rpcs3/Utilities/BEType.h

941 lines
24 KiB
C++

#pragma once
#ifdef _MSC_VER
#include <intrin.h>
#else
#include <x86intrin.h>
#endif
#define IS_LE_MACHINE // only draft
union v128
{
template<typename T, std::size_t N, std::size_t M> class masked_array_t // array type accessed as (index ^ M)
{
T m_data[N];
public:
T& operator [](std::size_t index)
{
return m_data[index ^ M];
}
const T& operator [](std::size_t index) const
{
return m_data[index ^ M];
}
T& at(std::size_t index)
{
return (index ^ M) < N ? m_data[index ^ M] : throw std::out_of_range(__FUNCTION__);
}
const T& at(std::size_t index) const
{
return (index ^ M) < N ? m_data[index ^ M] : throw std::out_of_range(__FUNCTION__);
}
};
#ifdef IS_LE_MACHINE
template<typename T, std::size_t N = 16 / sizeof(T)> using normal_array_t = masked_array_t<T, N, 0>;
template<typename T, std::size_t N = 16 / sizeof(T)> using reversed_array_t = masked_array_t<T, N, N - 1>;
#else
template<typename T, std::size_t N = 16 / sizeof(T)> using normal_array_t = masked_array_t<T, N, N - 1>;
template<typename T, std::size_t N = 16 / sizeof(T)> using reversed_array_t = masked_array_t<T, N, 0>;
#endif
normal_array_t<u64> _u64;
normal_array_t<s64> _s64;
reversed_array_t<u64> u64r;
reversed_array_t<s64> s64r;
normal_array_t<u32> _u32;
normal_array_t<s32> _s32;
reversed_array_t<u32> u32r;
reversed_array_t<s32> s32r;
normal_array_t<u16> _u16;
normal_array_t<s16> _s16;
reversed_array_t<u16> u16r;
reversed_array_t<s16> s16r;
normal_array_t<u8> _u8;
normal_array_t<s8> _s8;
reversed_array_t<u8> u8r;
reversed_array_t<s8> s8r;
normal_array_t<f32> _f;
normal_array_t<f64> _d;
reversed_array_t<f32> fr;
reversed_array_t<f64> dr;
__m128 vf;
__m128i vi;
__m128d vd;
class bit_array_128
{
u64 m_data[2];
public:
class bit_element
{
u64& data;
const u64 mask;
public:
bit_element(u64& data, const u64 mask)
: data(data)
, mask(mask)
{
}
operator bool() const
{
return (data & mask) != 0;
}
bit_element& operator =(const bool right)
{
if (right)
{
data |= mask;
}
else
{
data &= ~mask;
}
return *this;
}
bit_element& operator =(const bit_element& right)
{
if (right)
{
data |= mask;
}
else
{
data &= ~mask;
}
return *this;
}
};
// Index 0 returns the MSB and index 127 returns the LSB
bit_element operator [](u32 index)
{
#ifdef IS_LE_MACHINE
return bit_element(m_data[1 - (index >> 6)], 0x8000000000000000ull >> (index & 0x3F));
#else
return bit_element(m_data[index >> 6], 0x8000000000000000ull >> (index & 0x3F));
#endif
}
// Index 0 returns the MSB and index 127 returns the LSB
bool operator [](u32 index) const
{
#ifdef IS_LE_MACHINE
return (m_data[1 - (index >> 6)] & (0x8000000000000000ull >> (index & 0x3F))) != 0;
#else
return (m_data[index >> 6] & (0x8000000000000000ull >> (index & 0x3F))) != 0;
#endif
}
bit_element at(u32 index)
{
if (index >= 128) throw std::out_of_range(__FUNCTION__);
return operator[](index);
}
bool at(u32 index) const
{
if (index >= 128) throw std::out_of_range(__FUNCTION__);
return operator[](index);
}
}
_bit;
static v128 from64(u64 _0, u64 _1 = 0)
{
v128 ret;
ret._u64[0] = _0;
ret._u64[1] = _1;
return ret;
}
static v128 from64r(u64 _1, u64 _0 = 0)
{
return from64(_0, _1);
}
static v128 from32(u32 _0, u32 _1 = 0, u32 _2 = 0, u32 _3 = 0)
{
v128 ret;
ret._u32[0] = _0;
ret._u32[1] = _1;
