rpcs3/rpcs3/Crypto/unself.cpp

1353 lines
33 KiB
C++

#include "stdafx.h"
#include "Utilities/Log.h"
#include "Utilities/File.h"
#include "aes.h"
#include "sha1.h"
#include "utils.h"
#include "Emu/FS/vfsLocalFile.h"
#include "unself.h"
#pragma warning(push)
#pragma message("TODO: remove wx dependencies: <wx/mstream.h> <wx/zstream.h>")
#pragma warning(disable : 4996)
#include <wx/mstream.h>
#include <wx/zstream.h>
#pragma warning(pop)
force_inline u8 Read8(vfsStream& f)
{
u8 ret;
f.Read(&ret, sizeof(ret));
return ret;
}
force_inline u16 Read16(vfsStream& f)
{
be_t<u16> ret;
f.Read(&ret, sizeof(ret));
return ret;
}
force_inline u32 Read32(vfsStream& f)
{
be_t<u32> ret;
f.Read(&ret, sizeof(ret));
return ret;
}
force_inline u64 Read64(vfsStream& f)
{
be_t<u64> ret;
f.Read(&ret, sizeof(ret));
return ret;
}
force_inline u16 Read16LE(vfsStream& f)
{
u16 ret;
f.Read(&ret, sizeof(ret));
return ret;
}
force_inline u32 Read32LE(vfsStream& f)
{
u32 ret;
f.Read(&ret, sizeof(ret));
return ret;
}
force_inline u64 Read64LE(vfsStream& f)
{
u64 ret;
f.Read(&ret, sizeof(ret));
return ret;
}
force_inline void Write8(vfsStream& f, const u8 data)
{
f.Write(&data, sizeof(data));
}
force_inline void Write8(const fs::file& f, const u8 data)
{
f.write(&data, sizeof(data));
}
force_inline void Write16LE(vfsStream& f, const u16 data)
{
f.Write(&data, sizeof(data));
}
force_inline void Write16LE(const fs::file& f, const u16 data)
{
f.write(&data, sizeof(data));
}
force_inline void Write32LE(vfsStream& f, const u32 data)
{
f.Write(&data, sizeof(data));
}
force_inline void Write32LE(const fs::file& f, const u32 data)
{
f.write(&data, sizeof(data));
}
force_inline void Write64LE(vfsStream& f, const u64 data)
{
f.Write(&data, sizeof(data));
}
force_inline void Write64LE(const fs::file& f, const u64 data)
{
f.write(&data, sizeof(data));
}
force_inline void Write16(vfsStream& f, const be_t<u16> data)
{
f.Write(&data, sizeof(data));
}
force_inline void Write16(const fs::file& f, const be_t<u16> data)
{
f.write(&data, sizeof(data));
}
force_inline void Write32(vfsStream& f, const be_t<u32> data)
{
f.Write(&data, sizeof(data));
}
force_inline void Write32(const fs::file& f, const be_t<u32> data)
{
f.write(&data, sizeof(data));
}
force_inline void Write64(vfsStream& f, const be_t<u64> data)
{
f.Write(&data, sizeof(data));
}
force_inline void Write64(const fs::file& f, const be_t<u64> data)
{
f.write(&data, sizeof(data));
}
void WriteEhdr(const fs::file& f, Elf64_Ehdr& ehdr)
{
Write32(f, ehdr.e_magic);
Write8(f, ehdr.e_class);
Write8(f, ehdr.e_data);
Write8(f, ehdr.e_curver);
Write8(f, ehdr.e_os_abi);
Write64(f, ehdr.e_abi_ver);
Write16(f, ehdr.e_type);
Write16(f, ehdr.e_machine);
Write32(f, ehdr.e_version);
Write64(f, ehdr.e_entry);
Write64(f, ehdr.e_phoff);
Write64(f, ehdr.e_shoff);
Write32(f, ehdr.e_flags);
Write16(f, ehdr.e_ehsize);
Write16(f, ehdr.e_phentsize);
Write16(f, ehdr.e_phnum);
Write16(f, ehdr.e_shentsize);
Write16(f, ehdr.e_shnum);
Write16(f, ehdr.e_shstrndx);
}
void WritePhdr(const fs::file& f, Elf64_Phdr& phdr)
{
Write32(f, phdr.p_type);
Write32(f, phdr.p_flags);
Write64(f, phdr.p_offset);
Write64(f, phdr.p_vaddr);
Write64(f, phdr.p_paddr);
Write64(f, phdr.p_filesz);
Write64(f, phdr.p_memsz);
Write64(f, phdr.p_align);
}
void WriteShdr(const fs::file& f, Elf64_Shdr& shdr)
{
Write32(f, shdr.sh_name);
Write32(f, shdr.sh_type);
Write64(f, shdr.sh_flags);
Write64(f, shdr.sh_addr);
Write64(f, shdr.sh_offset);
Write64(f, shdr.sh_size);
Write32(f, shdr.sh_link);
Write32(f, shdr.sh_info);
Write64(f, shdr.sh_addralign);
Write64(f, shdr.sh_entsize);
}
void WriteEhdr(const fs::file& f, Elf32_Ehdr& ehdr)
{
Write32(f, ehdr.e_magic);
Write8(f, ehdr.e_class);
Write8(f, ehdr.e_data);
Write8(f, ehdr.e_curver);
Write8(f, ehdr.e_os_abi);
