rpcs3/Utilities/BEType.h

914 lines
22 KiB
C++

#pragma once
#define IS_LE_MACHINE // only draft
union u128
{
u64 _u64[2];
s64 _s64[2];
class u64_reversed_array_2
{
u64 data[2];
public:
u64& operator [] (s32 index)
{
return data[1 - index];
}
const u64& operator [] (s32 index) const
{
return data[1 - index];
}
} u64r;
u32 _u32[4];
s32 _s32[4];
class u32_reversed_array_4
{
u32 data[4];
public:
u32& operator [] (s32 index)
{
return data[3 - index];
}
const u32& operator [] (s32 index) const
{
return data[3 - index];
}
} u32r;
u16 _u16[8];
s16 _s16[8];
class u16_reversed_array_8
{
u16 data[8];
public:
u16& operator [] (s32 index)
{
return data[7 - index];
}
const u16& operator [] (s32 index) const
{
return data[7 - index];
}
} u16r;
u8 _u8[16];
s8 _s8[16];
class u8_reversed_array_16
{
u8 data[16];
public:
u8& operator [] (s32 index)
{
return data[15 - index];
}
const u8& operator [] (s32 index) const
{
return data[15 - index];
}
} u8r;
float _f[4];
double _d[2];
__m128 vf;
__m128i vi;
__m128d vd;
class bit_array_128
{
u64 data[2];
public:
class bit_element
{
u64& data;
const u64 mask;
public:
bit_element(u64& data, const u64 mask)
: data(data)
, mask(mask)
{
}
force_inline operator bool() const
{
return (data & mask) != 0;
}
force_inline bit_element& operator = (const bool right)
{
if (right)
{
data |= mask;
}
else
{
data &= ~mask;
}
return *this;
}
force_inline bit_element& operator = (const bit_element& right)
{
if (right)
{
data |= mask;
}
else
{
data &= ~mask;
}
return *this;
}
};
// Index 0 returns the MSB and index 127 returns the LSB
bit_element operator [] (u32 index)
{
assert(index < 128);
#ifdef IS_LE_MACHINE
return bit_element(data[1 - (index >> 6)], 0x8000000000000000ull >> (index & 0x3F));
#else
return bit_element(data[index >> 6], 0x8000000000000000ull >> (index & 0x3F));
#endif
}
// Index 0 returns the MSB and index 127 returns the LSB
const bool operator [] (u32 index) const
{
assert(index < 128);
#ifdef IS_LE_MACHINE
return (data[1 - (index >> 6)] & (0x8000000000000000ull >> (index & 0x3F))) != 0;
#else
return (data[index >> 6] & (0x8000000000000000ull >> (index & 0x3F))) != 0;
#endif
}
} _bit;
static u128 from64(u64 _0, u64 _1 = 0)
{
u128 ret;
ret._u64[0] = _0;
ret._u64[1] = _1;
return ret;
}
static u128 from64r(u64 _1, u64 _0 = 0)
{
return from64(_0, _1);
}
static u128 from32(u32 _0, u32 _1 = 0, u32 _2 = 0, u32 _3 = 0)
{
u128 ret;
ret._u32[0] = _0;
ret._u32[1] = _1;
ret._u32[2] = _2;
ret._u32[3] = _3;
return ret;
}
static u128 from32r(u32 _3, u32 _2 = 0, u32 _1 = 0, u32 _0 = 0)
{
return from32(_0, _1, _2, _3);
}
static u128 from32p(u32 value)
{
u128 ret;
ret.vi = _mm_set1_epi32(static_cast<s32>(value));
return ret;
}
static u128 from16p(u16 value)
{
u128 ret;
ret.vi = _mm_set1_epi16(static_cast<s16>(value));
return ret;
}
static u128 from8p(u8 value)
{
u128 ret;
ret.vi = _mm_set1_epi8(static_cast<s8>(value));
return ret;
}
static u128 fromBit(u32 bit)
{
u128 ret = {};
ret._bit[bit] = true;
return ret;
}
static u128 fromV(__m128i value)
{
u128 ret;
ret.vi = value;
return ret;
}
static u128 fromF(__m128 value)
{
u128 ret;
ret.vf = value;
return ret;
}
static u128 fromD(__m128d value)
{
u128 ret;
ret.vd = value;
return ret;
}
static force_inline u128 add8(const u128& left, const u128& right)
{
return fromV(_mm_add_epi8(left.vi, right.vi));
}
static force_inline u128 add16(const u128& left, const u128& right)
{
return fromV(_mm_add_epi16(left.vi, right.vi));
}
static force_inline u128 add32(const u128& left, const u128& right)
{