ret._u32[2] = _2;
ret._u32[3] = _3;
return ret;
}
static v128 from32r(u32 _3, u32 _2 = 0, u32 _1 = 0, u32 _0 = 0)
{
return from32(_0, _1, _2, _3);
}
static v128 from32p(u32 value)
{
v128 ret;
ret.vi = _mm_set1_epi32(static_cast<s32>(value));
return ret;
}
static v128 from16p(u16 value)
{
v128 ret;
ret.vi = _mm_set1_epi16(static_cast<s16>(value));
return ret;
}
static v128 from8p(u8 value)
{
v128 ret;
ret.vi = _mm_set1_epi8(static_cast<s8>(value));
return ret;
}
static v128 fromBit(u32 bit)
{
v128 ret = {};
ret._bit[bit] = true;
return ret;
}
static v128 fromV(__m128i value)
{
v128 ret;
ret.vi = value;
return ret;
}
static v128 fromF(__m128 value)
{
v128 ret;
ret.vf = value;
return ret;
}
static v128 fromD(__m128d value)
{
v128 ret;
ret.vd = value;
return ret;
}
static inline v128 add8(const v128& left, const v128& right)
{
return fromV(_mm_add_epi8(left.vi, right.vi));
}
static inline v128 add16(const v128& left, const v128& right)
{
return fromV(_mm_add_epi16(left.vi, right.vi));
}
static inline v128 add32(const v128& left, const v128& right)
{
return fromV(_mm_add_epi32(left.vi, right.vi));
}
static inline v128 addfs(const v128& left, const v128& right)
{
return fromF(_mm_add_ps(left.vf, right.vf));
}
static inline v128 addfd(const v128& left, const v128& right)
{
return fromD(_mm_add_pd(left.vd, right.vd));
}
static inline v128 sub8(const v128& left, const v128& right)
{
return fromV(_mm_sub_epi8(left.vi, right.vi));
}
static inline v128 sub16(const v128& left, const v128& right)
{
return fromV(_mm_sub_epi16(left.vi, right.vi));
}
static inline v128 sub32(const v128& left, const v128& right)
{
return fromV(_mm_sub_epi32(left.vi, right.vi));
}
static inline v128 subfs(const v128& left, const v128& right)
{
return fromF(_mm_sub_ps(left.vf, right.vf));
}
static inline v128 subfd(const v128& left, const v128& right)
{
return fromD(_mm_sub_pd(left.vd, right.vd));
}
static inline v128 maxu8(const v128& left, const v128& right)
{
return fromV(_mm_max_epu8(left.vi, right.vi));
}
static inline v128 minu8(const v128& left, const v128& right)
{
return fromV(_mm_min_epu8(left.vi, right.vi));
}
static inline v128 eq8(const v128& left, const v128& right)
{
return fromV(_mm_cmpeq_epi8(left.vi, right.vi));
}
static inline v128 eq16(const v128& left, const v128& right)
{
return fromV(_mm_cmpeq_epi16(left.vi, right.vi));
}
static inline v128 eq32(const v128& left, const v128& right)
{
return fromV(_mm_cmpeq_epi32(left.vi, right.vi));
}
bool operator ==(const v128& right) const
{
return _u64[0] == right._u64[0] && _u64[1] == right._u64[1];
}
bool operator !=(const v128& right) const
{
return _u64[0] != right._u64[0] || _u64[1] != right._u64[1];
}
bool is_any_1() const // check if any bit is 1
{
return _u64[0] || _u64[1];
}
bool is_any_0() const // check if any bit is 0
{
return ~_u64[0] || ~_u64[1];
}
// result = (~left) & (right)
static inline v128 andnot(const v128& left, const v128& right)
{
return fromV(_mm_andnot_si128(left.vi, right.vi));
}
void clear()
{
_u64[0] = 0;
_u64[1] = 0;
}
std::string to_hex() const;
std::string to_xyzw() const;
static inline v128 byteswap(const v128 val)
{
return fromV(_mm_shuffle_epi8(val.vi, _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)));
}
};
CHECK_SIZE_ALIGN(v128, 16, 16);
