rpcs3/Utilities/bin_patch.cpp

821 lines
22 KiB
C++

#include "bin_patch.h"
#include "File.h"
#include "Config.h"
LOG_CHANNEL(patch_log);
static const std::string patch_engine_version = "1.1";
static const std::string yml_key_enable_legacy_patches = "Enable Legacy Patches";
template <>
void fmt_class_string<YAML::NodeType::value>::format(std::string& out, u64 arg)
{
format_enum(out, arg, [](YAML::NodeType::value value)
{
switch (value)
{
case YAML::NodeType::Undefined: return "Undefined";
case YAML::NodeType::Null: return "Null";
case YAML::NodeType::Scalar: return "Scalar";
case YAML::NodeType::Sequence: return "Sequence";
case YAML::NodeType::Map: return "Map";
}
return unknown;
});
}
template <>
void fmt_class_string<patch_type>::format(std::string& out, u64 arg)
{
format_enum(out, arg, [](patch_type value)
{
switch (value)
{
case patch_type::invalid: return "invalid";
case patch_type::load: return "load";
case patch_type::byte: return "byte";
case patch_type::le16: return "le16";
case patch_type::le32: return "le32";
case patch_type::le64: return "le64";
case patch_type::bef32: return "bef32";
case patch_type::bef64: return "bef64";
case patch_type::be16: return "be16";
case patch_type::be32: return "be32";
case patch_type::be64: return "be64";
case patch_type::lef32: return "lef32";
case patch_type::lef64: return "lef64";
}
return unknown;
});
}
patch_engine::patch_engine()
{
const std::string patches_path = fs::get_config_dir() + "patches/";
if (!fs::create_path(patches_path))
{
patch_log.fatal("Failed to create path: %s (%s)", patches_path, fs::g_tls_error);
}
}
std::string patch_engine::get_patch_config_path()
{
#ifdef _WIN32
return fs::get_config_dir() + "config/patch_config.yml";
#else
return fs::get_config_dir() + "patch_config.yml";
#endif
}
static void append_log_message(std::stringstream* log_messages, const std::string& message)
{
if (log_messages)
*log_messages << message << std::endl;
};
bool patch_engine::load(patch_map& patches_map, const std::string& path, bool importing, std::stringstream* log_messages)
{
append_log_message(log_messages, fmt::format("Reading file %s", path));
// Load patch file
fs::file file{ path };
if (!file)
{
// Do nothing
return true;
}
// Interpret yaml nodes
auto [root, error] = yaml_load(file.to_string());
if (!error.empty() || !root)
{
append_log_message(log_messages, "Fatal Error: Failed to load file!");
patch_log.fatal("Failed to load patch file %s:\n%s", path, error);
return false;
}
// Load patch config to determine which patches are enabled
bool enable_legacy_patches;
patch_config_map patch_config;
if (!importing)
{
patch_config = load_config(enable_legacy_patches);
}
std::string version;
bool is_legacy_patch = false;
if (const auto version_node = root["Version"])
{
version = version_node.Scalar();
if (version != patch_engine_version)
{
append_log_message(log_messages, fmt::format("Error: Patch engine target version %s does not match file version %s", patch_engine_version, version));
patch_log.error("Patch engine target version %s does not match file version %s in %s", patch_engine_version, version, path);
return false;
}
append_log_message(log_messages, fmt::format("Patch file version: %s", version));
// We don't need the Version node in local memory anymore
root.remove("Version");
}
else if (importing)
{
append_log_message(log_messages, fmt::format("Error: Patch engine target version %s does not match file version %s", patch_engine_version, version));
patch_log.error("Patch engine version %s: No 'Version' entry found for file %s", patch_engine_version, path);
return false;
}
else
{
patch_log.warning("Patch engine version %s: Reading legacy patch file %s", patch_engine_version, path);
is_legacy_patch = true;
}
bool is_valid = true;
// Go through each main key in the file
for (auto pair : root)
{
const auto& main_key = pair.first.Scalar();
// Use old logic and yaml layout if this is a legacy patch
if (is_legacy_patch)
{
struct patch_info info{};
info.hash = main_key;
info.enabled = enable_legacy_patches;
info.is_legacy = true;
if (!read_patch_node(info, pair.second, root, log_messages))
{
is_valid = false;
}
// Find or create an entry matching the key/hash in our map
