rpcs3/Utilities/Thread.h

511 lines
10 KiB
C++

#pragma once
// Will report exception and call std::abort() if put in catch(...)
[[noreturn]] void catch_all_exceptions();
// Thread control class
class thread_ctrl final
{
static thread_local thread_ctrl* g_tls_this_thread;
// Name getter
std::function<std::string()> m_name;
// Thread handle (be careful)
std::thread m_thread;
// Thread result
std::future<void> m_future;
// Functions scheduled at thread exit
std::deque<std::function<void()>> m_atexit;
// Called at the thread start
static void initialize();
// Called at the thread end
static void finalize() noexcept;
public:
template<typename T>
thread_ctrl(T&& name)
: m_name(std::forward<T>(name))
{
}
// Disable copy/move constructors and operators
thread_ctrl(const thread_ctrl&) = delete;
~thread_ctrl();
// Get thread name
std::string get_name() const;
// Get future result (may throw)
void join()
{
return m_future.get();
}
// Get current thread (may be nullptr)
static const thread_ctrl* get_current()
{
return g_tls_this_thread;
}
// Register function at thread exit (for the current thread)
template<typename T>
static inline void at_exit(T&& func)
{
CHECK_ASSERTION(g_tls_this_thread);
g_tls_this_thread->m_atexit.emplace_front(std::forward<T>(func));
}
// Named thread factory
template<typename N, typename F>
static inline std::shared_ptr<thread_ctrl> spawn(N&& name, F&& func)
{
auto ctrl = std::make_shared<thread_ctrl>(std::forward<N>(name));
std::promise<void> promise;
ctrl->m_future = promise.get_future();
ctrl->m_thread = std::thread([ctrl, task = std::forward<F>(func)](std::promise<void> promise)
{
g_tls_this_thread = ctrl.get();
try
{
initialize();
task();
finalize();
promise.set_value();
}
catch (...)
{
finalize();
promise.set_exception(std::current_exception());
}
}, std::move(promise));
return ctrl;
}
};
class named_thread_t : public std::enable_shared_from_this<named_thread_t>
{
// Pointer to managed resource (shared with actual thread)
std::shared_ptr<thread_ctrl> m_thread;
public:
// Thread condition variable for external use (this thread waits on it, other threads may notify)
std::condition_variable cv;
// Thread mutex for external use (can be used with `cv`)
std::mutex mutex;
protected:
// Thread task (called in the thread)
virtual void on_task() = 0;
// Thread finalization (called after on_task)
virtual void on_exit() {}
// ID initialization (called through id_aux_initialize)
virtual void on_id_aux_initialize() { start(); }
// ID finalization (called through id_aux_finalize)
virtual void on_id_aux_finalize() { join(); }
public:
named_thread_t() = default;
virtual ~named_thread_t() = default;
// Deleted copy/move constructors + copy/move operators
named_thread_t(const named_thread_t&) = delete;
// Get thread name
virtual std::string get_name() const;
// Start thread (cannot be called from the constructor: should throw bad_weak_ptr in such case)
void start();
// Join thread (get future result)
void join();
// Check whether the thread is not in "empty state"
bool is_started() const { return m_thread.operator bool(); }
// Compare with the current thread
bool is_current() const { CHECK_ASSERTION(m_thread); return thread_ctrl::get_current() == m_thread.get(); }
// Get thread_ctrl
