GNU General Public License: http://www.gnu.org/licenses/gpl.html * +// * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved * +// * * +// * Additionally and as a special exception, the author gives permission * +// * to link the code of this program with the MAME library (or with modified * +// * versions of MAME that use the same license as MAME), and distribute * +// * linked combinations including the two. You must obey the GNU General * +// * Public License in all respects for all of the code used other than MAME. * +// * If you modify this file, you may extend this exception to your version * +// * of the file, but you are not obligated to do so. If you do not wish to * +// * do so, delete this exception statement from your version. * +// **************************************************************************** + +#include "xbrz.h" +#include +#include + +namespace +{ +template inline +unsigned char getByte(uint32_t val) { return static_cast((val >> (8 * N)) & 0xff); } + +inline unsigned char getRed (uint32_t val) { return getByte<2>(val); } +inline unsigned char getGreen(uint32_t val) { return getByte<1>(val); } +inline unsigned char getBlue (uint32_t val) { return getByte<0>(val); } + +template inline +T abs(T value) +{ + //static_assert(std::is_signed::value, ""); + return value < 0 ? -value : value; +} + +const uint32_t redMask = 0xff0000; +const uint32_t greenMask = 0x00ff00; +const uint32_t blueMask = 0x0000ff; + +template inline +void alphaBlend(uint32_t& dst, uint32_t col) //blend color over destination with opacity N / M +{ + //static_assert(N < 256, "possible overflow of (col & redMask) * N"); + //static_assert(M < 256, "possible overflow of (col & redMask ) * N + (dst & redMask ) * (M - N)"); + //static_assert(0 < N && N < M, ""); + dst = (redMask & ((col & redMask ) * N + (dst & redMask ) * (M - N)) / M) | //this works because 8 upper bits are free + (greenMask & ((col & greenMask) * N + (dst & greenMask) * (M - N)) / M) | + (blueMask & ((col & blueMask ) * N + (dst & blueMask ) * (M - N)) / M); +} + + +//inline +//double fastSqrt(double n) +//{ +// __asm //speeds up xBRZ by about 9% compared to std::sqrt +// { +// fld n +// fsqrt +// } +//} +// + + +inline +uint32_t alphaBlend2(uint32_t pix1, uint32_t pix2, double alpha) +{ + return (redMask & static_cast((pix1 & redMask ) * alpha + (pix2 & redMask ) * (1 - alpha))) | + (greenMask & static_cast((pix1 & greenMask) * alpha + (pix2 & greenMask) * (1 - alpha))) | + (blueMask & static_cast((pix1 & blueMask ) * alpha + (pix2 & blueMask ) * (1 - alpha))); +} + + +uint32_t* byteAdvance( uint32_t* ptr, int bytes) { return reinterpret_cast< uint32_t*>(reinterpret_cast< char*>(ptr) + bytes); } +const uint32_t* byteAdvance(const uint32_t* ptr, int bytes) { return reinterpret_cast(reinterpret_cast(ptr) + bytes); } + + +//fill block with the given color +inline +void fillBlock(uint32_t* trg, int pitch, uint32_t col, int blockWidth, int blockHeight) +{ + //for (int y = 0; y < blockHeight; ++y, trg = byteAdvance(trg, pitch)) + // std::fill(trg, trg + blockWidth, col); + + for (int y = 0; y < blockHeight; ++y, trg = byteAdvance(trg, pitch)) + for (int x = 0; x < blockWidth; ++x) + trg[x] = col; +} + +inline +void fillBlock(uint32_t* trg, int pitch, uint32_t col, int n) { fillBlock(trg, pitch, col, n, n); } + + +#ifdef _MSC_VER +#define FORCE_INLINE __forceinline +#elif defined __GNUC__ +#define FORCE_INLINE __attribute__((always_inline)) inline +#else +#define FORCE_INLINE inline +#endif + + +enum RotationDegree //clock-wise +{ + ROT_0, + ROT_90, + ROT_180, + ROT_270 +}; + +//calculate input matrix coordinates after rotation at compile time +template +struct MatrixRotation; + +template +struct MatrixRotation +{ + static const size_t I_old = I; + static const size_t J_old = J; +}; + +template //(i, j) = (row, col) indices, N = size of (square) matrix +struct MatrixRotation +{ + static const size_t I_old = N - 1 - MatrixRotation(rotDeg - 1), I, J, N>::J_old; //old coordinates before rotation! + static const size_t J_old = MatrixRotation(rotDeg - 1), I, J, N>::I_old; // +}; + + +template +class OutputMatrix +{ +public: + OutputMatrix(uint32_t* out, int outWidth) : //access matrix area, top-left at position "out" for image with given width + out_(out), + outWidth_(outWidth) {} + + template + uint32_t& ref() const + { + static const size_t I_old = MatrixRotation::I_old; + static const size_t J_old = MatrixRotation::J_old; + return *(out_ + J_old + I_old * outWidth_); + } + +private: + uint32_t* out_; + const int outWidth_; +}; + + +template inline +T square(T value) { return value * value; } + + +/* +inline +void rgbtoLuv(uint32_t c, double& L, double& u, double& v) +{ + //http://www.easyrgb.com/index.php?X=MATH&H=02#text2 + double r = getRed (c) / 255.0; + double g = getGreen(c) / 255.0; + double b = getBlue (c) / 255.0; + + if ( r > 0.04045 ) + r = std::pow(( ( r + 0.055 ) / 1.055 ) , 2.4); + else + r /= 12.92; + if ( g > 0.04045 ) + g = std::pow(( ( g + 0.055 ) / 1.055 ) , 2.4); + else + g /= 12.92; + if ( b > 0.04045 ) + b = std::pow(( ( b + 0.055 ) / 1.055 ) , 2.4); + else + b /= 12.92; + + r *= 100; + g *= 100; + b *= 100; + + double x = 0.4124564 * r + 0.3575761 * g + 0.1804375 * b; + double y = 0.2126729 * r + 0.7151522 * g + 0.0721750 * b; + double z = 0.0193339 * r + 0.1191920 * g + 0.9503041 * b; + //--------------------- + double var_U = 4 * x / ( x + 15 * y + 3 * z ); + double var_V = 9 * y / ( x + 15 * y + 3 * z ); + double var_Y = y / 100; + + if ( var_Y > 0.008856 ) var_Y = std::pow(var_Y , 1.0/3 ); + else var_Y = 7.787 * var_Y + 16.0 / 116; + + const double ref_X = 95.047; //Observer= 2°, Illuminant= D65 + const double ref_Y = 100.000; + const double ref_Z = 108.883; + + const double ref_U = ( 4 * ref_X ) / ( ref_X + ( 15 * ref_Y ) + ( 3 * ref_Z ) ); + const double ref_V = ( 9 * ref_Y ) / ( ref_X + ( 15 * ref_Y ) + ( 3 * ref_Z ) ); + + L = ( 116 * var_Y ) - 16; + u = 13 * L * ( var_U - ref_U ); + v = 13 * L * ( var_V - ref_V ); +} +*/ + +inline +void rgbtoLab(uint32_t c, unsigned char& L, signed char& A, signed char& B) +{ + //code: http://www.easyrgb.com/index.php?X=MATH + //test: http://www.workwithcolor.com/color-converter-01.htm + //------RGB to XYZ------ + double r = getRed (c) / 255.0; + double g = getGreen(c) / 255.0; + double b = getBlue (c) / 255.0; + + r = r > 0.04045 ? std::pow(( r + 0.055 ) / 1.055, 2.4) : r / 12.92; + r = g > 0.04045 ? std::pow(( g + 0.055 ) / 1.055, 2.4) : g / 12.92; + r = b > 0.04045 ? std::pow(( b + 0.055 ) / 1.055, 2.4) : b / 12.92; + + r *= 100; + g *= 100; + b *= 100; + + double x = 0.4124564 * r + 0.3575761 * g + 0.1804375 * b; + double y = 0.2126729 * r + 0.7151522 * g + 0.0721750 * b; + double z = 0.0193339 * r + 0.1191920 * g + 0.9503041 * b; + //------XYZ to Lab------ + const double refX = 95.047; // + const double refY = 100.000; //Observer= 2°, Illuminant= D65 + const double refZ = 108.883; // + double var_X = x / refX; + double var_Y = y / refY; + double var_Z = z / refZ; + + var_X = var_X > 0.008856 ? std::pow(var_X, 1.0 / 3) : 7.787 * var_X + 4.0 / 29; + var_Y = var_Y > 0.008856 ? std::pow(var_Y, 1.0 / 3) : 7.787 * var_Y + 4.0 / 29; + var_Z = var_Z > 0.008856 ? std::pow(var_Z, 1.0 / 3) : 7.787 * var_Z + 4.0 / 29; + + L = static_cast(116 * var_Y - 16); + A = static_cast< signed char>(500 * (var_X - var_Y)); + B = static_cast< signed char>(200 * (var_Y - var_Z)); +}; + + +inline +double distLAB(uint32_t pix1, uint32_t pix2) +{ + unsigned char L1 = 0; //[0, 100] + signed char a1 = 0; //[-128, 127] + signed char b1 = 0; //[-128, 127] + rgbtoLab(pix1, L1, a1, b1); + + unsigned char L2 = 0; + signed char a2 = 0; + signed char b2 = 0; + rgbtoLab(pix2, L2, a2, b2); + + //----------------------------- + //http://www.easyrgb.com/index.php?X=DELT + + //Delta E/CIE76 + return std::sqrt(square(1.0 * L1 - L2) + + square(1.0 * a1 - a2) + + square(1.0 * b1 - b2)); +} + + +/* +inline +void rgbtoHsl(uint32_t c, double& h, double& s, double& l) +{ + //http://www.easyrgb.com/index.php?X=MATH&H=18#text18 + const int r = getRed (c); + const int g = getGreen(c); + const int b = getBlue (c); + + const int varMin = numeric::min(r, g, b); + const int varMax = numeric::max(r, g, b); + const int delMax = varMax - varMin; + + l = (varMax + varMin) / 2.0 / 255.0; + + if (delMax == 0) //gray, no chroma... + { + h = 0; + s = 0; + } + else + { + s = l < 0.5 ? + delMax / (1.0 * varMax + varMin) : + delMax / (2.0 * 255 - varMax - varMin); + + double delR = ((varMax - r) / 6.0 + delMax / 2.0) / delMax; + double delG = ((varMax - g) / 6.0 + delMax / 2.0) / delMax; + double delB = ((varMax - b) / 6.0 + delMax / 2.0) / delMax; + + if (r == varMax) + h = delB - delG; + else if (g == varMax) + h = 1 / 3.0 + delR - delB; + else if (b == varMax) + h = 2 / 3.0 + delG - delR; + + if (h < 0) + h += 1; + if (h > 1) + h -= 1; + } +} + +inline +double distHSL(uint32_t pix1, uint32_t pix2, double lightningWeight) +{ + double h1 = 0; + double s1 = 0; + double l1 = 0; + rgbtoHsl(pix1, h1, s1, l1); + double h2 = 0; + double s2 = 0; + double l2 = 0; + rgbtoHsl(pix2, h2, s2, l2); + + //HSL is in cylindric coordinatates where L represents height, S radius, H angle, + //however we interpret the cylinder as a bi-conic solid with top/bottom radius 0, middle radius 1 + assert(0 <= h1 && h1 <= 1); + assert(0 <= h2 && h2 <= 1); + + double r1 = l1 < 0.5 ? + l1 * 2 : + 2 - l1 * 2; + + double x1 = r1 * s1 * std::cos(h1 * 2 * numeric::pi); + double y1 = r1 * s1 * std::sin(h1 * 2 * numeric::pi); + double z1 = l1; + + double r2 = l2 < 0.5 ? + l2 * 2 : + 2 - l2 * 2; + + double x2 = r2 * s2 * std::cos(h2 * 2 * numeric::pi); + double y2 = r2 * s2 * std::sin(h2 * 2 * numeric::pi); + double z2 = l2; + + return 255 * std::sqrt(square(x1 - x2) + square(y1 - y2) + square(lightningWeight * (z1 - z2))); +} +*/ + + +inline +double distRGB(uint32_t pix1, uint32_t pix2) +{ + const double r_diff = static_cast(getRed (pix1)) - getRed (pix2); + const double g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); + const double b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); + + //euklidean RGB distance + return std::sqrt(square(r_diff) + square(g_diff) + square(b_diff)); +} + + +inline +double distNonLinearRGB(uint32_t pix1, uint32_t pix2) +{ + //non-linear rgb: http://www.compuphase.com/cmetric.htm + const double r_diff = static_cast(getRed (pix1)) - getRed (pix2); + const double g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); + const double b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); + + const double r_avg = (static_cast(getRed(pix1)) + getRed(pix2)) / 2; + return std::sqrt((2 + r_avg / 255) * square(r_diff) + 4 * square(g_diff) + (2 + (255 - r_avg) / 255) * square(b_diff)); +} + + +inline +double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight) +{ + //http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion + //YCbCr conversion is a matrix multiplication => take advantage of linearity by subtracting first! + const int r_diff = static_cast(getRed (pix1)) - getRed (pix2); //we may delay division by 255 to after matrix multiplication + const int g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); // + const int b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); //substraction for int is noticeable faster than for double! + + const double k_b = 0.0722; //ITU-R BT.709 conversion + const double k_r = 0.2126; // + const double k_g = 1 - k_b - k_r; + + const double scale_b = 0.5 / (1 - k_b); + const double scale_r = 0.5 / (1 - k_r); + + const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr! + const double c_b = scale_b * (b_diff - y); + const double c_r = scale_r * (r_diff - y); + + //we skip division by 255 to have similar range like other distance functions + return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r)); +} + + +inline +double distYUV(uint32_t pix1, uint32_t pix2, double luminanceWeight) +{ + //perf: it's not worthwhile to buffer the YUV-conversion, the direct code is