auto& container = patches_map[main_key];
container.hash = main_key;
container.is_legacy = true;
container.patch_info_map["legacy"] = info;
continue;
}
// Use new logic and yaml layout
if (const auto yml_type = pair.second.Type(); yml_type != YAML::NodeType::Map)
{
append_log_message(log_messages, fmt::format("Error: Skipping key %s: expected Map, found %s", main_key, yml_type));
patch_log.error("Skipping key %s: expected Map, found %s (file: %s)", main_key, yml_type, path);
is_valid = false;
continue;
}
// Skip Anchors
if (main_key == "Anchors")
{
continue;
}
if (const auto patches_node = pair.second["Patches"])
{
if (const auto yml_type = patches_node.Type(); yml_type != YAML::NodeType::Map)
{
append_log_message(log_messages, fmt::format("Error: Skipping Patches: expected Map, found %s (key: %s)", yml_type, main_key));
patch_log.error("Skipping Patches: expected Map, found %s (key: %s, file: %s)", yml_type, main_key, path);
is_valid = false;
continue;
}
// Find or create an entry matching the key/hash in our map
auto& container = patches_map[main_key];
container.is_legacy = false;
container.hash = main_key;
container.version = version;
// Go through each patch
for (auto patches_entry : patches_node)
{
// Each key in "Patches" is also the patch description
const std::string description = patches_entry.first.Scalar();
// Find out if this patch was enabled in the patch config
const bool enabled = patch_config[main_key][description];
// Compile patch information
if (const auto yml_type = patches_entry.second.Type(); yml_type != YAML::NodeType::Map)
{
append_log_message(log_messages, fmt::format("Error: Skipping Patch key %s: expected Map, found %s (key: %s)", description, yml_type, main_key));
patch_log.error("Skipping Patch key %s: expected Map, found %s (key: %s, file: %s)", description, yml_type, main_key, path);
is_valid = false;
continue;
}
struct patch_info info {};
info.enabled = enabled;
info.description = description;
info.hash = main_key;
info.version = version;
if (const auto title_node = patches_entry.second["Title"])
{
info.title = title_node.Scalar();
}
if (const auto serials_node = patches_entry.second["Serials"])
{
info.serials = serials_node.Scalar();
}
if (const auto author_node = patches_entry.second["Author"])
{
info.author = author_node.Scalar();
}
if (const auto patch_version_node = patches_entry.second["Version"])
{
info.patch_version = patch_version_node.Scalar();
}
if (const auto notes_node = patches_entry.second["Notes"])
{
info.notes = notes_node.Scalar();
}
if (const auto patch_node = patches_entry.second["Patch"])
{
if (!read_patch_node(info, patch_node, root, log_messages))
{
is_valid = false;
}
}
// Insert patch information
container.patch_info_map[description] = info;
}
}
}
return is_valid;
}
patch_type patch_engine::get_patch_type(YAML::Node node)
{
u64 type_val = 0;
if (!node || !node.IsScalar() || !cfg::try_to_enum_value(&type_val, &fmt_class_string<patch_type>::format, node.Scalar()))
{
return patch_type::invalid;
}
return static_cast<patch_type>(type_val);
}
bool patch_engine::add_patch_data(YAML::Node node, patch_info& info, u32 modifier, const YAML::Node& root, std::stringstream* log_messages)
{
if (!node || !node.IsSequence())
{
append_log_message(log_messages, fmt::format("Skipping invalid patch node %s. (key: %s)", info.description, info.hash));
patch_log.error("Skipping invalid patch node %s. (key: %s)", info.description, info.hash);
return false;
}
const auto type_node = node[0];
auto addr_node = node[1];
const auto value_node = node[2];
const auto type = get_patch_type(type_node);
if (type == patch_type::invalid)
{
const auto type_str = type_node && type_node.IsScalar() ? type_node.Scalar() : "";
append_log_message(log_messages, fmt::format("Skipping patch node %s: type '%s' is invalid. (key: %s)", info.description, type_str, info.hash));
patch_log.error("Skipping patch node %s: type '%s' is invalid. (key: %s)", info.description, type_str, info.hash);
return false;
}
if (type == patch_type::load)
{
// Special syntax: anchors (named sequence)
// Most legacy patches don't use the anchor syntax correctly, so try to sanitize it.