Write64(f, ehdr.e_abi_ver);
Write16(f, ehdr.e_type);
Write16(f, ehdr.e_machine);
Write32(f, ehdr.e_version);
Write32(f, ehdr.e_entry);
Write32(f, ehdr.e_phoff);
Write32(f, ehdr.e_shoff);
Write32(f, ehdr.e_flags);
Write16(f, ehdr.e_ehsize);
Write16(f, ehdr.e_phentsize);
Write16(f, ehdr.e_phnum);
Write16(f, ehdr.e_shentsize);
Write16(f, ehdr.e_shnum);
Write16(f, ehdr.e_shstrndx);
}
void WritePhdr(const fs::file& f, Elf32_Phdr& phdr)
{
Write32(f, phdr.p_type);
Write32(f, phdr.p_offset);
Write32(f, phdr.p_vaddr);
Write32(f, phdr.p_paddr);
Write32(f, phdr.p_filesz);
Write32(f, phdr.p_memsz);
Write32(f, phdr.p_flags);
Write32(f, phdr.p_align);
}
void WriteShdr(const fs::file& f, Elf32_Shdr& shdr)
{
Write32(f, shdr.sh_name);
Write32(f, shdr.sh_type);
Write32(f, shdr.sh_flags);
Write32(f, shdr.sh_addr);
Write32(f, shdr.sh_offset);
Write32(f, shdr.sh_size);
Write32(f, shdr.sh_link);
Write32(f, shdr.sh_info);
Write32(f, shdr.sh_addralign);
Write32(f, shdr.sh_entsize);
}
void AppInfo::Load(vfsStream& f)
{
authid = Read64(f);
vendor_id = Read32(f);
self_type = Read32(f);
version = Read64(f);
padding = Read64(f);
}
void AppInfo::Show()
{
LOG_NOTICE(LOADER, "AuthID: 0x%llx", authid);
LOG_NOTICE(LOADER, "VendorID: 0x%08x", vendor_id);
LOG_NOTICE(LOADER, "SELF type: 0x%08x", self_type);
LOG_NOTICE(LOADER, "Version: 0x%llx", version);
}
void SectionInfo::Load(vfsStream& f)
{
offset = Read64(f);
size = Read64(f);
compressed = Read32(f);
unknown1 = Read32(f);
unknown2 = Read32(f);
encrypted = Read32(f);
}
void SectionInfo::Show()
{
LOG_NOTICE(LOADER, "Offset: 0x%llx", offset);
LOG_NOTICE(LOADER, "Size: 0x%llx", size);
LOG_NOTICE(LOADER, "Compressed: 0x%08x", compressed);
LOG_NOTICE(LOADER, "Unknown1: 0x%08x", unknown1);
LOG_NOTICE(LOADER, "Unknown2: 0x%08x", unknown2);
LOG_NOTICE(LOADER, "Encrypted: 0x%08x", encrypted);
}
void SCEVersionInfo::Load(vfsStream& f)
{
subheader_type = Read32(f);
present = Read32(f);
size = Read32(f);
unknown = Read32(f);
}
void SCEVersionInfo::Show()
{
LOG_NOTICE(LOADER, "Sub-header type: 0x%08x", subheader_type);
LOG_NOTICE(LOADER, "Present: 0x%08x", present);
LOG_NOTICE(LOADER, "Size: 0x%08x", size);
LOG_NOTICE(LOADER, "Unknown: 0x%08x", unknown);
}
void ControlInfo::Load(vfsStream& f)
{
type = Read32(f);
size = Read32(f);
next = Read64(f);
if (type == 1)
{
control_flags.ctrl_flag1 = Read32(f);
control_flags.unknown1 = Read32(f);
control_flags.unknown2 = Read32(f);
control_flags.unknown3 = Read32(f);
control_flags.unknown4 = Read32(f);
control_flags.unknown5 = Read32(f);
control_flags.unknown6 = Read32(f);
control_flags.unknown7 = Read32(f);
}
else if (type == 2)
{
if (size == 0x30)
{
f.Read(file_digest_30.digest, 20);
file_digest_30.unknown = Read64(f);
}
else if (size == 0x40)
{
f.Read(file_digest_40.digest1, 20);
f.Read(file_digest_40.digest2, 20);
file_digest_40.unknown = Read64(f);
}
}
else if (type == 3)
{
npdrm.magic = Read32(f);
npdrm.unknown1 = Read32(f);
npdrm.license = Read32(f);
npdrm.type = Read32(f);
f.Read(npdrm.content_id, 48);
f.Read(npdrm.digest, 16);
f.Read(npdrm.invdigest, 16);
f.Read(npdrm.xordigest, 16);
npdrm.unknown2 = Read64(f);
npdrm.unknown3 = Read64(f);
}
}
void ControlInfo::Show()
{
LOG_NOTICE(LOADER, "Type: 0x%08x", type);
LOG_NOTICE(LOADER, "Size: 0x%08x", size);
LOG_NOTICE(LOADER, "Next: 0x%llx", next);
if (type == 1)
{
LOG_NOTICE(LOADER, "Control flag 1: 0x%08x", control_flags.ctrl_flag1);
LOG_NOTICE(LOADER, "Unknown1: 0x%08x", control_flags.unknown1);
LOG_NOTICE(LOADER, "Unknown2: 0x%08x", control_flags.unknown2);
LOG_NOTICE(LOADER, "Unknown3: 0x%08x", control_flags.unknown3);
LOG_NOTICE(LOADER, "Unknown4: 0x%08x", control_flags.unknown4);
LOG_NOTICE(LOADER, "Unknown5: 0x%08x", control_flags.unknown5);
LOG_NOTICE(LOADER, "Unknown6: 0x%08x", control_flags.unknown6);