inline v128 operator |(const v128& left, const v128& right)
{
return v128::fromV(_mm_or_si128(left.vi, right.vi));
}
inline v128 operator &(const v128& left, const v128& right)
{
return v128::fromV(_mm_and_si128(left.vi, right.vi));
}
inline v128 operator ^(const v128& left, const v128& right)
{
return v128::fromV(_mm_xor_si128(left.vi, right.vi));
}
inline v128 operator ~(const v128& other)
{
return v128::from64(~other._u64[0], ~other._u64[1]);
}
template<typename T, std::size_t Size = sizeof(T)> struct se_storage
{
static_assert(!Size, "Bad se_storage<> type");
};
template<typename T> struct se_storage<T, 2>
{
using type = u16;
[[deprecated]] static constexpr u16 _swap(u16 src) // for reference
{
return (src >> 8) | (src << 8);
}
static inline u16 swap(u16 src)
{
#if defined(__GNUG__)
return __builtin_bswap16(src);
#else
return _byteswap_ushort(src);
#endif
}
static inline u16 to(const T& src)
{
return swap(reinterpret_cast<const u16&>(src));
}
static inline T from(u16 src)
{
const u16 result = swap(src);
return reinterpret_cast<const T&>(result);
}
};
template<typename T> struct se_storage<T, 4>
{
using type = u32;
[[deprecated]] static constexpr u32 _swap(u32 src) // for reference
{
return (src >> 24) | (src << 24) | ((src >> 8) & 0x0000ff00) | ((src << 8) & 0x00ff0000);
}
static inline u32 swap(u32 src)
{
#if defined(__GNUG__)
return __builtin_bswap32(src);
#else
return _byteswap_ulong(src);
#endif
}
static inline u32 to(const T& src)
{
return swap(reinterpret_cast<const u32&>(src));
}
static inline T from(u32 src)
{
const u32 result = swap(src);
return reinterpret_cast<const T&>(result);
}
};
template<typename T> struct se_storage<T, 8>
{
using type = u64;
[[deprecated]] static constexpr u64 _swap(u64 src) // for reference
{
return (src >> 56) | (src << 56) |
((src >> 40) & 0x000000000000ff00) |
((src >> 24) & 0x0000000000ff0000) |
((src >> 8) & 0x00000000ff000000) |
((src << 8) & 0x000000ff00000000) |
((src << 24) & 0x0000ff0000000000) |
((src << 40) & 0x00ff000000000000);
}
static inline u64 swap(u64 src)
{
#if defined(__GNUG__)
return __builtin_bswap64(src);
#else
return _byteswap_uint64(src);
#endif
}
static inline u64 to(const T& src)
{
return swap(reinterpret_cast<const u64&>(src));
}
static inline T from(u64 src)
{
const u64 result = swap(src);
return reinterpret_cast<const T&>(result);
}
};
template<typename T> struct se_storage<T, 16>
{
using type = v128;
static inline v128 to(const T& src)
{
return v128::byteswap(reinterpret_cast<const v128&>(src));
}
static inline T from(const v128& src)
{
const v128 result = v128::byteswap(src);
return reinterpret_cast<const T&>(result);
}
};
template<typename T> using se_storage_t = typename se_storage<T>::type;
template<typename T1, typename T2> struct se_convert
{
using type_from = std::remove_cv_t<T1>;
using type_to = std::remove_cv_t<T2>;
using stype_from = se_storage_t<std::remove_cv_t<T1>>;
using stype_to = se_storage_t<std::remove_cv_t<T2>>;
using storage_from = se_storage<std::remove_cv_t<T1>>;
using storage_to = se_storage<std::remove_cv_t<T2>>;
static inline std::enable_if_t<std::is_same<type_from, type_to>::value, stype_to> convert(const stype_from& data)
{
return data;
}
static inline stype_to convert(const stype_from& data, ...)