if (info.is_legacy)
{
if (const auto yml_type = addr_node.Type(); yml_type == YAML::NodeType::Scalar)
{
if (!root)
{
patch_log.fatal("Trying to parse legacy patch with invalid root."); // Sanity Check
return false;
}
const auto anchor = addr_node.Scalar();
const auto anchor_node = root[anchor];
if (anchor_node)
{
addr_node = anchor_node;
append_log_message(log_messages, fmt::format("Incorrect anchor syntax found in legacy patch: %s (key: %s)", anchor, info.hash));
patch_log.warning("Incorrect anchor syntax found in legacy patch: %s (key: %s)", anchor, info.hash);
}
else
{
append_log_message(log_messages, fmt::format("Anchor not found in legacy patch: %s (key: %s)", anchor, info.hash));
patch_log.error("Anchor not found in legacy patch: %s (key: %s)", anchor, info.hash);
return false;
}
}
}
// Check if the anchor was resolved.
if (const auto yml_type = addr_node.Type(); yml_type != YAML::NodeType::Sequence)
{
append_log_message(log_messages, fmt::format("Skipping sequence: expected Sequence, found %s (key: %s)", yml_type, info.hash));
patch_log.error("Skipping sequence: expected Sequence, found %s (key: %s)", yml_type, info.hash);
return false;
}
// Address modifier (optional)
const u32 mod = value_node.as<u32>(0);
bool is_valid = true;
for (const auto& item : addr_node)
{
if (!add_patch_data(item, info, mod, root, log_messages))
{
is_valid = false;
}
}
return is_valid;
}
struct patch_data p_data{};
p_data.type = type;
p_data.offset = addr_node.as<u32>(0) + modifier;
p_data.original_value = value_node.IsScalar() ? value_node.Scalar() : "";
// Use try/catch instead of YAML::Node::as<T>(fallback) in order to get an error message
try
{
switch (p_data.type)
{
case patch_type::bef32:
case patch_type::lef32:
case patch_type::bef64:
case patch_type::lef64:
{
p_data.value.double_value = value_node.as<f64>();
break;
}
default:
{
p_data.value.long_value = value_node.as<u64>();
break;
}
}
}
catch (const std::exception& e)
{
const std::string error_message = fmt::format("Skipping patch data entry: [ %s, 0x%.8x, %s ] (key: %s) %s",
p_data.type, p_data.offset, p_data.original_value.empty() ? "?" : p_data.original_value, info.hash, e.what());
append_log_message(log_messages, error_message);
patch_log.error("%s", error_message);
return false;
}
info.data_list.emplace_back(p_data);
return true;
}
bool patch_engine::read_patch_node(patch_info& info, YAML::Node node, const YAML::Node& root, std::stringstream* log_messages)
{
if (!node)
{
append_log_message(log_messages, fmt::format("Skipping invalid patch node %s. (key: %s)", info.description, info.hash));
patch_log.error("Skipping invalid patch node %s. (key: %s)" HERE, info.description, info.hash);
return false;
}
if (const auto yml_type = node.Type(); yml_type != YAML::NodeType::Sequence)
{
append_log_message(log_messages, fmt::format("Skipping patch node %s: expected Sequence, found %s (key: %s)", info.description, yml_type, info.hash));
patch_log.error("Skipping patch node %s: expected Sequence, found %s (key: %s)", info.description, yml_type, info.hash);
return false;
}
bool is_valid = true;
for (auto patch : node)
{
if (!add_patch_data(patch, info, 0, root, log_messages))
{
is_valid = false;
}
}
return is_valid;
}
void patch_engine::append(const std::string& patch)
{
load(m_map, patch);
}
void patch_engine::append_global_patches()
{
// Legacy patch.yml
load(m_map, fs::get_config_dir() + "patch.yml");
// New patch.yml
load(m_map, fs::get_config_dir() + "patches/patch.yml");
// Imported patch.yml
load(m_map, fs::get_config_dir() + "patches/imported_patch.yml");
}
void patch_engine::append_title_patches(const std::string& title_id)
{
if (title_id.empty())
{
return;
}
// Legacy patch.yml
load(m_map, fs::get_config_dir() + "data/" + title_id + "/patch.yml");
// New patch.yml
load(m_map, fs::get_config_dir() + "patches/" + title_id + "_patch.yml");
}
std::size_t patch_engine::apply(const std::string& name, u8* dst) const
{
return apply_patch<false>(name, dst, 0, 0);
}