LOG_NOTICE(LOADER, "Unknown7: 0x%08x", control_flags.unknown7);
}
else if (type == 2)
{
if (size == 0x30)
{
std::string digest_str;
for (int i = 0; i < 20; i++)
digest_str += fmt::format("%02x", file_digest_30.digest[i]);
LOG_NOTICE(LOADER, "Digest: %s", digest_str.c_str());
LOG_NOTICE(LOADER, "Unknown: 0x%llx", file_digest_30.unknown);
}
else if (size == 0x40)
{
std::string digest_str1;
std::string digest_str2;
for (int i = 0; i < 20; i++)
{
digest_str1 += fmt::format("%02x", file_digest_40.digest1[i]);
digest_str2 += fmt::format("%02x", file_digest_40.digest2[i]);
}
LOG_NOTICE(LOADER, "Digest1: %s", digest_str1.c_str());
LOG_NOTICE(LOADER, "Digest2: %s", digest_str2.c_str());
LOG_NOTICE(LOADER, "Unknown: 0x%llx", file_digest_40.unknown);
}
}
else if (type == 3)
{
std::string contentid_str;
std::string digest_str;
std::string invdigest_str;
std::string xordigest_str;
for (int i = 0; i < 48; i++)
contentid_str += fmt::format("%02x", npdrm.content_id[i]);
for (int i = 0; i < 16; i++)
{
digest_str += fmt::format("%02x", npdrm.digest[i]);
invdigest_str += fmt::format("%02x", npdrm.invdigest[i]);
xordigest_str += fmt::format("%02x", npdrm.xordigest[i]);
}
LOG_NOTICE(LOADER, "Magic: 0x%08x", npdrm.magic);
LOG_NOTICE(LOADER, "Unknown1: 0x%08x", npdrm.unknown1);
LOG_NOTICE(LOADER, "License: 0x%08x", npdrm.license);
LOG_NOTICE(LOADER, "Type: 0x%08x", npdrm.type);
LOG_NOTICE(LOADER, "ContentID: %s", contentid_str.c_str());
LOG_NOTICE(LOADER, "Digest: %s", digest_str.c_str());
LOG_NOTICE(LOADER, "Inverse digest: %s", invdigest_str.c_str());
LOG_NOTICE(LOADER, "XOR digest: %s", xordigest_str.c_str());
LOG_NOTICE(LOADER, "Unknown2: 0x%llx", npdrm.unknown2);
LOG_NOTICE(LOADER, "Unknown3: 0x%llx", npdrm.unknown3);
}
}
void MetadataInfo::Load(u8* in)
{
memcpy(key, in, 0x10);
memcpy(key_pad, in + 0x10, 0x10);
memcpy(iv, in + 0x20, 0x10);
memcpy(iv_pad, in + 0x30, 0x10);
}
void MetadataInfo::Show()
{
std::string key_str;
std::string key_pad_str;
std::string iv_str;
std::string iv_pad_str;
for (int i = 0; i < 0x10; i++)
{
key_str += fmt::format("%02x", key[i]);
key_pad_str += fmt::format("%02x", key_pad[i]);
iv_str += fmt::format("%02x", iv[i]);
iv_pad_str += fmt::format("%02x", iv_pad[i]);
}
LOG_NOTICE(LOADER, "Key: %s", key_str.c_str());
LOG_NOTICE(LOADER, "Key pad: %s", key_pad_str.c_str());
LOG_NOTICE(LOADER, "IV: %s", iv_str.c_str());
LOG_NOTICE(LOADER, "IV pad: %s", iv_pad_str.c_str());
}
void MetadataHeader::Load(u8* in)
{
memcpy(&signature_input_length, in, 8);
memcpy(&unknown1, in + 8, 4);
memcpy(&section_count, in + 12, 4);
memcpy(&key_count, in + 16, 4);
memcpy(&opt_header_size, in + 20, 4);
memcpy(&unknown2, in + 24, 4);
memcpy(&unknown3, in + 28, 4);
// Endian swap.
signature_input_length = swap64(signature_input_length);
unknown1 = swap32(unknown1);
section_count = swap32(section_count);
key_count = swap32(key_count);
opt_header_size = swap32(opt_header_size);
unknown2 = swap32(unknown2);
unknown3 = swap32(unknown3);
}
void MetadataHeader::Show()
{
LOG_NOTICE(LOADER, "Signature input length: 0x%llx", signature_input_length);
LOG_NOTICE(LOADER, "Unknown1: 0x%08x", unknown1);
LOG_NOTICE(LOADER, "Section count: 0x%08x", section_count);
LOG_NOTICE(LOADER, "Key count: 0x%08x", key_count);
LOG_NOTICE(LOADER, "Optional header size: 0x%08x", opt_header_size);
LOG_NOTICE(LOADER, "Unknown2: 0x%08x", unknown2);
LOG_NOTICE(LOADER, "Unknown3: 0x%08x", unknown3);
}
void MetadataSectionHeader::Load(u8* in)
{
memcpy(&data_offset, in, 8);
memcpy(&data_size, in + 8, 8);
memcpy(&type, in + 16, 4);
memcpy(&program_idx, in + 20, 4);
memcpy(&hashed, in + 24, 4);
memcpy(&sha1_idx, in + 28, 4);
memcpy(&encrypted, in + 32, 4);
memcpy(&key_idx, in + 36, 4);
memcpy(&iv_idx, in + 40, 4);
memcpy(&compressed, in + 44, 4);
// Endian swap.