return fromV(_mm_add_epi32(left.vi, right.vi));
}
static force_inline u128 addfs(const u128& left, const u128& right)
{
return fromF(_mm_add_ps(left.vf, right.vf));
}
static force_inline u128 addfd(const u128& left, const u128& right)
{
return fromD(_mm_add_pd(left.vd, right.vd));
}
static force_inline u128 sub8(const u128& left, const u128& right)
{
return fromV(_mm_sub_epi8(left.vi, right.vi));
}
static force_inline u128 sub16(const u128& left, const u128& right)
{
return fromV(_mm_sub_epi16(left.vi, right.vi));
}
static force_inline u128 sub32(const u128& left, const u128& right)
{
return fromV(_mm_sub_epi32(left.vi, right.vi));
}
static force_inline u128 subfs(const u128& left, const u128& right)
{
return fromF(_mm_sub_ps(left.vf, right.vf));
}
static force_inline u128 subfd(const u128& left, const u128& right)
{
return fromD(_mm_sub_pd(left.vd, right.vd));
}
static force_inline u128 maxu8(const u128& left, const u128& right)
{
return fromV(_mm_max_epu8(left.vi, right.vi));
}
static force_inline u128 minu8(const u128& left, const u128& right)
{
return fromV(_mm_min_epu8(left.vi, right.vi));
}
static force_inline u128 eq8(const u128& left, const u128& right)
{
return fromV(_mm_cmpeq_epi8(left.vi, right.vi));
}
static force_inline u128 eq16(const u128& left, const u128& right)
{
return fromV(_mm_cmpeq_epi16(left.vi, right.vi));
}
static force_inline u128 eq32(const u128& left, const u128& right)
{
return fromV(_mm_cmpeq_epi32(left.vi, right.vi));
}
bool operator == (const u128& right) const
{
return (_u64[0] == right._u64[0]) && (_u64[1] == right._u64[1]);
}
bool operator != (const u128& right) const
{
return (_u64[0] != right._u64[0]) || (_u64[1] != right._u64[1]);
}
force_inline bool is_any_1() const // check if any bit is 1
{
return _u64[0] || _u64[1];
}
force_inline bool is_any_0() const // check if any bit is 0
{
return ~_u64[0] || ~_u64[1];
}
// result = (~left) & (right)
static force_inline u128 andnot(const u128& left, const u128& right)
{
return fromV(_mm_andnot_si128(left.vi, right.vi));
}
void clear()
{
_u64[1] = _u64[0] = 0;
}
std::string to_hex() const;
std::string to_xyzw() const;
static force_inline u128 byteswap(const u128 val)
{
return fromV(_mm_shuffle_epi8(val.vi, _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)));
}
};
CHECK_SIZE_ALIGN(u128, 16, 16);
inline u128 operator |(const u128& left, const u128& right)
{
return u128::fromV(_mm_or_si128(left.vi, right.vi));
}
inline u128 operator &(const u128& left, const u128& right)
{
return u128::fromV(_mm_and_si128(left.vi, right.vi));
}
inline u128 operator ^(const u128& left, const u128& right)
{
return u128::fromV(_mm_xor_si128(left.vi, right.vi));
}
inline u128 operator ~(const u128& other)
{
return u128::from64(~other._u64[0], ~other._u64[1]);
}
static force_inline u128 sync_val_compare_and_swap(volatile u128* dest, u128 comp, u128 exch)
{
#if !defined(_MSC_VER)
auto res = __sync_val_compare_and_swap((volatile __int128_t*)dest, (__int128_t&)comp, (__int128_t&)exch);
return (u128&)res;
#else
_InterlockedCompareExchange128((volatile long long*)dest, exch._u64[1], exch._u64[0], (long long*)&comp);
return comp;
#endif
}
static force_inline bool sync_bool_compare_and_swap(volatile u128* dest, u128 comp, u128 exch)
{
#if !defined(_MSC_VER)
return __sync_bool_compare_and_swap((volatile __int128_t*)dest, (__int128_t&)comp, (__int128_t&)exch);
#else
return _InterlockedCompareExchange128((volatile long long*)dest, exch._u64[1], exch._u64[0], (long long*)&comp) != 0;
#endif
}