std::size_t patch_engine::apply_with_ls_check(const std::string& name, u8* dst, u32 filesz, u32 ls_addr) const
{
return apply_patch<true>(name, dst, filesz, ls_addr);
}
template <bool check_local_storage>
std::size_t patch_engine::apply_patch(const std::string& name, u8* dst, u32 filesz, u32 ls_addr) const
{
if (m_map.find(name) == m_map.cend())
{
return 0;
}
size_t applied_total = 0;
const auto& container = m_map.at(name);
// Apply modifications sequentially
for (const auto& [description, patch] : container.patch_info_map)
{
if (!patch.enabled)
{
continue;
}
size_t applied = 0;
for (const auto& p : patch.data_list)
{
u32 offset = p.offset;
if constexpr (check_local_storage)
{
if (offset < ls_addr || offset >= (ls_addr + filesz))
{
// This patch is out of range for this segment
continue;
}
offset -= ls_addr;
}
auto ptr = dst + offset;
switch (p.type)
{
case patch_type::invalid:
case patch_type::load:
{
// Invalid in this context
continue;
}
case patch_type::byte:
{
*ptr = static_cast<u8>(p.value.long_value);
break;
}
case patch_type::le16:
{
*reinterpret_cast<le_t<u16, 1>*>(ptr) = static_cast<u16>(p.value.long_value);
break;
}
case patch_type::le32:
{
*reinterpret_cast<le_t<u32, 1>*>(ptr) = static_cast<u32>(p.value.long_value);
break;
}
case patch_type::lef32:
{
*reinterpret_cast<le_t<u32, 1>*>(ptr) = std::bit_cast<u32, f32>(static_cast<f32>(p.value.double_value));
break;
}
case patch_type::le64:
{
*reinterpret_cast<le_t<u64, 1>*>(ptr) = static_cast<u64>(p.value.long_value);
break;
}
case patch_type::lef64:
{
*reinterpret_cast<le_t<u64, 1>*>(ptr) = std::bit_cast<u64, f64>(p.value.double_value);
break;
}
case patch_type::be16:
{
*reinterpret_cast<be_t<u16, 1>*>(ptr) = static_cast<u16>(p.value.long_value);
break;
}
case patch_type::be32:
{
*reinterpret_cast<be_t<u32, 1>*>(ptr) = static_cast<u32>(p.value.long_value);
break;
}
case patch_type::bef32:
{
*reinterpret_cast<be_t<u32, 1>*>(ptr) = std::bit_cast<u32, f32>(static_cast<f32>(p.value.double_value));
break;
}
case patch_type::be64:
{
*reinterpret_cast<be_t<u64, 1>*>(ptr) = static_cast<u64>(p.value.long_value);
break;
}
case patch_type::bef64:
{
*reinterpret_cast<be_t<u64, 1>*>(ptr) = std::bit_cast<u64, f64>(p.value.double_value);
break;
}
}
++applied;
}
if (container.is_legacy)
{
patch_log.notice("Applied legacy patch (<- %d)", applied);
}
else
{
patch_log.notice("Applied patch (description='%s', author='%s', patch_version='%s', file_version='%s') (<- %d)", description, patch.author, patch.patch_version, patch.version, applied);
}
applied_total += applied;
}
return applied_total;
}
void patch_engine::save_config(const patch_map& patches_map, bool enable_legacy_patches)
{
const std::string path = get_patch_config_path();
patch_log.notice("Saving patch config file %s", path);
fs::file file(path, fs::rewrite);
if (!file)
{
patch_log.fatal("Failed to open patch config file %s", path);
return;
}
YAML::Emitter out;
out << YAML::BeginMap;
// Save "Enable Legacy Patches"
out << yml_key_enable_legacy_patches << enable_legacy_patches;
// Save 'enabled' state per hash and description
patch_config_map config_map;
for (const auto& [hash, container] : patches_map)
{
if (container.is_legacy)
{
continue;
}
for (const auto& [description, patch] : container.patch_info_map)
{
config_map[hash][description] = patch.enabled;
}
if (config_map[hash].size() > 0)
{
out << hash;
out << YAML::BeginMap;
for (const auto& [description, enabled] : config_map[hash])
{
out << description;
out << enabled;
}
out << YAML::EndMap;
}
}
out << YAML::EndMap;
file.write(out.c_str(), out.size());
}
static void append_patches(patch_engine::patch_map& existing_patches, const patch_engine::patch_map& new_patches)
{
for (const auto& [hash, new_container] : new_patches)
{
if (existing_patches.find(hash) == existing_patches.end())
{
existing_patches[hash] = new_container;
continue;
}
auto& container = existing_patches[hash];
for (const auto& [description, new_info] : new_container.patch_info_map)
{
if (container.patch_info_map.find(description) == container.patch_info_map.end())
{