faster by ~ 6% + //since RGB -> YUV conversion is essentially a matrix multiplication, we can calculate the RGB diff before the conversion (distributive property) + const double r_diff = static_cast(getRed (pix1)) - getRed (pix2); + const double g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); + const double b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); + + //http://en.wikipedia.org/wiki/YUV#Conversion_to.2Ffrom_RGB + const double w_b = 0.114; + const double w_r = 0.299; + const double w_g = 1 - w_r - w_b; + + const double u_max = 0.436; + const double v_max = 0.615; + + const double scale_u = u_max / (1 - w_b); + const double scale_v = v_max / (1 - w_r); + + double y = w_r * r_diff + w_g * g_diff + w_b * b_diff;//value range: 255 * [-1, 1] + double u = scale_u * (b_diff - y); //value range: 255 * 2 * u_max * [-1, 1] + double v = scale_v * (r_diff - y); //value range: 255 * 2 * v_max * [-1, 1] + +#ifndef NDEBUG + const double eps = 0.5; +#endif + assert(std::abs(y) <= 255 + eps); + assert(std::abs(u) <= 255 * 2 * u_max + eps); + assert(std::abs(v) <= 255 * 2 * v_max + eps); + + return std::sqrt(square(luminanceWeight * y) + square(u) + square(v)); +} + + +inline +double colorDist(uint32_t pix1, uint32_t pix2, double luminanceWeight) +{ + if (pix1 == pix2) //about 8% perf boost + return 0; + + //return distHSL(pix1, pix2, luminanceWeight); + //return distRGB(pix1, pix2); + //return distLAB(pix1, pix2); + //return distNonLinearRGB(pix1, pix2); + //return distYUV(pix1, pix2, luminanceWeight); + + return distYCbCr(pix1, pix2, luminanceWeight); +} + + +enum BlendType +{ + BLEND_NONE = 0, + BLEND_NORMAL, //a normal indication to blend + BLEND_DOMINANT, //a strong indication to blend + //attention: BlendType must fit into the value range of 2 bit!!! +}; + +struct BlendResult +{ + BlendType + /**/blend_f, blend_g, + /**/blend_j, blend_k; +}; + + +struct Kernel_4x4 //kernel for preprocessing step +{ + uint32_t + /**/a, b, c, d, + /**/e, f, g, h, + /**/i, j, k, l, + /**/m, n, o, p; +}; + +#define dist(col1, col2) colorDist(col1, col2, cfg.luminanceWeight_) +/* +input kernel area naming convention: +----------------- +| A | B | C | D | +----|---|---|---| +| E | F | G | H | //evalute the four corners between F, G, J, K +----|---|---|---| //input pixel is at position F +| I | J | K | L | +----|---|---|---| +| M | N | O | P | +----------------- +*/ +FORCE_INLINE //detect blend direction +BlendResult preProcessCorners(const Kernel_4x4& ker, const xbrz::ScalerCfg& cfg) //result: F, G, J, K corners of "GradientType" +{ + BlendResult result = {}; + + if ((ker.f == ker.g && + ker.j == ker.k) || + (ker.f == ker.j && + ker.g == ker.k)) + return result; + + //auto dist = [&](uint32_t col1, uint32_t col2) { return colorDist(col1, col2, cfg.luminanceWeight_); }; + + const int weight = 4; + double jg = dist(ker.i, ker.f) + dist(ker.f, ker.c) + dist(ker.n, ker.k) + dist(ker.k, ker.h) + weight * dist(ker.j, ker.g); + double fk = dist(ker.e, ker.j) + dist(ker.j, ker.o) + dist(ker.b, ker.g) + dist(ker.g, ker.l) + weight * dist(ker.f, ker.k); + + if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8 + { + const bool dominantGradient = cfg.dominantDirectionThreshold * jg < fk; + if (ker.f != ker.g && ker.f != ker.j) + result.blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; + + if (ker.k != ker.j && ker.k != ker.g) + result.blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; + } + else if (fk < jg) + { + const bool dominantGradient = cfg.dominantDirectionThreshold * fk < jg; + if (ker.j != ker.f && ker.j != ker.k) + result.blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; + + if (ker.g != ker.f && ker.g != ker.k) + result.blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; + } + return result; +} + +struct Kernel_3x3 +{ + uint32_t + /**/a, b, c, + /**/d, e, f, + /**/g, h, i; +}; + +#define DEF_GETTER(x) template uint32_t inline get_##x(const Kernel_3x3& ker) { return ker.x; } +//we cannot and NEED NOT write "ker.##x" since ## concatenates preprocessor tokens but "." is not a token +DEF_GETTER(a) DEF_GETTER(b) DEF_GETTER(c) +DEF_GETTER(d) DEF_GETTER(e) DEF_GETTER(f) +DEF_GETTER(g) DEF_GETTER(h) DEF_GETTER(i) +#undef DEF_GETTER + +#define DEF_GETTER(x, y) template <> inline uint32_t get_##x(const Kernel_3x3& ker) { return ker.y; } +DEF_GETTER(a, g) DEF_GETTER(b, d) DEF_GETTER(c, a) +DEF_GETTER(d, h) DEF_GETTER(e, e) DEF_GETTER(f, b) +DEF_GETTER(g, i) DEF_GETTER(h, f) DEF_GETTER(i, c) +#undef DEF_GETTER + +#define DEF_GETTER(x, y) template <> inline uint32_t get_##x(const Kernel_3x3& ker) { return ker.y; } +DEF_GETTER(a, i) DEF_GETTER(b, h) DEF_GETTER(c, g) +DEF_GETTER(d, f) DEF_GETTER(e, e) DEF_GETTER(f, d) +DEF_GETTER(g, c) DEF_GETTER(h, b) DEF_GETTER(i, a) +#undef DEF_GETTER + +#define DEF_GETTER(x, y) template <> inline uint32_t get_##x(const Kernel_3x3& ker) { return ker.y; } +DEF_GETTER(a, c) DEF_GETTER(b, f) DEF_GETTER(c, i) +DEF_GETTER(d, b) DEF_GETTER(e, e) DEF_GETTER(f, h) +DEF_GETTER(g, a) DEF_GETTER(h, d) DEF_GETTER(i, g) +#undef DEF_GETTER + + +//compress four blend types into a single byte +inline BlendType getTopL (unsigned char b) { return static_cast(0x3 & b); } +inline BlendType getTopR (unsigned char b) { return static_cast(0x3 & (b >> 2)); } +inline BlendType getBottomR(unsigned char b) { return static_cast(0x3 & (b >> 4)); } +inline BlendType getBottomL(unsigned char b) { return static_cast(0x3 & (b >> 6)); } + +inline void setTopL (unsigned char& b, BlendType bt) { b |= bt; } //buffer is assumed to be initialized before preprocessing! +inline void setTopR (unsigned char& b, BlendType bt) { b |= (bt << 2); } +inline void setBottomR(unsigned char& b, BlendType bt) { b |= (bt << 4); } +inline void setBottomL(unsigned char& b, BlendType bt) { b |= (bt << 6); } + +inline bool blendingNeeded(unsigned char b) { return b != 0; } + +template inline +unsigned char rotateBlendInfo(unsigned char b) { return b; } +template <> inline unsigned char rotateBlendInfo(unsigned