data_offset = swap64(data_offset);
data_size = swap64(data_size);
type = swap32(type);
program_idx = swap32(program_idx);
hashed = swap32(hashed);
sha1_idx = swap32(sha1_idx);
encrypted = swap32(encrypted);
key_idx = swap32(key_idx);
iv_idx = swap32(iv_idx);
compressed = swap32(compressed);
}
void MetadataSectionHeader::Show()
{
LOG_NOTICE(LOADER, "Data offset: 0x%llx", data_offset);
LOG_NOTICE(LOADER, "Data size: 0x%llx", data_size);
LOG_NOTICE(LOADER, "Type: 0x%08x", type);
LOG_NOTICE(LOADER, "Program index: 0x%08x", program_idx);
LOG_NOTICE(LOADER, "Hashed: 0x%08x", hashed);
LOG_NOTICE(LOADER, "SHA1 index: 0x%08x", sha1_idx);
LOG_NOTICE(LOADER, "Encrypted: 0x%08x", encrypted);
LOG_NOTICE(LOADER, "Key index: 0x%08x", key_idx);
LOG_NOTICE(LOADER, "IV index: 0x%08x", iv_idx);
LOG_NOTICE(LOADER, "Compressed: 0x%08x", compressed);
}
void SectionHash::Load(vfsStream& f)
{
f.Read(sha1, 20);
f.Read(padding, 12);
f.Read(hmac_key, 64);
}
void CapabilitiesInfo::Load(vfsStream& f)
{
type = Read32(f);
capabilities_size = Read32(f);
next = Read32(f);
unknown1 = Read32(f);
unknown2 = Read64(f);
unknown3 = Read64(f);
flags = Read64(f);
unknown4 = Read32(f);
unknown5 = Read32(f);
}
void Signature::Load(vfsStream& f)
{
f.Read(r, 21);
f.Read(s, 21);
f.Read(padding, 6);
}
void SelfSection::Load(vfsStream& f)
{
*data = Read32(f);
size = Read64(f);
offset = Read64(f);
}
void Elf32_Ehdr::Load(vfsStream& f)
{
e_magic = Read32(f);
e_class = Read8(f);
e_data = Read8(f);
e_curver = Read8(f);
e_os_abi = Read8(f);
if (IsLittleEndian())
{
e_abi_ver = Read64LE(f);
e_type = Read16LE(f);
e_machine = Read16LE(f);
e_version = Read32LE(f);
e_entry = Read32LE(f);
e_phoff = Read32LE(f);
e_shoff = Read32LE(f);
e_flags = Read32LE(f);
e_ehsize = Read16LE(f);
e_phentsize = Read16LE(f);
e_phnum = Read16LE(f);
e_shentsize = Read16LE(f);
e_shnum = Read16LE(f);
e_shstrndx = Read16LE(f);
}
else
{
e_abi_ver = Read64(f);
e_type = Read16(f);
e_machine = Read16(f);
e_version = Read32(f);
e_entry = Read32(f);
e_phoff = Read32(f);
e_shoff = Read32(f);
e_flags = Read32(f);
e_ehsize = Read16(f);
e_phentsize = Read16(f);
e_phnum = Read16(f);
e_shentsize = Read16(f);
e_shnum = Read16(f);
e_shstrndx = Read16(f);
}
}
void Elf32_Shdr::Load(vfsStream& f)
{
sh_name = Read32(f);
sh_type = Read32(f);
sh_flags = Read32(f);
sh_addr = Read32(f);
sh_offset = Read32(f);
sh_size = Read32(f);
sh_link = Read32(f);
sh_info = Read32(f);
sh_addralign = Read32(f);
sh_entsize = Read32(f);
}
void Elf32_Shdr::LoadLE(vfsStream& f)
{
f.Read(this, sizeof(*this));
}
void Elf32_Phdr::Load(vfsStream& f)
{
p_type = Read32(f);
p_offset = Read32(f);
p_vaddr = Read32(f);
p_paddr = Read32(f);
p_filesz = Read32(f);
p_memsz = Read32(f);
p_flags = Read32(f);
p_align = Read32(f);
}
void Elf32_Phdr::LoadLE(vfsStream& f)
{
f.Read(this, sizeof(*this));
}
void Elf64_Ehdr::Load(vfsStream& f)
{
e_magic = Read32(f);
e_class = Read8(f);
e_data = Read8(f);
e_curver = Read8(f);
e_os_abi = Read8(f);
e_abi_ver = Read64(f);
e_type = Read16(f);
e_machine = Read16(f);
e_version = Read32(f);
e_entry = Read64(f);
e_phoff = Read64(f);
e_shoff = Read64(f);
e_flags = Read32(f);
e_ehsize = Read16(f);
e_phentsize = Read16(f);
e_phnum = Read16(f);
e_shentsize = Read16(f);
e_shnum = Read16(f);
e_shstrndx = Read16(f);
}
void Elf64_Shdr::Load(vfsStream& f)
{
sh_name = Read32(f);
sh_type = Read32(f);
sh_flags = Read64(f);
sh_addr = Read64(f);
sh_offset = Read64(f);
sh_size = Read64(f);
sh_link = Read32(f);
sh_info = Read32(f);
sh_addralign = Read64(f);
sh_entsize = Read64(f);
}
void Elf64_Phdr::Load(vfsStream& f)
{
p_type = Read32(f);
p_flags = Read32(f);
p_offset = Read64(f);
p_vaddr = Read64(f);
p_paddr = Read64(f);
p_filesz = Read64(f);
p_memsz = Read64(f);
p_align = Read64(f);
}
void SceHeader::Load(vfsStream& f)
{
se_magic = Read32(f);
se_hver = Read32(f);
se_flags = Read16(f);
se_type = Read16(f);
se_meta = Read32(f);
se_hsize = Read64(f);
se_esize = Read64(f);
}
void SelfHeader::Load(vfsStream& f)
{
se_htype = Read64(f);
se_appinfooff = Read64(f);
se_elfoff = Read64(f);
se_phdroff = Read64(f);
se_shdroff = Read64(f);
se_secinfoff = Read64(f);
se_sceveroff = Read64(f);
se_controloff = Read64(f);
se_controlsize = Read64(f);
pad = Read64(f);
}
SELFDecrypter::SELFDecrypter(vfsStream& s)
: self_f(s)
, key_v()
, data_buf_length(0)
{
}
bool SELFDecrypter::LoadHeaders(bool isElf32)
{
// Read SCE header.