static force_inline u128 sync_lock_test_and_set(volatile u128* dest, u128 value)
{
while (true)
{
const u128 old = *(u128*)dest;
if (sync_bool_compare_and_swap(dest, old, value)) return old;
}
}
static force_inline u128 sync_fetch_and_or(volatile u128* dest, u128 value)
{
while (true)
{
const u128 old = *(u128*)dest;
if (sync_bool_compare_and_swap(dest, old, value | old)) return old;
}
}
static force_inline u128 sync_fetch_and_and(volatile u128* dest, u128 value)
{
while (true)
{
const u128 old = *(u128*)dest;
if (sync_bool_compare_and_swap(dest, old, value & old)) return old;
}
}
static force_inline u128 sync_fetch_and_xor(volatile u128* dest, u128 value)
{
while (true)
{
const u128 old = *(u128*)dest;
if (sync_bool_compare_and_swap(dest, old, value ^ old)) return old;
}
}
template<typename T, std::size_t Size = sizeof(T)> struct se_t;
template<typename T> struct se_t<T, 2>
{
static force_inline u16 to(const T& src)
{
return _byteswap_ushort((u16&)src);
}
static force_inline T from(const u16 src)
{
const u16 res = _byteswap_ushort(src);
return (T&)res;
}
};
template<typename T> struct se_t<T, 4>
{
static force_inline u32 to(const T& src)
{
return _byteswap_ulong((u32&)src);
}
static force_inline T from(const u32 src)
{
const u32 res = _byteswap_ulong(src);
return (T&)res;
}
};
template<typename T> struct se_t<T, 8>
{
static force_inline u64 to(const T& src)
{
return _byteswap_uint64((u64&)src);
}
static force_inline T from(const u64 src)
{
const u64 res = _byteswap_uint64(src);
return (T&)res;
}
};
template<typename T> struct se_t<T, 16>
{
static force_inline u128 to(const T& src)
{
return u128::byteswap((u128&)src);
}
static force_inline T from(const u128& src)
{
const u128 res = u128::byteswap(src);
return (T&)res;
}
};
template<typename T, T _value, std::size_t size = sizeof(T)> struct const_se_t;
template<u16 _value> struct const_se_t<u16, _value, 2>
{
static const u16 value =
((_value >> 8) & 0x00ff) |
((_value << 8) & 0xff00);
};
template<u32 _value> struct const_se_t<u32, _value, 4>
{
static const u32 value =
((_value >> 24) & 0x000000ff) |
((_value >> 8) & 0x0000ff00) |
((_value << 8) & 0x00ff0000) |
((_value << 24) & 0xff000000);
};
template<u64 _value> struct const_se_t<u64, _value, 8>
{
static const u64 value =
((_value >> 56) & 0x00000000000000ff) |
((_value >> 40) & 0x000000000000ff00) |
((_value >> 24) & 0x0000000000ff0000) |
((_value >> 8) & 0x00000000ff000000) |
((_value << 8) & 0x000000ff00000000) |
((_value << 24) & 0x0000ff0000000000) |
((_value << 40) & 0x00ff000000000000) |
((_value << 56) & 0xff00000000000000);
};
template<typename T, size_t size = sizeof(T)> struct be_storage
{
static_assert(!size, "Bad be_storage_t<> type");
};
template<typename T> struct be_storage<T, 2>
{
using type = u16;
};
template<typename T> struct be_storage<T, 4>
{
using type = u32;
};
template<typename T> struct be_storage<T, 8>
{
using type = u64;
};
template<typename T> struct be_storage<T, 16>
{
using type = u128;
};
template<typename T> using be_storage_t = typename be_storage<T>::type;
template<typename T> class be_t
{
// TODO (complicated cases like int-float conversions are not handled correctly)
template<typename Tto, typename Tfrom, int mode>
struct _convert
{
static force_inline be_t<Tto>& func(Tfrom& be_value)
{
Tto res = be_value;
return (be_t<Tto>&)res;
}
};
template<typename Tto, typename Tfrom>
struct _convert<Tto, Tfrom, 1>
{
static force_inline be_t<Tto>& func(Tfrom& be_value)
{
Tto res = se_t<Tto, sizeof(Tto)>::func(se_t<Tfrom, sizeof(Tfrom)>::func(be_value));
return (be_t<Tto>&)res;