char b) { return ((b << 2) | (b >> 6)) & 0xff; } +template <> inline unsigned char rotateBlendInfo(unsigned char b) { return ((b << 4) | (b >> 4)) & 0xff; } +template <> inline unsigned char rotateBlendInfo(unsigned char b) { return ((b << 6) | (b >> 2)) & 0xff; } + + +#ifndef NDEBUG +int debugPixelX = -1; +int debugPixelY = 84; +bool breakIntoDebugger = false; +#endif + +#define eq(col1, col2) (colorDist(col1, col2, cfg.luminanceWeight_) < cfg.equalColorTolerance_) + +/* +input kernel area naming convention: +------------- +| A | B | C | +----|---|---| +| D | E | F | //input pixel is at position E +----|---|---| +| G | H | I | +------------- +*/ +template +FORCE_INLINE //perf: quite worth it! +void scalePixel(const Kernel_3x3& ker, + uint32_t* target, int trgWidth, + unsigned char blendInfo, //result of preprocessing all four corners of pixel "e" + const xbrz::ScalerCfg& cfg) +{ +#define a get_a(ker) +#define b get_b(ker) +#define c get_c(ker) +#define d get_d(ker) +#define e get_e(ker) +#define f get_f(ker) +#define g get_g(ker) +#define h get_h(ker) +#define i get_i(ker) + +#ifndef NDEBUG + if (breakIntoDebugger) + __debugbreak(); //__asm int 3; +#endif + + const unsigned char blend = rotateBlendInfo(blendInfo); + + if (getBottomR(blend) >= BLEND_NORMAL) + { + //auto eq = [&](uint32_t col1, uint32_t col2) { return colorDist(col1, col2, cfg.luminanceWeight_) < cfg.equalColorTolerance_; }; + //auto dist = [&](uint32_t col1, uint32_t col2) { return colorDist(col1, col2, cfg.luminanceWeight_); }; + + bool doLineBlend = true; + if (getBottomR(blend) >= BLEND_DOMINANT) + doLineBlend = true; + //make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes + else if (getTopR(blend) != BLEND_NONE && !eq(e, g)) //but support double-blending for 90° corners + doLineBlend = false; + else if(getBottomL(blend) != BLEND_NONE && !eq(e, c)) + doLineBlend = false; + //no full blending for L-shapes; blend corner only (handles "mario mushroom eyes") + else if (eq(g, h) && eq(h , i) && eq(i, f) && eq(f, c) && !eq(e, i)) + doLineBlend = false; + else + doLineBlend = true; + + const uint32_t px = dist(e, f) <= dist(e, h) ? f : h; //choose most similar color + + OutputMatrix out(target, trgWidth); + + if (doLineBlend) + { + const double fg = dist(f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9 + const double hc = dist(h, c); // + + const bool haveShallowLine = cfg.steepDirectionThreshold * fg <= hc && e != g && d != g; + const bool haveSteepLine = cfg.steepDirectionThreshold * hc <= fg && e != c && b != c; + + if (haveShallowLine) + { + if (haveSteepLine) + Scaler::blendLineSteepAndShallow(px, out); + else + Scaler::blendLineShallow(px, out); + } + else + { + if (haveSteepLine) + Scaler::blendLineSteep(px, out); + else + Scaler::blendLineDiagonal(px,out); + } + } + else + Scaler::blendCorner(px, out); + } + +#undef a +#undef b +#undef c +#undef d +#undef e +#undef f +#undef g +#undef h +#undef i +} + + +template //scaler policy: see "Scaler2x" reference implementation +void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz::ScalerCfg& cfg, int yFirst, int yLast) +{ + yFirst = std::max(yFirst, 0); + yLast = std::min(yLast, srcHeight); + if (yFirst >= yLast || srcWidth <= 0) + return; + + const int trgWidth = srcWidth * Scaler::scale; + + //"use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of + //"sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing + const int bufferSize = srcWidth; + unsigned char* preProcBuffer = reinterpret_cast(trg + yLast * Scaler::scale * trgWidth) - bufferSize; + std::fill(preProcBuffer, preProcBuffer + bufferSize, 0); + //static_assert(BLEND_NONE == 0, ""); + + //initialize preprocessing buffer for first row: detect upper left and right corner blending + //this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition! + if (yFirst > 0) + { + const int y = yFirst - 1; + + const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0); + const uint32_t* s_0 = src + srcWidth * y; //center line + const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1); + const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1); + + for (int x = 0; x < srcWidth; ++x) + { + const int x_m1 = std::max(x - 1, 0); + const int x_p1 = std::min(x + 1, srcWidth - 1); + const int x_p2 = std::min(x + 2, srcWidth - 1); + + Kernel_4x4 ker = {}; //perf: initialization is negligable + ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible + ker.b = s_m1[x]; + ker.c = s_m1[x_p1]; + ker.d = s_m1[x_p2]; + + ker.e = s_0[x_m1]; + ker.f = s_0[x]; + ker.g = s_0[x_p1]; + ker.h = s_0[x_p2]; + + ker.i = s_p1[x_m1]; + ker.j = s_p1[x]; + ker.k = s_p1[x_p1]; + ker.l = s_p1[x_p2]; + + ker.m = s_p2[x_m1]; + ker.n = s_p2[x]; + ker.o = s_p2[x_p1]; + ker.p = s_p2[x_p2]; + + const BlendResult res = preProcessCorners(ker, cfg); + /* + preprocessing blend result: + --------- + | F | G | //evalute corner between F, G, J, K + ----|---| //input pixel is at position F + | J | K | + --------- + */ + setTopR(preProcBuffer[x], res.blend_j); + + if (x + 1 < srcWidth) + setTopL(preProcBuffer[x + 1], res.blend_k); + } + } + //------------------------------------------------------------------------------------ + + for (int y = yFirst; y < yLast; ++y) + { + uint32_t* out = trg + Scaler::scale * y * trgWidth; //consider MT "striped" access + + const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0); + const uint32_t* s_0 = src + srcWidth * y; //center line + const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1); + const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1); + + unsigned char blend_xy1 = 0; //corner blending for current (x, y + 1) position + + for (int x = 0; x < srcWidth; ++x, out += Scaler::scale) + { +#ifndef NDEBUG + breakIntoDebugger = debugPixelX == x && debugPixelY == y; +#endif + //all those bounds checks have only insignificant impact on performance! + const int x_m1 = std::max(x - 1, 0); //perf: prefer array indexing to additional pointers! + const int x_p1 = std::min(x + 1, srcWidth - 