const thread_ctrl* get_thread_ctrl() const { return m_thread.get(); }
friend void id_aux_initialize(named_thread_t* ptr) { ptr->on_id_aux_initialize(); }
friend void id_aux_finalize(named_thread_t* ptr) { ptr->on_id_aux_finalize(); }
};
// Wrapper for named thread, joins automatically in the destructor, can only be used in function scope
class scope_thread_t final
{
std::shared_ptr<thread_ctrl> m_thread;
public:
template<typename N, typename F>
scope_thread_t(N&& name, F&& func)
: m_thread(thread_ctrl::spawn(std::forward<N>(name), std::forward<F>(func)))
{
}
// Deleted copy/move constructors + copy/move operators
scope_thread_t(const scope_thread_t&) = delete;
// Destructor with exceptions allowed
~scope_thread_t() noexcept(false)
{
m_thread->join();
}
};
extern const std::function<bool()> SQUEUE_ALWAYS_EXIT;
extern const std::function<bool()> SQUEUE_NEVER_EXIT;
bool squeue_test_exit();
template<typename T, u32 sq_size = 256>
class squeue_t
{
struct squeue_sync_var_t
{
struct
{
u32 position : 31;
u32 pop_lock : 1;
};
struct
{
u32 count : 31;
u32 push_lock : 1;
};
};
atomic_t<squeue_sync_var_t> m_sync;
mutable std::mutex m_rcv_mutex;
mutable std::mutex m_wcv_mutex;
mutable std::condition_variable m_rcv;
mutable std::condition_variable m_wcv;
T m_data[sq_size];
enum squeue_sync_var_result : u32
{
SQSVR_OK = 0,
SQSVR_LOCKED = 1,
SQSVR_FAILED = 2,
};
public:
squeue_t()
: m_sync(squeue_sync_var_t{})
{
}
u32 get_max_size() const
{
return sq_size;
}
bool is_full() const
{
return m_sync.load().count == sq_size;
}
bool push(const T& data, const std::function<bool()>& test_exit)
{
u32 pos = 0;
while (u32 res = m_sync.atomic_op([&pos](squeue_sync_var_t& sync) -> u32
{
assert(sync.count <= sq_size);
assert(sync.position < sq_size);
if (sync.push_lock)
{
return SQSVR_LOCKED;
}
if (sync.count == sq_size)
{
return SQSVR_FAILED;
}
sync.push_lock = 1;
pos = sync.position + sync.count;
return SQSVR_OK;
}))
{
if (res == SQSVR_FAILED && (test_exit() || squeue_test_exit()))
{
return false;
}
std::unique_lock<std::mutex> wcv_lock(m_wcv_mutex);
m_wcv.wait_for(wcv_lock, std::chrono::milliseconds(1));
}
m_data[pos >= sq_size ? pos - sq_size : pos] = data;
m_sync.atomic_op([](squeue_sync_var_t& sync)
{
assert(sync.count <= sq_size);
assert(sync.position < sq_size);
assert(sync.push_lock);
sync.push_lock = 0;
sync.count++;
});
m_rcv.notify_one();
m_wcv.notify_one();
return true;
}
bool push(const T& data, const volatile bool* do_exit)
{
return push(data, [do_exit](){ return do_exit && *do_exit; });
}
force_inline bool push(const T& data)
{
return push(data, SQUEUE_NEVER_EXIT);
}
force_inline bool try_push(const T& data)
{
return push(data, SQUEUE_ALWAYS_EXIT);
}
bool pop(T& data, const std::function<bool()>& test_exit)
{
u32 pos = 0;
while (u32 res = m_sync.atomic_op([&pos](squeue_sync_var_t& sync) -> u32
{
assert(sync.count <= sq_size);
assert(sync.position < sq_size);
if (!sync.count)
{
return SQSVR_FAILED;
}
if (sync.pop_lock)
{
return SQSVR_LOCKED;
}
sync.pop_lock = 1;
pos = sync.position;
return SQSVR_OK;
}))
{
if (res == SQSVR_FAILED && (test_exit() || squeue_test_exit()))
{
return false;
}
std::unique_lock<std::mutex> rcv_lock(m_rcv_mutex);
m_rcv.wait_for(rcv_lock, std::chrono::milliseconds(1));
}
data = m_data[pos];
m_sync.atomic_op([](squeue_sync_var_t& sync)
