rpcs3/Utilities/cond.h

192 lines
3.6 KiB
C++

#pragma once
#include "types.h"
#include "util/atomic.hpp"
#include <shared_mutex>
#include "asm.h"
// Lightweight condition variable
class cond_variable
{
// Internal waiter counter
atomic_t<u32> m_value{0};
enum : u32
{
c_waiter_mask = 0x1fff,
c_signal_mask = 0xffffffff & ~c_waiter_mask,
};
protected:
// Increment waiter count
u32 add_waiter() noexcept
{
return m_value.atomic_op([](u32& value) -> u32
{
if ((value & c_signal_mask) == c_signal_mask || (value & c_waiter_mask) == c_waiter_mask)
{
// Signal or waiter overflow, return immediately
return 0;
}
value += c_waiter_mask & -c_waiter_mask;
return value;
});
}
// Internal waiting function
void imp_wait(u32 _old, u64 _timeout) noexcept;
// Try to notify up to _count threads
void imp_wake(u32 _count) noexcept;
public:
constexpr cond_variable() = default;
// Intrusive wait algorithm for lockable objects
template <typename T>
void wait(T& object, u64 usec_timeout = -1) noexcept
{
const u32 _old = add_waiter();
if (!_old)
{
return;
}
object.unlock();
imp_wait(_old, usec_timeout);
object.lock();
}
// Unlock all specified objects but don't lock them again
template <typename... Locks>
void wait_unlock(u64 usec_timeout, Locks&&... locks)
{
const u32 _old = add_waiter();
(..., std::forward<Locks>(locks).unlock());
if (!_old)
{
return;
}
imp_wait(_old, usec_timeout);
}
// Wake one thread
void notify_one() noexcept
{
if (m_value)
{
imp_wake(1);
}
}
// Wake all threads
void notify_all() noexcept
{
if (m_value)
{
imp_wake(-1);
}
}
static constexpr u64 max_timeout = UINT64_MAX / 1000;
};
// Condition variable fused with a pseudo-mutex supporting only reader locks (up to 32 readers).
class shared_cond
{
// For information, shouldn't modify
enum : u64
{
// Wait bit is aligned for compatibility with 32-bit futex.
c_wait = 1,
c_sig = 1ull << 32,
c_lock = 1ull << 32 | 1,
};
// Split in 32-bit parts for convenient bit combining
atomic_t<u64> m_cvx32{0};
class shared_lock
{
shared_cond* m_this;
u32 m_slot;
friend class shared_cond;
public:
shared_lock(shared_cond* _this) noexcept
: m_this(_this)
{
// Lock and remember obtained slot index
m_slot = m_this->m_cvx32.atomic_op([](u64& cvx32)
{
// Combine used bits and invert to find least significant bit unused
const u32 slot = static_cast<u32>(utils::cnttz64(~((cvx32 & 0xffffffff) | (cvx32 >> 32)), true));
// Set lock bits (does nothing if all slots are used)
const u64 bit = (1ull << slot) & 0xffffffff;
cvx32 |= bit | (bit << 32);
return slot;
});
}
shared_lock(const shared_lock&) = delete;
shared_lock(shared_lock&& rhs)
: m_this(rhs.m_this)
, m_slot(rhs.m_slot)
{
rhs.m_slot = 32;
}
shared_lock& operator=(const shared_lock&) = delete;
~shared_lock()
{
// Clear the slot (does nothing if all slots are used)
const u64 bit = (1ull << m_slot) & 0xffffffff;
m_this->m_cvx32 &= ~(bit | (bit << 32));
}
explicit operator bool() const noexcept
{
// Check success
return m_slot < 32;
}
bool wait(u64 usec_timeout = -1) const noexcept
{
return m_this->wait(*this, usec_timeout);
}
};
bool imp_wait(u32 slot, u64 _timeout) noexcept;
void imp_notify() noexcept;
public:
constexpr shared_cond() = default;
shared_lock try_shared_lock() noexcept
{
return shared_lock(this);
}
bool wait(shared_lock const& lock, u64 usec_timeout = -1) noexcept
{
AUDIT(lock.m_this == this);
return imp_wait(lock.m_slot, usec_timeout);
}
void notify_all() noexcept
{
if (LIKELY(!m_cvx32))
return;
imp_notify();
}
};