}
};
template<typename Tto, typename Tfrom>
struct _convert<Tto, Tfrom, 2>
{
static force_inline be_t<Tto>& func(Tfrom& be_value)
{
Tto res = be_value >> ((sizeof(Tfrom) - sizeof(Tto)) * 8);
return (be_t<Tto>&)res;
}
};
public:
using type = std::remove_cv_t<T>;
using stype = be_storage_t<std::remove_cv_t<T>>;
#ifdef IS_LE_MACHINE
stype m_data; // don't access directly
#else
type m_data; // don't access directly
#endif
static_assert(!std::is_class<type>::value, "be_t<> error: invalid type (class or structure)");
static_assert(!std::is_union<type>::value || std::is_same<type, u128>::value, "be_t<> error: invalid type (union)");
static_assert(!std::is_pointer<type>::value, "be_t<> error: invalid type (pointer)");
static_assert(!std::is_reference<type>::value, "be_t<> error: invalid type (reference)");
static_assert(!std::is_array<type>::value, "be_t<> error: invalid type (array)");
static_assert(!std::is_enum<type>::value, "be_t<> error: invalid type (enumeration), use integral type instead");
static_assert(__alignof(type) == __alignof(stype), "be_t<> error: unexpected alignment");
be_t() = default;
be_t(const be_t&) = default;
template<typename = std::enable_if_t<std::is_constructible<type, type>::value>> be_t(const type& value)
#ifdef IS_LE_MACHINE
: m_data(se_t<type, sizeof(stype)>::to(value))
#else
: m_data(value)
#endif
{
}
// get value in current machine byte ordering
force_inline type value() const
{
#ifdef IS_LE_MACHINE
return se_t<type, sizeof(stype)>::from(m_data);
#else
return m_data;
#endif
}
// get underlying data without any byte order manipulation
const stype& data() const
{
#ifdef IS_LE_MACHINE
return m_data;
#else
return reinterpret_cast<const stype&>(m_data);
#endif
}
be_t& operator =(const be_t&) = default;
template<typename CT> std::enable_if_t<std::is_assignable<type&, CT>::value, be_t&> operator =(const CT& value)
{
#ifdef IS_LE_MACHINE
m_data = se_t<type, sizeof(stype)>::to(value);
#else
m_data = value;
#endif
return *this;
}
//template<typename CT, typename = std::enable_if_t<std::is_convertible<type, CT>::value>> operator CT() const
//{
// return value();
//}
operator type() const
{
return value();
}
// conversion to another be_t type
//template<typename T1> operator be_t<T1>() const
//{
// return value();
// //return _convert<T1, T, ((sizeof(T1) > sizeof(T)) ? 1 : (sizeof(T1) < sizeof(T) ? 2 : 0))>::func(m_data);
//}
template<typename T1> be_t& operator +=(const T1& right) { return *this = value() + right; }
template<typename T1> be_t& operator -=(const T1& right) { return *this = value() - right; }
template<typename T1> be_t& operator *=(const T1& right) { return *this = value() * right; }
template<typename T1> be_t& operator /=(const T1& right) { return *this = value() / right; }
template<typename T1> be_t& operator %=(const T1& right) { return *this = value() % right; }
template<typename T1> be_t& operator <<=(const T1& right) { return *this = value() << right; }
template<typename T1> be_t& operator >>=(const T1& right) { return *this = value() >> right; }
template<typename T1> be_t& operator &=(const T1& right) { return m_data &= be_t(right).data(), *this; }
template<typename T1> be_t& operator |=(const T1& right) { return m_data |= be_t(right).data(), *this; }
template<typename T1> be_t& operator ^=(const T1& right) { return m_data ^= be_t(right).data(), *this; }
be_t operator ++(int) { be_t res = *this; *this += 1; return res; }
be_t operator --(int) { be_t res = *this; *this -= 1; return res; }
be_t& operator ++() { *this += 1; return *this; }