{
assert(sync.count <= sq_size);
assert(sync.position < sq_size);
assert(sync.pop_lock);
sync.pop_lock = 0;
sync.position++;
sync.count--;
if (sync.position == sq_size)
{
sync.position = 0;
}
});
m_rcv.notify_one();
m_wcv.notify_one();
return true;
}
bool pop(T& data, const volatile bool* do_exit)
{
return pop(data, [do_exit](){ return do_exit && *do_exit; });
}
force_inline bool pop(T& data)
{
return pop(data, SQUEUE_NEVER_EXIT);
}
force_inline bool try_pop(T& data)
{
return pop(data, SQUEUE_ALWAYS_EXIT);
}
bool peek(T& data, u32 start_pos, const std::function<bool()>& test_exit)
{
assert(start_pos < sq_size);
u32 pos = 0;
while (u32 res = m_sync.atomic_op([&pos, start_pos](squeue_sync_var_t& sync) -> u32
{
assert(sync.count <= sq_size);
assert(sync.position < sq_size);
if (sync.count <= start_pos)
{
return SQSVR_FAILED;
}
if (sync.pop_lock)
{
return SQSVR_LOCKED;
}
sync.pop_lock = 1;
pos = sync.position + start_pos;
return SQSVR_OK;
}))
{
if (res == SQSVR_FAILED && (test_exit() || squeue_test_exit()))
{
return false;
}
std::unique_lock<std::mutex> rcv_lock(m_rcv_mutex);
m_rcv.wait_for(rcv_lock, std::chrono::milliseconds(1));
}
data = m_data[pos >= sq_size ? pos - sq_size : pos];
m_sync.atomic_op([](squeue_sync_var_t& sync)
{
assert(sync.count <= sq_size);
assert(sync.position < sq_size);
assert(sync.pop_lock);
sync.pop_lock = 0;
});
m_rcv.notify_one();
return true;
}
bool peek(T& data, u32 start_pos, const volatile bool* do_exit)
{
return peek(data, start_pos, [do_exit](){ return do_exit && *do_exit; });
}
force_inline bool peek(T& data, u32 start_pos = 0)
{
return peek(data, start_pos, SQUEUE_NEVER_EXIT);
}
force_inline bool try_peek(T& data, u32 start_pos = 0)
{
return peek(data, start_pos, SQUEUE_ALWAYS_EXIT);
}
class squeue_data_t
{
T* const m_data;
const u32 m_pos;
const u32 m_count;
squeue_data_t(T* data, u32 pos, u32 count)
: m_data(data)
, m_pos(pos)
, m_count(count)
{
}
public:
T& operator [] (u32 index)
{
assert(index < m_count);
index += m_pos;
index = index < sq_size ? index : index - sq_size;
return m_data[index];
}
};
void process(void(*proc)(squeue_data_t data))
{
u32 pos, count;
while (m_sync.atomic_op([&pos, &count](squeue_sync_var_t& sync) -> u32
{
assert(sync.count <= sq_size);
assert(sync.position < sq_size);
if (sync.pop_lock || sync.push_lock)
{
return SQSVR_LOCKED;
}
pos = sync.position;
count = sync.count;
sync.pop_lock = 1;
sync.push_lock = 1;
return SQSVR_OK;
}))
{
std::unique_lock<std::mutex> rcv_lock(m_rcv_mutex);
m_rcv.wait_for(rcv_lock, std::chrono::milliseconds(1));
}
proc(squeue_data_t(m_data, pos, count));
m_sync.atomic_op([](squeue_sync_var_t& sync)
{
assert(sync.count <= sq_size);
assert(sync.position < sq_size);
assert(sync.pop_lock && sync.push_lock);
sync.pop_lock = 0;
sync.push_lock = 0;
});
m_wcv.notify_one();
m_rcv.notify_one();
}
void clear()
{
while (m_sync.atomic_op([](squeue_sync_var_t& sync) -> u32
{
assert(sync.count <= sq_size);
assert(sync.position < sq_size);
if (sync.pop_lock || sync.push_lock)
{
return SQSVR_LOCKED;
}
sync.pop_lock = 1;
sync.push_lock = 1;
return SQSVR_OK;
}))
{
std::unique_lock<std::mutex> rcv_lock(m_rcv_mutex);
m_rcv.wait_for(rcv_lock, std::chrono::milliseconds(1));
}
m_sync.exchange({});
m_wcv.notify_one();
m_rcv.notify_one();
}
};