self_f.Seek(0);
sce_hdr.Load(self_f);
// Check SCE magic.
if (!sce_hdr.CheckMagic())
{
LOG_ERROR(LOADER, "SELF: Not a SELF file!");
return false;
}
// Read SELF header.
self_hdr.Load(self_f);
// Read the APP INFO.
self_f.Seek(self_hdr.se_appinfooff);
app_info.Load(self_f);
// Read ELF header.
self_f.Seek(self_hdr.se_elfoff);
if (isElf32)
elf32_hdr.Load(self_f);
else
elf64_hdr.Load(self_f);
// Read ELF program headers.
if (isElf32)
{
phdr32_arr.clear();
if(elf32_hdr.e_phoff == 0 && elf32_hdr.e_phnum)
{
LOG_ERROR(LOADER, "SELF: ELF program header offset is null!");
return false;
}
self_f.Seek(self_hdr.se_phdroff);
for(u32 i = 0; i < elf32_hdr.e_phnum; ++i)
{
phdr32_arr.emplace_back();
phdr32_arr.back().Load(self_f);
}
}
else
{
phdr64_arr.clear();
if(elf64_hdr.e_phoff == 0 && elf64_hdr.e_phnum)
{
LOG_ERROR(LOADER, "SELF: ELF program header offset is null!");
return false;
}
self_f.Seek(self_hdr.se_phdroff);
for(u32 i = 0; i < elf64_hdr.e_phnum; ++i)
{
phdr64_arr.emplace_back();
phdr64_arr.back().Load(self_f);
}
}
// Read section info.
secinfo_arr.clear();
self_f.Seek(self_hdr.se_secinfoff);
for(u32 i = 0; i < ((isElf32) ? elf32_hdr.e_phnum : elf64_hdr.e_phnum); ++i)
{
secinfo_arr.emplace_back();
secinfo_arr.back().Load(self_f);
}
// Read SCE version info.
self_f.Seek(self_hdr.se_sceveroff);
scev_info.Load(self_f);
// Read control info.
ctrlinfo_arr.clear();
self_f.Seek(self_hdr.se_controloff);
u32 i = 0;
while(i < self_hdr.se_controlsize)
{
ctrlinfo_arr.emplace_back();
ControlInfo &cinfo = ctrlinfo_arr.back();
cinfo.Load(self_f);
i += cinfo.size;
}
// Read ELF section headers.
if (isElf32)
{
shdr32_arr.clear();
if(elf32_hdr.e_shoff == 0 && elf32_hdr.e_shnum)
{
LOG_WARNING(LOADER, "SELF: ELF section header offset is null!");
return true;
}
self_f.Seek(self_hdr.se_shdroff);
for(u32 i = 0; i < elf32_hdr.e_shnum; ++i)
{
shdr32_arr.emplace_back();
shdr32_arr.back().Load(self_f);
}
}
else
{
shdr64_arr.clear();
if(elf64_hdr.e_shoff == 0 && elf64_hdr.e_shnum)
{
LOG_WARNING(LOADER, "SELF: ELF section header offset is null!");
return true;
}
self_f.Seek(self_hdr.se_shdroff);
for(u32 i = 0; i < elf64_hdr.e_shnum; ++i)
{
shdr64_arr.emplace_back();
shdr64_arr.back().Load(self_f);
}
}
return true;
}
void SELFDecrypter::ShowHeaders(bool isElf32)
{
LOG_NOTICE(LOADER, "SCE header");
LOG_NOTICE(LOADER, "----------------------------------------------------");
sce_hdr.Show();
LOG_NOTICE(LOADER, "----------------------------------------------------");
LOG_NOTICE(LOADER, "SELF header");
LOG_NOTICE(LOADER, "----------------------------------------------------");
self_hdr.Show();
LOG_NOTICE(LOADER, "----------------------------------------------------");
LOG_NOTICE(LOADER, "APP INFO");
LOG_NOTICE(LOADER, "----------------------------------------------------");
app_info.Show();
LOG_NOTICE(LOADER, "----------------------------------------------------");
LOG_NOTICE(LOADER, "ELF header");
LOG_NOTICE(LOADER, "----------------------------------------------------");
isElf32 ? elf32_hdr.Show() : elf64_hdr.Show();
LOG_NOTICE(LOADER, "----------------------------------------------------");
LOG_NOTICE(LOADER, "ELF program headers");
LOG_NOTICE(LOADER, "----------------------------------------------------");
for(unsigned int i = 0; i < ((isElf32) ? phdr32_arr.size() : phdr64_arr.size()); i++)
isElf32 ? phdr32_arr[i].Show() : phdr64_arr[i].Show();
LOG_NOTICE(LOADER, "----------------------------------------------------");
LOG_NOTICE(LOADER, "Section info");
LOG_NOTICE(LOADER, "----------------------------------------------------");
for(unsigned int i = 0; i < secinfo_arr.size(); i++)
secinfo_arr[i].Show();
LOG_NOTICE(LOADER, "----------------------------------------------------");
LOG_NOTICE(LOADER, "SCE version info");
LOG_NOTICE(LOADER, "----------------------------------------------------");
scev_info.Show();
LOG_NOTICE(LOADER, "----------------------------------------------------");
LOG_NOTICE(LOADER, "Control info");
LOG_NOTICE(LOADER, "----------------------------------------------------");
for(unsigned int i = 0; i < ctrlinfo_arr.size(); i++)
ctrlinfo_arr[i].Show();
LOG_NOTICE(LOADER, "----------------------------------------------------");
LOG_NOTICE(LOADER, "ELF section headers");
LOG_NOTICE(LOADER, "----------------------------------------------------");
for(unsigned int i = 0; i < ((isElf32) ? shdr32_arr.size() : shdr64_arr.size()); i++)
isElf32 ? shdr32_arr[i].Show() : shdr64_arr[i].Show();
LOG_NOTICE(LOADER, "----------------------------------------------------");
}
bool SELFDecrypter::DecryptNPDRM(u8 *metadata, u32 metadata_size)
{
aes_context aes;
ControlInfo *ctrl = NULL;
u8 npdrm_key[0x10];
u8 npdrm_iv[0x10];
// Parse the control info structures to find the NPDRM control info.