be_t& operator --() { *this -= 1; return *this; }
};
template<typename T1, typename T2> inline std::enable_if_t<std::is_same<T1, T2>::value && std::is_integral<T1>::value, bool> operator ==(const be_t<T1>& left, const be_t<T2>& right)
{
return left.data() == right.data();
}
template<typename T1, typename T2> inline std::enable_if_t<std::is_same<T1, T2>::value && std::is_integral<T1>::value, bool> operator !=(const be_t<T1>& left, const be_t<T2>& right)
{
return left.data() != right.data();
}
template<typename T1, typename T2> inline std::enable_if_t<std::is_same<T1, T2>::value && std::is_integral<T1>::value, be_t<T1>> operator &(const be_t<T1>& left, const be_t<T2>& right)
{
be_t<T1> result;
result.m_data = left.data() & right.data();
return result;
}
template<typename T1, typename T2> inline std::enable_if_t<std::is_same<T1, T2>::value && std::is_integral<T1>::value, be_t<T1>> operator |(const be_t<T1>& left, const be_t<T2>& right)
{
be_t<T1> result;
result.m_data = left.data() | right.data();
return result;
}
template<typename T1, typename T2> inline std::enable_if_t<std::is_same<T1, T2>::value && std::is_integral<T1>::value, be_t<T1>> operator ^(const be_t<T1>& left, const be_t<T2>& right)
{
be_t<T1> result;
result.m_data = left.data() ^ right.data();
return result;
}
template<typename T1> inline std::enable_if_t<std::is_integral<T1>::value, be_t<T1>> operator ~(const be_t<T1>& arg)
{
be_t<T1> result;
result.m_data = ~arg.data();
return result;
}
template<typename T> struct is_be_t : public std::integral_constant<bool, false>
{
};
template<typename T> struct is_be_t<be_t<T>> : public std::integral_constant<bool, true>
{
};
template<typename T> struct is_be_t<const T> : public std::integral_constant<bool, is_be_t<T>::value>
{
};
template<typename T> struct is_be_t<volatile T> : public std::integral_constant<bool, is_be_t<T>::value>
{
};
// to_be_t helper struct
template<typename T> struct to_be
{
using type = std::conditional_t<std::is_arithmetic<T>::value || std::is_enum<T>::value || std::is_same<T, u128>::value, be_t<T>, T>;
};
// be_t<T> if possible, T otherwise
template<typename T> using to_be_t = typename to_be<T>::type;
template<typename T> struct to_be<const T>
{
// move const qualifier
using type = const to_be_t<T>;
};
template<typename T> struct to_be<volatile T>
{
// move volatile qualifier
using type = volatile to_be_t<T>;
};
template<> struct to_be<void> { using type = void; };
template<> struct to_be<bool> { using type = bool; };
template<> struct to_be<char> { using type = char; };
template<> struct to_be<u8> { using type = u8; };
template<> struct to_be<s8> { using type = s8; };
template<typename T> class le_t
{
public:
using type = std::remove_cv_t<T>;
using stype = be_storage_t<std::remove_cv_t<T>>;
type m_data; // don't access directly
static_assert(!std::is_class<type>::value, "le_t<> error: invalid type (class or structure)");
static_assert(!std::is_union<type>::value || std::is_same<type, u128>::value, "le_t<> error: invalid type (union)");
static_assert(!std::is_pointer<type>::value, "le_t<> error: invalid type (pointer)");
static_assert(!std::is_reference<type>::value, "le_t<> error: invalid type (reference)");
static_assert(!std::is_array<type>::value, "le_t<> error: invalid type (array)");
static_assert(!std::is_enum<type>::value, "le_t<> error: invalid type (enumeration), use integral type instead");
static_assert(__alignof(type) == __alignof(stype), "le_t<> error: unexpected alignment");
le_t() = default;