container.patch_info_map[description] = new_info;
continue;
}
auto& info = container.patch_info_map[description];
const auto version_is_bigger = [](const std::string& v0, const std::string& v1, const std::string& hash, const std::string& description)
{
std::add_pointer_t<char> ev0, ev1;
const double ver0 = std::strtod(v0.c_str(), &ev0);
const double ver1 = std::strtod(v1.c_str(), &ev1);
if (v0.c_str() + v0.size() == ev0 && v1.c_str() + v1.size() == ev1)
{
return ver0 > ver1;
}
patch_log.error("Failed to compare patch versions ('%s' vs '%s') for %s: %s", v0, v1, hash, description);
return false;
};
if (!version_is_bigger(new_info.patch_version, info.patch_version, hash, description))
{
continue;
}
if (!new_info.patch_version.empty()) info.patch_version = new_info.patch_version;
if (!new_info.title.empty()) info.title = new_info.title;
if (!new_info.serials.empty()) info.serials = new_info.serials;
if (!new_info.author.empty()) info.author = new_info.author;
if (!new_info.notes.empty()) info.notes = new_info.notes;
if (!new_info.data_list.empty()) info.data_list = new_info.data_list;
}
}
}
bool patch_engine::save_patches(const patch_map& patches, const std::string& path)
{
fs::file file(path, fs::rewrite);
if (!file)
{
patch_log.fatal("save_patches: Failed to open patch file %s", path);
return false;
}
YAML::Emitter out;
out << YAML::BeginMap;
out << "Version" << patch_engine_version;
for (const auto& [hash, container] : patches)
{
out << YAML::Newline << YAML::Newline;
out << hash << YAML::BeginMap;
out << "Patches" << YAML::BeginMap;
for (auto [description, info] : container.patch_info_map)
{
out << description;
out << YAML::BeginMap;
if (!info.title.empty()) out << "Title" << info.title;
if (!info.serials.empty()) out << "Serials" << info.serials;
if (!info.author.empty()) out << "Author" << info.author;
if (!info.patch_version.empty()) out << "Version" << info.patch_version;
if (!info.notes.empty()) out << "Notes" << info.notes;
out << "Patch";
out << YAML::BeginSeq;
for (const auto& data : info.data_list)
{
if (data.type == patch_type::invalid || data.type == patch_type::load)
{
// Unreachable with current logic
continue;
}
out << YAML::Flow;
out << YAML::BeginSeq;
out << fmt::format("%s", data.type);
out << fmt::format("0x%.8x", data.offset);
out << data.original_value;
out << YAML::EndSeq;
}
out << YAML::EndSeq;
out << YAML::EndMap;
}
out << YAML::EndMap;
out << YAML::EndMap;
}
out << YAML::EndMap;
file.write(out.c_str(), out.size());
return true;
}
bool patch_engine::import_patches(const patch_engine::patch_map& patches, const std::string& path)
{
patch_engine::patch_map existing_patches;
if (load(existing_patches, path, true))
{
append_patches(existing_patches, patches);
return save_patches(existing_patches, path);
}
return false;
}
patch_engine::patch_config_map patch_engine::load_config(bool& enable_legacy_patches)
{
enable_legacy_patches = true; // Default to true
patch_config_map config_map;
const std::string path = get_patch_config_path();
patch_log.notice("Loading patch config file %s", path);
if (fs::file f{ path })
{
auto [root, error] = yaml_load(f.to_string());
if (!error.empty())
{
patch_log.fatal("Failed to load patch config file %s:\n%s", path, error);
return config_map;
}
// Try to load "Enable Legacy Patches" (default to true)
if (auto enable_legacy_node = root[yml_key_enable_legacy_patches])
{
enable_legacy_patches = enable_legacy_node.as<bool>(true);
root.remove(yml_key_enable_legacy_patches); // Remove the node in order to skip it in the next part
}
for (auto pair : root)
{
auto& hash = pair.first.Scalar();
auto& data = config_map[hash];
if (const auto yml_type = pair.second.Type(); yml_type != YAML::NodeType::Map)
{
patch_log.error("Error loading patch config key %s: expected Map, found %s (file: %s)", hash, yml_type, path);
continue;
}
for (auto patch : pair.second)
{
const auto description = patch.first.Scalar();
const auto enabled = patch.second.as<bool>(false);
data[description] = enabled;
}
}
}
return config_map;
}