for(unsigned int i = 0; i < ctrlinfo_arr.size(); i++)
{
if (ctrlinfo_arr[i].type == 3)
{
ctrl = &ctrlinfo_arr[i];
break;
}
}
// Check if we have a valid NPDRM control info structure.
// If not, the data has no NPDRM layer.
if (!ctrl)
{
LOG_WARNING(LOADER, "SELF: No NPDRM control info found!");
return true;
}
u8 klicensee_key[0x10];
memcpy(klicensee_key, key_v.GetKlicenseeKey(), 0x10);
// Use klicensee if available.
if (klicensee_key != NULL)
memcpy(npdrm_key, klicensee_key, 0x10);
if (ctrl->npdrm.license == 1) // Network license.
{
LOG_ERROR(LOADER, "SELF: Can't decrypt network NPDRM!");
return false;
}
else if (ctrl->npdrm.license == 2) // Local license.
{
// Try to find a RAP file to get the key.
if (!GetKeyFromRap(ctrl->npdrm.content_id, npdrm_key))
{
LOG_ERROR(LOADER, "SELF: Can't find RAP file for NPDRM decryption!");
return false;
}
}
else if (ctrl->npdrm.license == 3) // Free license.
{
// Use the NP_KLIC_FREE.
memcpy(npdrm_key, NP_KLIC_FREE, 0x10);
}
else
{
LOG_ERROR(LOADER, "SELF: Invalid NPDRM license type!");
return false;
}
// Decrypt our key with NP_KLIC_KEY.
aes_setkey_dec(&aes, NP_KLIC_KEY, 128);
aes_crypt_ecb(&aes, AES_DECRYPT, npdrm_key, npdrm_key);
// IV is empty.
memset(npdrm_iv, 0, 0x10);
// Use our final key to decrypt the NPDRM layer.
aes_setkey_dec(&aes, npdrm_key, 128);
aes_crypt_cbc(&aes, AES_DECRYPT, metadata_size, npdrm_iv, metadata, metadata);
return true;
}
bool SELFDecrypter::LoadMetadata()
{
aes_context aes;
u32 metadata_info_size = sizeof32(meta_info);
u8 *metadata_info = (u8 *)malloc(metadata_info_size);
u32 metadata_headers_size = sce_hdr.se_hsize - (sizeof32(sce_hdr) + sce_hdr.se_meta + sizeof32(meta_info));
u8 *metadata_headers = (u8 *)malloc(metadata_headers_size);
// Locate and read the encrypted metadata info.
self_f.Seek(sce_hdr.se_meta + sizeof(sce_hdr));
self_f.Read(metadata_info, metadata_info_size);
// Locate and read the encrypted metadata header and section header.
self_f.Seek(sce_hdr.se_meta + sizeof(sce_hdr) + metadata_info_size);
self_f.Read(metadata_headers, metadata_headers_size);
// Find the right keyset from the key vault.
SELF_KEY keyset = key_v.FindSelfKey(app_info.self_type, sce_hdr.se_flags, app_info.version);
// Copy the necessary parameters.
u8 metadata_key[0x20];
u8 metadata_iv[0x10];
memcpy(metadata_key, keyset.erk, 0x20);
memcpy(metadata_iv, keyset.riv, 0x10);
// Check DEBUG flag.
if ((sce_hdr.se_flags & 0x8000) != 0x8000)
{
// Decrypt the NPDRM layer.
if (!DecryptNPDRM(metadata_info, metadata_info_size))
return false;
// Decrypt the metadata info.
aes_setkey_dec(&aes, metadata_key, 256); // AES-256
aes_crypt_cbc(&aes, AES_DECRYPT, metadata_info_size, metadata_iv, metadata_info, metadata_info);
}
// Load the metadata info.
meta_info.Load(metadata_info);
// If the padding is not NULL for the key or iv fields, the metadata info
// is not properly decrypted.
if ((meta_info.key_pad[0] != 0x00) ||
(meta_info.iv_pad[0] != 0x00))
{
LOG_ERROR(LOADER, "SELF: Failed to decrypt metadata info!");
return false;
}
// Perform AES-CTR encryption on the metadata headers.