{
return storage_to::to(storage_from::from(data));
}
};
static struct se_raw_tag_t {} constexpr se_raw{};
template<typename T, bool Se = true> class se_t;
// se_t with switched endianness
template<typename T> class se_t<T, true>
{
using type = typename std::remove_cv<T>::type;
using stype = se_storage_t<type>;
using storage = se_storage<type>;
stype m_data;
static_assert(!std::is_union<type>::value && !std::is_class<type>::value || std::is_same<type, v128>::value || std::is_same<type, u128>::value, "se_t<> error: invalid type (struct or union)");
static_assert(!std::is_pointer<type>::value, "se_t<> error: invalid type (pointer)");
static_assert(!std::is_reference<type>::value, "se_t<> error: invalid type (reference)");
static_assert(!std::is_array<type>::value, "se_t<> error: invalid type (array)");
static_assert(!std::is_enum<type>::value, "se_t<> error: invalid type (enumeration), use integral type instead");
static_assert(alignof(type) == alignof(stype), "se_t<> error: unexpected alignment");
template<typename T2, typename = void> struct bool_converter
{
static inline bool to_bool(const se_t<T2>& value)
{
return static_cast<bool>(value.value());
}
};
template<typename T2> struct bool_converter<T2, std::enable_if_t<std::is_integral<T2>::value>>
{
static inline bool to_bool(const se_t<T2>& value)
{
return value.m_data != 0;
}
};
public:
se_t() = default;
se_t(const se_t& right) = default;
se_t(type value)
: m_data(storage::to(value))
{
}
// construct directly from raw data (don't use)
constexpr se_t(const stype& raw_value, const se_raw_tag_t&)
: m_data(raw_value)
{
}
type value() const
{
return storage::from(m_data);
}
// access underlying raw data (don't use)
constexpr const stype& raw_data() const noexcept
{
return m_data;
}
se_t& operator =(const se_t&) = default;
se_t& operator =(type value)
{
return m_data = storage::to(value), *this;
}
operator type() const
{
return storage::from(m_data);
}
// optimization
explicit operator bool() const
{
return bool_converter<type>::to_bool(*this);
}
// optimization
template<typename T2> std::enable_if_t<IS_BINARY_COMPARABLE(T, T2), se_t&> operator &=(const se_t<T2>& right)
{
return m_data &= right.raw_data(), *this;
}
// optimization
template<typename CT> std::enable_if_t<IS_INTEGRAL(T) && std::is_convertible<CT, T>::value, se_t&> operator &=(CT right)
{
return m_data &= storage::to(right), *this;
}
// optimization
template<typename T2> std::enable_if_t<IS_BINARY_COMPARABLE(T, T2), se_t&> operator |=(const se_t<T2>& right)
{
return m_data |= right.raw_data(), *this;
}
// optimization
template<typename CT> std::enable_if_t<IS_INTEGRAL(T) && std::is_convertible<CT, T>::value, se_t&> operator |=(CT right)
{
return m_data |= storage::to(right), *this;
}
// optimization
template<typename T2> std::enable_if_t<IS_BINARY_COMPARABLE(T, T2), se_t&> operator ^=(const se_t<T2>& right)
{
return m_data ^= right.raw_data(), *this;
}
// optimization
template<typename CT> std::enable_if_t<IS_INTEGRAL(T) && std::is_convertible<CT, T>::value, se_t&> operator ^=(CT right)
{
return m_data ^= storage::to(right), *this;
}
};
// se_t with native endianness
template<typename T> class se_t<T, false>
{
using type = typename std::remove_cv<T>::type;
type m_data;