1); + const int x_p2 = std::min(x + 2, srcWidth - 1); + + //evaluate the four corners on bottom-right of current pixel + unsigned char blend_xy = 0; //for current (x, y) position + { + Kernel_4x4 ker = {}; //perf: initialization is negligable + ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible + ker.b = s_m1[x]; + ker.c = s_m1[x_p1]; + ker.d = s_m1[x_p2]; + + ker.e = s_0[x_m1]; + ker.f = s_0[x]; + ker.g = s_0[x_p1]; + ker.h = s_0[x_p2]; + + ker.i = s_p1[x_m1]; + ker.j = s_p1[x]; + ker.k = s_p1[x_p1]; + ker.l = s_p1[x_p2]; + + ker.m = s_p2[x_m1]; + ker.n = s_p2[x]; + ker.o = s_p2[x_p1]; + ker.p = s_p2[x_p2]; + + const BlendResult res = preProcessCorners(ker, cfg); + /* + preprocessing blend result: + --------- + | F | G | //evalute corner between F, G, J, K + ----|---| //current input pixel is at position F + | J | K | + --------- + */ + blend_xy = preProcBuffer[x]; + setBottomR(blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence! + + setTopR(blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1) + preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row + + blend_xy1 = 0; + setTopL(blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column + + if (x + 1 < srcWidth) //set 3rd known corner for (x + 1, y) + setBottomL(preProcBuffer[x + 1], res.blend_g); + } + + //fill block of size scale * scale with the given color + fillBlock(out, trgWidth * sizeof(uint32_t), s_0[x], Scaler::scale); //place *after* preprocessing step, to not overwrite the results while processing the the last pixel! + + //blend four corners of current pixel + if (blendingNeeded(blend_xy)) //good 20% perf-improvement + { + Kernel_3x3 ker = {}; //perf: initialization is negligable + + ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible + ker.b = s_m1[x]; + ker.c = s_m1[x_p1]; + + ker.d = s_0[x_m1]; + ker.e = s_0[x]; + ker.f = s_0[x_p1]; + + ker.g = s_p1[x_m1]; + ker.h = s_p1[x]; + ker.i = s_p1[x_p1]; + + scalePixel(ker, out, trgWidth, blend_xy, cfg); + scalePixel(ker, out, trgWidth, blend_xy, cfg); + scalePixel(ker, out, trgWidth, blend_xy, cfg); + scalePixel(ker, out, trgWidth, blend_xy, cfg); + } + } + } +} + + +struct Scaler2x +{ + static const int scale = 2; + + template + static void blendLineShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref(), col); + alphaBlend<3, 4>(out.template ref(), col); + } + + template + static void blendLineSteep(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col); + alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col); + } + + template + static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref<1, 0>(), col); + alphaBlend<1, 4>(out.template ref<0, 1>(), col); + alphaBlend<5, 6>(out.template ref<1, 1>(), col); //[!] fixes 7/8 used in xBR + } + + template + static void blendLineDiagonal(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 2>(out.template ref<1, 1>(), col); + } + + template + static void blendCorner(uint32_t col, OutputMatrix& out) + { + //model a round corner + alphaBlend<21, 100>(out.template ref<1, 1>(), col); //exact: 1 - pi/4 = 0.2146018366 + } +}; + + +struct Scaler3x +{ + static const int scale = 3; + + template + static void blendLineShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref(), col); + alphaBlend<1, 4>(out.template ref(), col); + + alphaBlend<3, 4>(out.template ref(), col); + out.template ref() = col; + } + + template + static void blendLineSteep(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col); + alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col); + + alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col); + out.template ref<2, scale - 1>() = col; + } + + template + static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref<2, 0>(), col); + alphaBlend<1, 4>(out.template ref<0, 2>(), col); + alphaBlend<3, 4>(out.template ref<2, 1>(), col); + alphaBlend<3, 4>(out.template ref<1, 2>(), col); + out.template ref<2, 2>() = col; + } + + template + static void blendLineDiagonal(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 8>(out.template ref<1, 2>(), col); + alphaBlend<1, 8>(out.template ref<2, 1>(), col); + alphaBlend<7, 8>(out.template ref<2, 2>(), col); + } + + template + static void blendCorner(uint32_t col, OutputMatrix& out) + { + //model a round corner + alphaBlend<45, 100>(out.template ref<2, 2>(), col); //exact: 0.4545939598 + //alphaBlend<14, 1000>(out.template ref<2, 1>(), col); //0.01413008627 -> negligable + //alphaBlend<14, 1000>(out.template ref<1, 2>(), col); //0.01413008627 + } +}; + + +struct Scaler4x +{ + static const int scale = 4; + + template + static void blendLineShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref(), col); + alphaBlend<1, 4>(out.template ref(), col); + + alphaBlend<3, 4>(out.template ref(), col); + alphaBlend<3, 4>(out.template ref(), col); + + out.template ref() = col; + out.template ref() = col; + } + + template + static void blendLineSteep(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col); + alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col); + + alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col); + alphaBlend<3, 4>(out.template ref<3, scale - 2>(), col); + + out.template ref<2, scale - 1>() = col; + out.template ref<3, scale - 1>() = col; + } + + template + static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<3, 4>(out.template ref<3, 1>(), col); + alphaBlend<3, 4>(out.template ref<1, 3>(), col); + alphaBlend<1, 4>(out.template ref<3, 0>(), col); + alphaBlend<1, 4>(out.template ref<0, 3>(), col); + alphaBlend<1, 3>(out.template ref<2, 2>(), col); //[!] fixes 1/4 used in xBR + out.template ref<3, 3>() = out.template ref<3, 2>() = out.template ref<2, 3>() = col; + } + + template + static void blendLineDiagonal(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 2>(out.template ref(), col); + alphaBlend<1, 2>(out.template ref(), col); + out.template ref() = col; + } + + template + static void blendCorner(uint32_t col, OutputMatrix& out) + { + //model a round corner + alphaBlend<68, 