le_t(const le_t&) = default;
template<typename = std::enable_if_t<std::is_constructible<type, type>::value>> le_t(const type& value)
: m_data(value)
{
}
type value() const
{
return m_data;
}
const stype& data() const
{
return reinterpret_cast<const stype&>(m_data);
}
le_t& operator =(const le_t& value) = default;
template<typename CT> std::enable_if_t<std::is_assignable<type&, CT>::value, le_t&> operator =(const CT& value)
{
m_data = value;
return *this;
}
operator type() const
{
return value();
}
// conversion to another le_t type
//template<typename T1> operator le_t<T1>() const
//{
// return value();
//}
template<typename T1> le_t& operator +=(const T1& right) { return *this = value() + right; }
template<typename T1> le_t& operator -=(const T1& right) { return *this = value() - right; }
template<typename T1> le_t& operator *=(const T1& right) { return *this = value() * right; }
template<typename T1> le_t& operator /=(const T1& right) { return *this = value() / right; }
template<typename T1> le_t& operator %=(const T1& right) { return *this = value() % right; }
template<typename T1> le_t& operator <<=(const T1& right) { return *this = value() << right; }
template<typename T1> le_t& operator >>=(const T1& right) { return *this = value() >> right; }
template<typename T1> le_t& operator &=(const T1& right) { return m_data &= le_t(right).data(), *this; }
template<typename T1> le_t& operator |=(const T1& right) { return m_data |= le_t(right).data(), *this; }
template<typename T1> le_t& operator ^=(const T1& right) { return m_data ^= le_t(right).data(), *this; }
le_t operator ++(int) { le_t res = *this; *this += 1; return res; }
le_t operator --(int) { le_t res = *this; *this -= 1; return res; }
le_t& operator ++() { *this += 1; return *this; }
le_t& operator --() { *this -= 1; return *this; }
};
template<typename T> struct is_le_t : public std::integral_constant<bool, false>
{
};
template<typename T> struct is_le_t<le_t<T>> : public std::integral_constant<bool, true>
{
};
template<typename T> struct is_le_t<const T> : public std::integral_constant<bool, is_le_t<T>::value>
{
};
template<typename T> struct is_le_t<volatile T> : public std::integral_constant<bool, is_le_t<T>::value>
{
};
template<typename T> struct to_le
{
using type = std::conditional_t<std::is_arithmetic<T>::value || std::is_enum<T>::value || std::is_same<T, u128>::value, le_t<T>, T>;
};
// le_t<T> if possible, T otherwise
template<typename T> using to_le_t = typename to_le<T>::type;
template<typename T> struct to_le<const T>
{
// move const qualifier
using type = const to_le_t<T>;
};
template<typename T> struct to_le<volatile T>
{
// move volatile qualifier
using type = volatile to_le_t<T>;
};
template<> struct to_le<void> { using type = void; };
template<> struct to_le<bool> { using type = bool; };
template<> struct to_le<char> { using type = char; };
template<> struct to_le<u8> { using type = u8; };
template<> struct to_le<s8> { using type = s8; };
// to_ne_t helper struct
template<typename T> struct to_ne
{
using type = T;
};
template<typename T> struct to_ne<be_t<T>>
{
using type = T;
};
template<typename T> struct to_ne<le_t<T>>
{
using type = T;
};
// restore native endianness for T: returns T for be_t<T> or le_t<T>, T otherwise
template<typename T> using to_ne_t = typename to_ne<T>::type;
template<typename T> struct to_ne<const T>
{
// move const qualifier
using type = const to_ne_t<T>;
};
template<typename T> struct to_ne<volatile T>
{
// move volatile qualifier
using type = volatile to_ne_t<T>;
};