static_assert(!std::is_union<type>::value && !std::is_class<type>::value || std::is_same<type, v128>::value || std::is_same<type, u128>::value, "se_t<> error: invalid type (struct or union)");
static_assert(!std::is_pointer<type>::value, "se_t<> error: invalid type (pointer)");
static_assert(!std::is_reference<type>::value, "se_t<> error: invalid type (reference)");
static_assert(!std::is_array<type>::value, "se_t<> error: invalid type (array)");
static_assert(!std::is_enum<type>::value, "se_t<> error: invalid type (enumeration), use integral type instead");
public:
se_t() = default;
se_t(const se_t&) = default;
constexpr se_t(type value)
: m_data(value)
{
}
type value() const
{
return m_data;
}
se_t& operator =(const se_t& value) = default;
se_t& operator =(type value)
{
return m_data = value, *this;
}
operator type() const
{
return m_data;
}
template<typename CT> std::enable_if_t<IS_INTEGRAL(T) && std::is_convertible<CT, T>::value, se_t&> operator &=(const CT& right)
{
return m_data &= right, *this;
}
template<typename CT> std::enable_if_t<IS_INTEGRAL(T) && std::is_convertible<CT, T>::value, se_t&> operator |=(const CT& right)
{
return m_data |= right, *this;
}
template<typename CT> std::enable_if_t<IS_INTEGRAL(T) && std::is_convertible<CT, T>::value, se_t&> operator ^=(const CT& right)
{
return m_data ^= right, *this;
}
};
// se_t with native endianness (alias)
template<typename T> using nse_t = se_t<T, false>;
template<typename T, bool Se, typename T1> inline se_t<T, Se>& operator +=(se_t<T, Se>& left, const T1& right)
{
auto value = left.value();
return left = (value += right);
}
template<typename T, bool Se, typename T1> inline se_t<T, Se>& operator -=(se_t<T, Se>& left, const T1& right)
{
auto value = left.value();
return left = (value -= right);
}
template<typename T, bool Se, typename T1> inline se_t<T, Se>& operator *=(se_t<T, Se>& left, const T1& right)
{
auto value = left.value();
return left = (value *= right);
}
template<typename T, bool Se, typename T1> inline se_t<T, Se>& operator /=(se_t<T, Se>& left, const T1& right)
{
auto value = left.value();
return left = (value /= right);
}
template<typename T, bool Se, typename T1> inline se_t<T, Se>& operator %=(se_t<T, Se>& left, const T1& right)
{
auto value = left.value();
return left = (value %= right);
}
template<typename T, bool Se, typename T1> inline se_t<T, Se>& operator <<=(se_t<T, Se>& left, const T1& right)
{
auto value = left.value();
return left = (value <<= right);
}
template<typename T, bool Se, typename T1> inline se_t<T, Se>& operator >>=(se_t<T, Se>& left, const T1& right)
{
auto value = left.value();
return left = (value >>= right);
}
template<typename T, bool Se> inline se_t<T, Se> operator ++(se_t<T, Se>& left, int)
{
auto value = left.value();
auto result = value++;
left = value;
return result;
}
template<typename T, bool Se> inline se_t<T, Se> operator --(se_t<T, Se>& left, int)
{
auto value = left.value();
auto result = value--;
left = value;
return result;
}
template<typename T, bool Se> inline se_t<T, Se>& operator ++(se_t<T, Se>& right)
{
auto value = right.value();
return right = ++value;
}
template<typename T, bool Se> inline se_t<T, Se>& operator --(se_t<T, Se>& right)
{
auto value = right.value();
return right = --value;
}
// optimization
template<typename T1, typename T2> inline std::enable_if_t<IS_BINARY_COMPARABLE(T1, T2), bool> operator ==(const se_t<T1>& left, const se_t<T2>& right)