100>(out.template ref<3, 3>(), col); //exact: 0.6848532563 + alphaBlend< 9, 100>(out.template ref<3, 2>(), col); //0.08677704501 + alphaBlend< 9, 100>(out.template ref<2, 3>(), col); //0.08677704501 + } +}; + + +struct Scaler5x +{ + static const int scale = 5; + + template + static void blendLineShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref(), col); + alphaBlend<1, 4>(out.template ref(), col); + alphaBlend<1, 4>(out.template ref(), col); + + alphaBlend<3, 4>(out.template ref(), col); + alphaBlend<3, 4>(out.template ref(), col); + + out.template ref() = col; + out.template ref() = col; + out.template ref() = col; + out.template ref() = col; + } + + template + static void blendLineSteep(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col); + alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col); + alphaBlend<1, 4>(out.template ref<4, scale - 3>(), col); + + alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col); + alphaBlend<3, 4>(out.template ref<3, scale - 2>(), col); + + out.template ref<2, scale - 1>() = col; + out.template ref<3, scale - 1>() = col; + out.template ref<4, scale - 1>() = col; + out.template ref<4, scale - 2>() = col; + } + + template + static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col); + alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col); + alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col); + + alphaBlend<1, 4>(out.template ref(), col); + alphaBlend<1, 4>(out.template ref(), col); + alphaBlend<3, 4>(out.template ref(), col); + + out.template ref<2, scale - 1>() = col; + out.template ref<3, scale - 1>() = col; + + out.template ref() = col; + out.template ref() = col; + + out.template ref<4, scale - 1>() = col; + + alphaBlend<2, 3>(out.template ref<3, 3>(), col); + } + + template + static void blendLineDiagonal(uint32_t col, OutputMatrix& out) + { + alphaBlend<1, 8>(out.template ref(), col); + alphaBlend<1, 8>(out.template ref(), col); + alphaBlend<1, 8>(out.template ref(), col); + + alphaBlend<7, 8>(out.template ref<4, 3>(), col); + alphaBlend<7, 8>(out.template ref<3, 4>(), col); + + out.template ref<4, 4>() = col; + } + + template + static void blendCorner(uint32_t col, OutputMatrix& out) + { + //model a round corner + alphaBlend<86, 100>(out.template ref<4, 4>(), col); //exact: 0.8631434088 + alphaBlend<23, 100>(out.template ref<4, 3>(), col); //0.2306749731 + alphaBlend<23, 100>(out.template ref<3, 4>(), col); //0.2306749731 + //alphaBlend<8, 1000>(out.template ref<4, 2>(), col); //0.008384061834 -> negligable + //alphaBlend<8, 1000>(out.template ref<2, 4>(), col); //0.008384061834 + } +}; +} + + +void xbrz::scale(size_t factor, const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz::ScalerCfg& cfg, int yFirst, int yLast) +{ + switch (factor) + { + case 2: + return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); + case 3: + return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); + case 4: + return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); + case 5: + return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); + } + assert(false); +} + + +bool xbrz::equalColor(uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance) +{ + return colorDist(col1, col2, luminanceWeight) < equalColorTolerance; +} + + +void xbrz::nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, int srcPitch, + uint32_t* trg, int trgWidth, int trgHeight, int trgPitch, + SliceType st, int yFirst, int yLast) +{ + if (srcPitch < srcWidth * static_cast(sizeof(uint32_t)) || + trgPitch < trgWidth * static_cast(sizeof(uint32_t))) + { + assert(false); + return; + } + + switch (st) + { + case NN_SCALE_SLICE_SOURCE: + //nearest-neighbor (going over source image - fast for upscaling, since source is read only once + yFirst = std::max(yFirst, 0); + yLast = std::min(yLast, srcHeight); + if (yFirst >= yLast || trgWidth <= 0 || trgHeight <= 0) return; + + for (int y = yFirst; y < yLast; ++y) + { + //mathematically: ySrc = floor(srcHeight * yTrg / trgHeight) + // => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight + + //keep within for loop to support MT input slices! + const int yTrg_first = ( y * trgHeight + srcHeight - 1) / srcHeight; //=ceil(y * trgHeight / srcHeight) + const int yTrg_last = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; //=ceil(((y + 1) * trgHeight) / srcHeight) + const int blockHeight = yTrg_last - yTrg_first; + + if (blockHeight > 0) + { + const uint32_t* srcLine = byteAdvance(src, y * srcPitch); + uint32_t* trgLine = byteAdvance(trg, yTrg_first * trgPitch); + int xTrg_first = 0; + + for (int x = 0; x < srcWidth; ++x) + { + int xTrg_last = ((x + 1) * trgWidth + srcWidth - 1) / srcWidth; + const int blockWidth = xTrg_last - xTrg_first; + if (blockWidth > 0) + { + xTrg_first = xTrg_last; + fillBlock(trgLine, trgPitch, srcLine[x], blockWidth, blockHeight); + trgLine += blockWidth; + } + } + } + } + break; + + case NN_SCALE_SLICE_TARGET: + //nearest-neighbor (going over target image - slow for upscaling, since source is read multiple times missing out on cache! Fast for similar image sizes!) + yFirst = std::max(yFirst, 0); + yLast = std::min(yLast, trgHeight); + if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0) return; + + for (int y = yFirst; y < yLast; ++y) + { + uint32_t* trgLine = byteAdvance(trg, y * trgPitch); + const int ySrc = srcHeight * y / trgHeight; + const uint32_t* srcLine = byteAdvance(src, ySrc * srcPitch); + for (int x = 0; x < trgWidth; ++x) + { + const int xSrc = srcWidth * x / trgWidth; + trgLine[x] = srcLine[xSrc]; + } + } + break; + } +} diff --git a/filter/xbrz.h b/filter/xbrz.h new file mode 100644 index 00000000..ccbb299e --- /dev/null +++ b/filter/xbrz.h @@ -0,0 +1,88 @@ +// **************************************************************************** +// * This file is part of the HqMAME project. It is distributed under * +// * GNU General Public License: http://www.gnu.org/licenses/gpl.html * +// * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved * +// * * +// * Additionally and as a special exception, the author gives permission * +// * to link the code of this program with the MAME library (or with modified * +// * versions of MAME that use the same license as MAME), and distribute * +// * linked combinations including the two. You must obey the GNU General * +// * Public License in all respects for all of the code used other than MAME. * +// * If you modify this file, you may extend this exception to your version * +// * of the file, but you are not obligated to do so. If you do not wish to * +// * do so, delete this exception statement from your version. * +// **************************************************************************** + +#ifndef XBRZ_HEADER_3847894708239054 +#define XBRZ_HEADER_3847894708239054 + +#include "port.h" +//#include //size_t +//#include //uint32_t +#include +#include "xbrz-config.h" + +namespace xbrz +{ +/* +------------------------------------------------------------------------- +| xBRZ: "Scale by rules" - high quality image upscaling filter by Zenju | +------------------------------------------------------------------------- +using a modified approach of xBR: +http://board.byuu.org/viewtopic.php?f=10&t=2248 +- new rule set preserving small image features +- support multithreading +- support 64 bit architectures +- support processing image slices +*/ + +/* +-> map source (srcWidth * srcHeight) to target (scale * width x scale * height) image, optionally processing a half-open slice of rows [yFirst, yLast) only +-> color format: ARGB (BGRA byte order), alpha channel unused +-> support for source/target pitch in bytes! +-> if your emulator changes only a few image slices during each cycle (e.g. Dosbox) then there's no need to run xBRZ on the complete image: + Just make sure you enlarge the source image slice by 2 rows on top and 2 on bottom (this is the additional range the xBRZ algorithm is using during analysis) + Caveat: If there are multiple changed slices, make sure they do not overlap after adding these additional rows in order to avoid a memory race condition + if you are using multiple threads for processing each enlarged slice! + +THREAD-SAFETY: - parts of the same image may be scaled by multiple threads as long as the [yFirst, yLast) ranges do not overlap! + - there is a minor inefficiency for the first row of a slice, so avoid processing single rows only + + +*/ +void scale(size_t factor, //valid range: 2 - 5 + const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, + const ScalerCfg& cfg = ScalerCfg(), + int yFirst = 0, int yLast = std::numeric_limits::max()); //slice of source image + +void nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, + uint32_t* trg, int trgWidth, int trgHeight); + +enum SliceType +{ + NN_SCALE_SLICE_SOURCE, + NN_SCALE_SLICE_TARGET, +}; +void nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, int srcPitch, //pitch in bytes! + uint32_t* trg, int trgWidth, int trgHeight, int trgPitch, + SliceType st, int yFirst, int yLast); + +//parameter tuning +bool equalColor(uint32_t col1, uint32_t col2, double luminanceWeight, double equalColorTolerance); + + + + + +//########################### implementation ########################### +inline +void nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, + uint32_t* trg, int trgWidth, int trgHeight) +{ + nearestNeighborScale(src, srcWidth, srcHeight, srcWidth * sizeof(uint32_t), + trg, trgWidth, trgHeight, trgWidth * sizeof(uint32_t), + NN_SCALE_SLICE_TARGET, 0, trgHeight); +} +} + +#endif diff --git a/win32/render.cpp b/win32/render.cpp index bb252a27..a2a99d7e 100644 --- a/win32/render.cpp +++ b/win32/render.cpp @@ -195,6 +195,9 @@ #include "../filter/2xsai.h" #include "../filter/hq2x.h" #include "snes_ntsc.h" +#include "../filter/xbrz.h" +#include +#include // Private Prototypes, should not be called directly void RenderPlain (SSurface Src, SSurface Dst, RECT *); @@ -209,6 +212,7 @@ template void RenderHQ2X (SSurface Src, SSurface Dst, RECT *rect); template void RenderHQ3X (SSurface Src, SSurface Dst, RECT *rect); void RenderLQ3XB (SSurface Src, SSurface Dst, RECT *rect); void RenderHQ4X (SSurface Src, SSurface Dst, RECT *rect); +void Render4xBRZ(SSurface Src, SSurface Dst, RECT* rect); void RenderEPXA (SSurface Src, SSurface Dst, RECT *); void RenderEPXB (SSurface Src, SSurface Dst, RECT *); void RenderEPXC (SSurface Src, SSurface Dst, RECT *); @@ -249,6 +253,30 @@ enum BlarggMode { UNINITIALIZED,BLARGGCOMPOSITE,BLARGGSVIDEO,BLARGGRGB }; snes_ntsc_t *ntsc = NULL; BlarggMode blarggMode = UNINITIALIZED; +int num_xbrz_threads = 4; + +struct xbrz_thread_data { + HANDLE xbrz_start_event; + HANDLE xbrz_sync_event; + HANDLE thread_handle; + static int scalingFactor; + static SSurface *src; + static SSurface *dst; + static uint8* dstPtr; + int yFirst; + int yLast; +}; +xbrz_thread_data *xbrz_thread_sync_data; + +int xbrz_thread_data::scalingFactor = 4; +SSurface *xbrz_thread_data::src = NULL; +SSurface *xbrz_thread_data::dst = NULL; +uint8 *xbrz_thread_data::dstPtr = NULL; + +HANDLE *xbrz_sync_handles; + +DWORD WINAPI ThreadProc_XBRZ(VOID * pParam); + TRenderMethod FilterToMethod(RenderFilter filterID) { switch(filterID) @@ -281,6 +309,7 @@ TRenderMethod FilterToMethod(RenderFilter filterID) case FILTER_BLARGGRGB: return RenderBlarggNTSCRgb; case FILTER_SIMPLE4X: return RenderSimple4X; case FILTER_HQ4X: return RenderHQ4X; + case FILTER_4XBRZ: return Render4xBRZ; } } @@ -316,6 +345,7 @@ const char* GetFilterName(RenderFilter filterID) case FILTER_EPX3: return "EPX3"; case FILTER_SIMPLE4X: return "Simple 4X"; case FILTER_HQ4X: return "hq4x"; + case FILTER_4XBRZ: return "4xBRZ"; } } @@ -344,6 +374,7 @@ int GetFilterScale(RenderFilter filterID) return 3; case FILTER_SIMPLE4X: case FILTER_HQ4X: + case FILTER_4XBRZ: return 4; } } @@ -363,6 +394,7 @@ bool GetFilterHiResSupport(RenderFilter filterID) case FILTER_SIMPLE3X: case FILTER_SIMPLE4X: case FILTER_HQ4X: + case FILTER_4XBRZ: return true; default: @@ -453,6 +485,20 @@ void