size_t ctr_nc_off = 0;
u8 ctr_stream_block[0x10];
aes_setkey_enc(&aes, meta_info.key, 128);
aes_crypt_ctr(&aes, metadata_headers_size, &ctr_nc_off, meta_info.iv, ctr_stream_block, metadata_headers, metadata_headers);
// Load the metadata header.
meta_hdr.Load(metadata_headers);
// Load the metadata section headers.
meta_shdr.clear();
for (unsigned int i = 0; i < meta_hdr.section_count; i++)
{
meta_shdr.emplace_back();
meta_shdr.back().Load(metadata_headers + sizeof(meta_hdr) + sizeof(MetadataSectionHeader) * i);
}
// Copy the decrypted data keys.
data_keys_length = meta_hdr.key_count * 0x10;
data_keys = (u8 *) malloc (data_keys_length);
memcpy(data_keys, metadata_headers + sizeof(meta_hdr) + meta_hdr.section_count * sizeof(MetadataSectionHeader), data_keys_length);
return true;
}
bool SELFDecrypter::DecryptData()
{
aes_context aes;
// Calculate the total data size.
for (unsigned int i = 0; i < meta_hdr.section_count; i++)
{
if (meta_shdr[i].encrypted == 3)
{
if ((meta_shdr[i].key_idx <= meta_hdr.key_count - 1) && (meta_shdr[i].iv_idx <= meta_hdr.key_count))
data_buf_length += meta_shdr[i].data_size;
}
}
// Allocate a buffer to store decrypted data.
data_buf = (u8*)malloc(data_buf_length);
// Set initial offset.
u32 data_buf_offset = 0;
// Parse the metadata section headers to find the offsets of encrypted data.
for (unsigned int i = 0; i < meta_hdr.section_count; i++)
{
size_t ctr_nc_off = 0;
u8 ctr_stream_block[0x10];
u8 data_key[0x10];
u8 data_iv[0x10];
// Check if this is an encrypted section.
if (meta_shdr[i].encrypted == 3)
{
// Make sure the key and iv are not out of boundaries.
if((meta_shdr[i].key_idx <= meta_hdr.key_count - 1) && (meta_shdr[i].iv_idx <= meta_hdr.key_count))
{
// Get the key and iv from the previously stored key buffer.
memcpy(data_key, data_keys + meta_shdr[i].key_idx * 0x10, 0x10);
memcpy(data_iv, data_keys + meta_shdr[i].iv_idx * 0x10, 0x10);
// Allocate a buffer to hold the data.
u8 *buf = (u8 *)malloc(meta_shdr[i].data_size);
// Seek to the section data offset and read the encrypted data.
self_f.Seek(meta_shdr[i].data_offset);
self_f.Read(buf, meta_shdr[i].data_size);
// Zero out our ctr nonce.
memset(ctr_stream_block, 0, sizeof(ctr_stream_block));
// Perform AES-CTR encryption on the data blocks.
aes_setkey_enc(&aes, data_key, 128);
aes_crypt_ctr(&aes, meta_shdr[i].data_size, &ctr_nc_off, data_iv, ctr_stream_block, buf, buf);
// Copy the decrypted data.
memcpy(data_buf + data_buf_offset, buf, meta_shdr[i].data_size);
// Advance the buffer's offset.
data_buf_offset += meta_shdr[i].data_size;
// Release the temporary buffer.
free(buf);
}
}
}
return true;
}
bool SELFDecrypter::MakeElf(const std::string& elf, bool isElf32)
{
// Create a new ELF file.
fs::file e(elf, fom::write | fom::create | fom::trunc);
if(!e)
{
LOG_ERROR(LOADER, "Could not create ELF file! (%s)", elf.c_str());
return false;
}
// Set initial offset.
u32 data_buf_offset = 0;
if (isElf32)
{
// Write ELF header.
WriteEhdr(e, elf32_hdr);
// Write program headers.
for(u32 i = 0; i < elf32_hdr.e_phnum; ++i)
WritePhdr(e, phdr32_arr[i]);
for (unsigned int i = 0; i < meta_hdr.section_count; i++)
{
// PHDR type.
if (meta_shdr[i].type == 2)
{
// Seek to the program header data offset and write the data.
e.seek(phdr32_arr[meta_shdr[i].program_idx].p_offset);
e.write(data_buf + data_buf_offset, meta_shdr[i].data_size);
// Advance the data buffer offset by data size.
data_buf_offset += meta_shdr[i].data_size;
}
}
// Write section headers.
if(self_hdr.se_shdroff != 0)
{
e.seek(elf32_hdr.e_shoff);
for(u32 i = 0; i < elf32_hdr.e_shnum; ++i)
WriteShdr(e, shdr32_arr[i]);
}
}
else
{
// Write ELF header.