{
return left.raw_data() == right.raw_data();
}
// optimization
template<typename T1, typename T2> inline std::enable_if_t<IS_INTEGRAL(T1) && IS_INTEGER(T2) && sizeof(T1) >= sizeof(T2), bool> operator ==(const se_t<T1>& left, T2 right)
{
return left.raw_data() == se_storage<T1>::to(right);
}
// optimization
template<typename T1, typename T2> inline std::enable_if_t<IS_INTEGER(T1) && IS_INTEGRAL(T2) && sizeof(T1) <= sizeof(T2), bool> operator ==(T1 left, const se_t<T2>& right)
{
return se_storage<T2>::to(left) == right.raw_data();
}
// optimization
template<typename T1, typename T2> inline std::enable_if_t<IS_BINARY_COMPARABLE(T1, T2), bool> operator !=(const se_t<T1>& left, const se_t<T2>& right)
{
return left.raw_data() != right.raw_data();
}
// optimization
template<typename T1, typename T2> inline std::enable_if_t<IS_INTEGRAL(T1) && IS_INTEGER(T2) && sizeof(T1) >= sizeof(T2), bool> operator !=(const se_t<T1>& left, T2 right)
{
return left.raw_data() != se_storage<T1>::to(right);
}
// optimization
template<typename T1, typename T2> inline std::enable_if_t<IS_INTEGER(T1) && IS_INTEGRAL(T2) && sizeof(T1) <= sizeof(T2), bool> operator !=(T1 left, const se_t<T2>& right)
{
return se_storage<T2>::to(left) != right.raw_data();
}
// optimization
template<typename T1, typename T2> inline std::enable_if_t<IS_BINARY_COMPARABLE(T1, T2) && sizeof(T1) >= 4, se_t<decltype(T1() & T2())>> operator &(const se_t<T1>& left, const se_t<T2>& right)
{
return{ left.raw_data() & right.raw_data(), se_raw };
}
// optimization
template<typename T1, typename T2> inline std::enable_if_t<IS_INTEGRAL(T1) && IS_INTEGER(T2) && sizeof(T1) >= sizeof(T2) && sizeof(T1) >= 4, se_t<decltype(T1() & T2())>> operator &(const se_t<T1>& left, T2 right)
{
return{ left.raw_data() & se_storage<T1>::to(right), se_raw };
}
// optimization
template<typename T1, typename T2> inline std::enable_if_t<IS_INTEGER(T1) && IS_INTEGRAL(T2) && sizeof(T1) <= sizeof(T2) && sizeof(T2) >= 4, se_t<decltype(T1() & T2())>> operator &(T1 left, const se_t<T2>& right)
{
return{ se_storage<T2>::to(left) & right.raw_data(), se_raw };
}
// optimization
template<typename T1, typename T2> inline std::enable_if_t<IS_BINARY_COMPARABLE(T1, T2) && sizeof(T1) >= 4, se_t<decltype(T1() | T2())>> operator |(const se_t<T1>& left, const se_t<T2>& right)
{
return{ left.raw_data() | right.raw_data(), se_raw };
}
// optimization
template<typename T1, typename T2> inline std::enable_if_t<IS_INTEGRAL(T1) && IS_INTEGER(T2) && sizeof(T1) >= sizeof(T2) && sizeof(T1) >= 4, se_t<decltype(T1() | T2())>> operator |(const se_t<T1>& left, T2 right)
{
return{ left.raw_data() | se_storage<T1>::to(right), se_raw };
}
// optimization
template<typename T1, typename T2> inline std::enable_if_t<IS_INTEGER(T1) && IS_INTEGRAL(T2) && sizeof(T1) <= sizeof(T2) && sizeof(T2) >= 4, se_t<decltype(T1() | T2())>> operator |(T1 left, const se_t<T2>& right)
{
return{ se_storage<T2>::to(left) | right.raw_data(), se_raw };
}
// optimization
template<typename T1, typename T2> inline std::enable_if_t<IS_BINARY_COMPARABLE(T1, T2) && sizeof(T1) >= 4, se_t<decltype(T1() ^ T2())>> operator ^(const se_t<T1>& left, const se_t<T2>& right)
{
return{ left.raw_data() ^ right.raw_data(), se_raw };
}
// optimization