InitRenderFilters(void) BlendBuffer = BlendBuf + EXT_OFFSET; memset(BlendBuf, 0, EXT_PITCH * EXT_HEIGHT); } + + SYSTEM_INFO sysinfo; + GetSystemInfo( &sysinfo ); + num_xbrz_threads = sysinfo.dwNumberOfProcessors * 2; + if(!xbrz_thread_sync_data) { + xbrz_thread_sync_data = new xbrz_thread_data[num_xbrz_threads]; + xbrz_sync_handles = new HANDLE[num_xbrz_threads]; + for(int i = 0; i < num_xbrz_threads; i++) { + xbrz_thread_sync_data[i].xbrz_start_event = CreateEvent(NULL, FALSE, FALSE, NULL); + xbrz_thread_sync_data[i].xbrz_sync_event = CreateEvent(NULL, FALSE, FALSE, NULL); + xbrz_thread_sync_data[i].thread_handle = CreateThread(NULL, 0, ThreadProc_XBRZ, &xbrz_thread_sync_data[i], 0, NULL); + xbrz_sync_handles[i] = xbrz_thread_sync_data[i].xbrz_sync_event; + } + } } #define R5G6B5 // windows port uses RGB565 @@ -467,6 +513,10 @@ void InitRenderFilters(void) ((((pixel) >> 5) & 0x3f) << /*GreenShift+2*/10) | \ (((pixel) & 0x1f) << /*BlueShift+3*/ 3)) #define NUMBITS (16) + #define CONVERT_32_TO_16(pixel) \ + (((((pixel) & 0xf80000) >> 8) | \ + (((pixel) & 0xfc00) >> 5) | \ + (((pixel) & 0xf8) >> 3)) & 0xffff) #else #define Mask_2 0x03E0 // 00000 11111 00000 #define Mask13 0x7C1F // 11111 00000 11111 @@ -477,6 +527,10 @@ void InitRenderFilters(void) ((((pixel) >> 5) & 0x1f) << /*GreenShift+3*/11) | \ (((pixel) & 0x1f) << /*BlueShift+3*/ 3)) #define NUMBITS (15) + #define CONVERT_32_TO_16(pixel) \ + (((((pixel) & 0xf80000) >> 9) | \ + (((pixel) & 0xf800) >> 6) | \ + (((pixel) & 0xf8) >> 3)) & 0xffff) #endif static int RGBtoYUV[1<= yLast || height <= 0 || width <= 0) return; + + for (int y = yFirst; y < yLast; ++y) + { + uint32_t* trgLine = trg + y * width; + const uint16_t* srcLine = reinterpret_cast(reinterpret_cast(src) + y * srcPitch); + + for (int x = 0; x < width; ++x) + trgLine[x] = CONVERT_16_TO_32(srcLine[x]); + } +} + + +//stretch image and convert from ARGB to RGB565/555 +inline +void stretchImage32To16(const uint32_t* src, int srcWidth, int srcHeight, + uint16_t* trg, int trgWidth, int trgHeight, int trgPitch, + int yFirst, int yLast) +{ + yFirst = std::max(yFirst, 0); + yLast = std::min(yLast, trgHeight); + if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0) return; + + for (int y = yFirst; y < yLast; ++y) + { + uint16_t* trgLine = reinterpret_cast(reinterpret_cast(trg) + y * trgPitch); + const int ySrc = srcHeight * y / trgHeight; + const uint32_t* srcLine = src + ySrc * srcWidth; + for (int x = 0; x < trgWidth; ++x) + { + const int xSrc = srcWidth * x / trgWidth; + trgLine[x] = CONVERT_32_TO_16(srcLine[xSrc]); + } + } +} + +std::vector renderBuffer; //raw image +std::vector xbrzBuffer; //scaled image + +DWORD WINAPI ThreadProc_XBRZ(VOID * pParam) +{ + xbrz_thread_data *thread_data = (xbrz_thread_data *)pParam; + while(true) { + WaitForSingleObject(thread_data->xbrz_start_event, INFINITE); + int trgWidth = xbrz_thread_data::src->Width * xbrz_thread_data::scalingFactor; + int trgHeight = xbrz_thread_data::src->Height * xbrz_thread_data::scalingFactor; + copyImage16To32(reinterpret_cast(thread_data->src->Surface), xbrz_thread_data::src->Width, xbrz_thread_data::src->Height, xbrz_thread_data::src->Pitch, + &renderBuffer[0], thread_data->yFirst, thread_data->yLast); + SetEvent(thread_data->xbrz_sync_event); + WaitForSingleObject(thread_data->xbrz_start_event, INFINITE); + + xbrz::scale(thread_data->scalingFactor, &renderBuffer[0], &xbrzBuffer[0], xbrz_thread_data::src->Width, xbrz_thread_data::src->Height, xbrz::ScalerCfg(), thread_data->yFirst, thread_data->yLast); + SetEvent(thread_data->xbrz_sync_event); + WaitForSingleObject(thread_data->xbrz_start_event, INFINITE); + + if (xbrz_thread_data::src->Height > SNES_HEIGHT_EXTENDED) + trgHeight /= 2; + if (xbrz_thread_data::src->Width == 512) + trgWidth /= 2; + stretchImage32To16(&xbrzBuffer[0], xbrz_thread_data::src->Width * xbrz_thread_data::scalingFactor, xbrz_thread_data::src->Height * xbrz_thread_data::scalingFactor, + reinterpret_cast(xbrz_thread_data::dstPtr), trgWidth, trgHeight, xbrz_thread_data::dst->Pitch, thread_data->yFirst * xbrz_thread_data::scalingFactor, thread_data->yLast * xbrz_thread_data::scalingFactor); + SetEvent(thread_data->xbrz_sync_event); + } + return 0; +} + +void Render4xBRZ(SSurface Src, SSurface Dst, RECT* rect) +{ + xbrz_thread_data::scalingFactor = 4; + + xbrz_thread_data::dstPtr = Dst.Surface; + SetRect(rect, SNES_WIDTH, SNES_HEIGHT_EXTENDED, xbrz_thread_data::scalingFactor); + xbrz_thread_data::dstPtr += rect->top * Dst.Pitch + rect->left * sizeof(uint16_t); + + if (Src.Width <= 0 || Src.Height <= 0) + return; + + renderBuffer.resize(Src.Width * Src.Height); + xbrzBuffer.resize(renderBuffer.size() * xbrz_thread_data::scalingFactor * xbrz_thread_data::scalingFactor); + + xbrz_thread_data::src = &Src; + xbrz_thread_data::dst = &Dst; + + // init + convert run + int ySlice = Src.Height / num_xbrz_threads; + for(int i = 0; i < num_xbrz_threads; i++) { + xbrz_thread_sync_data[i].yFirst = ySlice * i; + xbrz_thread_sync_data[i].yLast = (i == num_xbrz_threads - 1) ? Src.Height : ySlice * i + ySlice; + SetEvent(xbrz_thread_sync_data[i].xbrz_start_event); + } + WaitForMultipleObjects(num_xbrz_threads, xbrz_sync_handles, TRUE, INFINITE); + + // xbrz run + for(int i = 0; i < num_xbrz_threads; i++) { + SetEvent(xbrz_thread_sync_data[i].xbrz_start_event); + } + WaitForMultipleObjects(num_xbrz_threads, xbrz_sync_handles, TRUE, INFINITE); + + // convert run + for(int i = 0; i < num_xbrz_threads; i++) { + SetEvent(xbrz_thread_sync_data[i].xbrz_start_event); + } + WaitForMultipleObjects(num_xbrz_threads, xbrz_sync_handles, TRUE, INFINITE); +} +/*#################### /XBRZ support ####################*/ + void RenderBlarggNTSCComposite( SSurface Src, SSurface Dst, RECT *rect) { if(blarggMode!=BLARGGCOMPOSITE) { diff --git a/win32/snes9xw.vcproj b/win32/snes9xw.vcproj index 7ddb4586..c0f74e75 100644 --- a/win32/snes9xw.vcproj +++ b/win32/snes9xw.vcproj @@ -4698,6 +4698,18 @@ RelativePath=".\snes_ntsc_impl.h" > + + + + + +