WriteEhdr(e, elf64_hdr);
// Write program headers.
for(u32 i = 0; i < elf64_hdr.e_phnum; ++i)
WritePhdr(e, phdr64_arr[i]);
// Write data.
for (unsigned int i = 0; i < meta_hdr.section_count; i++)
{
// PHDR type.
if (meta_shdr[i].type == 2)
{
// Decompress if necessary.
if (meta_shdr[i].compressed == 2)
{
// Allocate a buffer for decompression.
u8 *decomp_buf = (u8 *)malloc(phdr64_arr[meta_shdr[i].program_idx].p_filesz);
// Set up memory streams for input/output.
wxMemoryInputStream decomp_stream_in(data_buf + data_buf_offset, meta_shdr[i].data_size);
wxMemoryOutputStream decomp_stream_out;
// Create a Zlib stream, read the data and flush the stream.
wxZlibInputStream* z_stream = new wxZlibInputStream(decomp_stream_in);
z_stream->Read(decomp_stream_out);
delete z_stream;
// Copy the decompressed result from the stream.
decomp_stream_out.CopyTo(decomp_buf, phdr64_arr[meta_shdr[i].program_idx].p_filesz);
// Seek to the program header data offset and write the data.
e.seek(phdr64_arr[meta_shdr[i].program_idx].p_offset);
e.write(decomp_buf, phdr64_arr[meta_shdr[i].program_idx].p_filesz);
// Release the decompression buffer.
free(decomp_buf);
}
else
{
// Seek to the program header data offset and write the data.
e.seek(phdr64_arr[meta_shdr[i].program_idx].p_offset);
e.write(data_buf + data_buf_offset, meta_shdr[i].data_size);
}
// Advance the data buffer offset by data size.
data_buf_offset += meta_shdr[i].data_size;
}
}
// Write section headers.
if(self_hdr.se_shdroff != 0)
{
e.seek(elf64_hdr.e_shoff);
for(u32 i = 0; i < elf64_hdr.e_shnum; ++i)
WriteShdr(e, shdr64_arr[i]);
}
}
return true;
}
bool SELFDecrypter::GetKeyFromRap(u8 *content_id, u8 *npdrm_key)
{
// Set empty RAP key.
u8 rap_key[0x10];
memset(rap_key, 0, 0x10);
// Try to find a matching RAP file under exdata folder.
std::string ci_str((const char *)content_id);
std::string pf_str("00000001"); // TODO: Allow multiple profiles. Use default for now.
std::string rap_path("dev_hdd0/home/" + pf_str + "/exdata/" + ci_str + ".rap");
// Check if we have a valid RAP file.
if (!fs::is_file(rap_path))
{
LOG_ERROR(LOADER, "This application requires a valid RAP file for decryption!");
return false;
}
// Open the RAP file and read the key.
fs::file rap_file(rap_path);
if (!rap_file)
{
LOG_ERROR(LOADER, "Failed to load RAP file!");
return false;
}
LOG_NOTICE(LOADER, "Loading RAP file %s.rap", ci_str);
rap_file.read(rap_key, 0x10);
// Convert the RAP key.
rap_to_rif(rap_key, npdrm_key);
return true;
}
bool IsSelf(const std::string& path)
{
vfsLocalFile f(nullptr);
if(!f.Open(path))
return false;
SceHeader hdr;
hdr.Load(f);
return hdr.CheckMagic();
}
bool IsSelfElf32(const std::string& path)
{
vfsLocalFile f(nullptr);
if(!f.Open(path))
return false;
SceHeader hdr;
SelfHeader sh;
hdr.Load(f);
sh.Load(f);
// Locate the class byte and check it.
u8 elf_class[0x8];
f.Seek(sh.se_elfoff);
f.Read(elf_class, 0x8);
return (elf_class[4] == 1);
}
bool CheckDebugSelf(const std::string& self, const std::string& elf)
{
// Open the SELF file.
fs::file s(self);
if(!s)
{
LOG_ERROR(LOADER, "Could not open SELF file! (%s)", self.c_str());
return false;
}
// Get the key version.
s.seek(0x08);
u16 key_version;
s.read(&key_version, sizeof(key_version));
// Check for DEBUG version.
if(swap16(key_version) == 0x8000)
{
LOG_WARNING(LOADER, "Debug SELF detected! Removing fake header...");
// Get the real elf offset.
s.seek(0x10);
u64 elf_offset;
s.read(&elf_offset, sizeof(elf_offset));
// Start at the real elf offset.
elf_offset = swap64(elf_offset);
s.seek(elf_offset);
// Write the real ELF file back.
fs::file e(elf, fom::write | fom::create | fom::trunc);
if(!e)
{
LOG_ERROR(LOADER, "Could not create ELF file! (%s)", elf.c_str());
return false;
}
// Copy the data.
char buf[2048];
while (ssize_t size = s.read(buf, 2048))
e.write(buf, size);
return true;
}
// Leave the file untouched.
return false;
}
bool DecryptSelf(const std::string& elf, const std::string& self)
{
// Check for a debug SELF first.
if (!CheckDebugSelf(self, elf))
{
// Set a virtual pointer to the SELF file.
vfsLocalFile self_vf(nullptr);
if (!self_vf.Open(self))
return false;
// Check the ELF file class (32 or 64 bit).
bool isElf32 = IsSelfElf32(self);
// Start the decrypter on this SELF file.
SELFDecrypter self_dec(self_vf);
// Load the SELF file headers.
if (!self_dec.LoadHeaders(isElf32))
{
LOG_ERROR(LOADER, "SELF: Failed to load SELF file headers!");
return false;
}
// Load and decrypt the SELF file metadata.
if (!self_dec.LoadMetadata())
{
LOG_ERROR(LOADER, "SELF: Failed to load SELF file metadata!");
return false;
}
// Decrypt the SELF file data.
if (!self_dec.DecryptData())
{
LOG_ERROR(LOADER, "SELF: Failed to decrypt SELF file data!");
return false;
}
// Make a new ELF file from this SELF.
if (!self_dec.MakeElf(elf, isElf32))
{
LOG_ERROR(LOADER, "SELF: Failed to make ELF file from SELF!");
return false;
}
}
return true;
}