template<typename T1, typename T2> inline std::enable_if_t<IS_INTEGRAL(T1) && IS_INTEGER(T2) && sizeof(T1) >= sizeof(T2) && sizeof(T1) >= 4, se_t<decltype(T1() ^ T2())>> operator ^(const se_t<T1>& left, T2 right)
{
return{ left.raw_data() ^ se_storage<T1>::to(right), se_raw };
}
// optimization
template<typename T1, typename T2> inline std::enable_if_t<IS_INTEGER(T1) && IS_INTEGRAL(T2) && sizeof(T1) <= sizeof(T2) && sizeof(T2) >= 4, se_t<decltype(T1() ^ T2())>> operator ^(T1 left, const se_t<T2>& right)
{
return{ se_storage<T2>::to(left) ^ right.raw_data(), se_raw };
}
// optimization
template<typename T> inline std::enable_if_t<IS_INTEGRAL(T) && sizeof(T) >= 4, se_t<decltype(~T())>> operator ~(const se_t<T>& right)
{
return{ ~right.raw_data(), se_raw };
}
#ifdef IS_LE_MACHINE
template<typename T> using be_t = se_t<T, true>;
template<typename T> using le_t = se_t<T, false>;
#else
template<typename T> using be_t = se_t<T, false>;
template<typename T> using le_t = se_t<T, true>;
#endif
template<typename T, bool Se, typename = void> struct to_se
{
using type = typename std::conditional<std::is_arithmetic<T>::value || std::is_enum<T>::value, se_t<T, Se>, T>::type;
};
template<typename T, bool Se> struct to_se<const T, Se, std::enable_if_t<!std::is_array<T>::value>> // move const qualifier
{
using type = const typename to_se<T, Se>::type;
};
template<typename T, bool Se> struct to_se<volatile T, Se, std::enable_if_t<!std::is_array<T>::value && !std::is_const<T>::value>> // move volatile qualifier
{
using type = volatile typename to_se<T, Se>::type;
};
template<typename T, bool Se> struct to_se<T[], Se>
{
using type = typename to_se<T, Se>::type[];
};
template<typename T, bool Se, std::size_t N> struct to_se<T[N], Se>
{
using type = typename to_se<T, Se>::type[N];
};
template<bool Se> struct to_se<u128, Se> { using type = se_t<u128, Se>; };
template<bool Se> struct to_se<v128, Se> { using type = se_t<v128, Se>; };
template<bool Se> struct to_se<bool, Se> { using type = bool; };
template<bool Se> struct to_se<char, Se> { using type = char; };
template<bool Se> struct to_se<u8, Se> { using type = u8; };
template<bool Se> struct to_se<s8, Se> { using type = s8; };
#ifdef IS_LE_MACHINE
template<typename T> using to_be_t = typename to_se<T, true>::type;
template<typename T> using to_le_t = typename to_se<T, false>::type;
#else
template<typename T> using to_be_t = typename to_se<T, false>::type;
template<typename T> using to_le_t = typename to_se<T, true>::type;
#endif
template<typename T, typename = void> struct to_ne
{
using type = T;
};
template<typename T, bool Se> struct to_ne<se_t<T, Se>>
{
using type = typename std::remove_cv<T>::type;
};
template<typename T> struct to_ne<const T, std::enable_if_t<!std::is_array<T>::value>> // move const qualifier
{
using type = const typename to_ne<T>::type;
};
template<typename T> struct to_ne<volatile T, std::enable_if_t<!std::is_array<T>::value && !std::is_const<T>::value>> // move volatile qualifier
{
using type = volatile typename to_ne<T>::type;
};
template<typename T> struct to_ne<T[]>
{
using type = typename to_ne<T>::type[];
};
template<typename T, std::size_t N> struct to_ne<T[N]>
{
using type = typename to_ne<T>::type[N];
};
// restore native endianness for T: returns T for be_t<T> or le_t<T>, T otherwise
template<typename T> using to_ne_t = typename to_ne<T>::type;