#include "stdafx.h" #include "Config.h" #include "util/types.hpp" #include "util/yaml.hpp" #include LOG_CHANNEL(cfg_log, "CFG"); template <> void fmt_class_string::format(std::string& out, u64 arg) { out += get_object(arg).to_string(); } namespace cfg { _base::_base(type _type) : m_type(_type) { if (_type != type::node) { cfg_log.fatal("Invalid root node"); } } _base::_base(type _type, node* owner, std::string name, bool dynamic) : m_type(_type), m_dynamic(dynamic), m_name(std::move(name)) { for (const auto& node : owner->m_nodes) { if (node->get_name() == m_name) { cfg_log.fatal("Node already exists: %s", m_name); } } owner->m_nodes.emplace_back(this); } bool _base::from_string(std::string_view, bool) { cfg_log.fatal("cfg::_base::from_string() purecall"); return false; } bool _base::from_list(std::vector&&) { cfg_log.fatal("cfg::_base::from_list() purecall"); return false; } bool _base::save(std::string_view cfg_name) const { if (fs::pending_file cfg_file(cfg_name); !!cfg_file.file) { cfg_file.file.write(to_string()); return cfg_file.commit(); } return false; } // Emit YAML static void encode(YAML::Emitter& out, const class _base& rhs); // Incrementally load config entries from YAML::Node. // The config value is preserved if the corresponding YAML node doesn't exist. static void decode(const YAML::Node& data, class _base& rhs, bool dynamic = false); } std::vector cfg::make_int_range(s64 min, s64 max) { return {std::to_string(min), std::to_string(max)}; } bool try_to_int64(s64* out, std::string_view value, s64 min, s64 max) { if (value.empty()) { if (out) cfg_log.error("cfg::try_to_int64(): called with an empty string"); return false; } s64 result; const char* start = value.data(); const char* end = start + value.size(); int base = 10; int sign = +1; if (start[0] == '-') { sign = -1; start += 1; } if (start[0] == '0' && value.size() >= 2 && (start[1] == 'x' || start[1] == 'X')) { // Limited hex support base = 16; start += 2; } const auto ret = std::from_chars(start, end, result, base); if (ret.ec != std::errc() || ret.ptr != end || (start[0] == '-' && sign < 0)) { if (out) cfg_log.error("cfg::try_to_int64('%s'): invalid integer", value); return false; } result *= sign; if (result < min || result > max) { if (out) cfg_log.error("cfg::try_to_int64('%s'): out of bounds (val=%d, min=%d, max=%d)", value, result, min, max); return false; } if (out) *out = result; return true; } std::vector cfg::make_uint_range(u64 min, u64 max) { return {std::to_string(min), std::to_string(max)}; } bool try_to_uint64(u64* out, std::string_view value, u64 min, u64 max) { if (value.empty()) { if (out) cfg_log.error("cfg::try_to_uint64(): called with an empty string"); return false; } u64 result; const char* start = value.data(); const char* end = start + value.size(); int base = 10; if (start[0] == '0' && value.size() >= 2 && (start[1] == 'x' || start[1] == 'X')) { // Limited hex support base = 16; start += 2; } const auto ret = std::from_chars(start, end, result, base); if (ret.ec != std::errc() || ret.ptr != end) { if (out) cfg_log.error("cfg::try_to_uint64('%s'): invalid integer", value); return false; } if (result < min || result > max) { if (out) cfg_log.error("cfg::try_to_uint64('%s'): out of bounds (val=%u, min=%u, max=%u)", value, result, min, max); return false; } if (out) *out = result; return true; } std::vector cfg::make_float_range(f64 min, f64 max) { return {std::to_string(min), std::to_string(max)}; } bool try_to_float(f64* out, std::string_view value, f64 min, f64 max) { if (value.empty()) { if (out) cfg_log.error("cfg::try_to_float(): called with an empty string"); return false; } // std::from_chars float is yet to be implemented on Xcode it seems // And strtod doesn't support ranged view so we need to ensure it meets a null terminator const std::string str = std::string{value}; char* end_check{}; const double result = std::strtod(str.data(), &end_check); if (end_check != str.data() + str.size()) { if (out) cfg_log.error("cfg::try_to_float('%s'): invalid float", value); return false; } if (result < min || result > max) { if (out) cfg_log.error("cfg::try_to_float('%s'): out of bounds (val=%f, min=%f, max=%f)", value, result, min, max); return false; } if (out) *out = result; return true; } bool try_to_string(std::string* out, const f64& value) { #ifdef __APPLE__ if (out) *out = std::to_string(value); return true; #else std::array str{}; if (auto [ptr, ec] = std::to_chars(str.data(), str.data() + str.size(), value, std::chars_format::fixed); ec == std::errc()) { if (out) *out = std::string(str.data(), ptr); return true; } else { if (out) cfg_log.error("cfg::try_to_string(): could not convert value '%f' to string. error='%s'", value, std::make_error_code(ec).message()); return false; } #endif } bool cfg::try_to_enum_value(u64* out, decltype(&fmt_class_string::format) func, std::string_view value) { u64 max = umax; for (u64 i = 0;; i++) { std::string var; func(var, i); if (var == value) { if (out) *out = i; return true; } std::string hex; fmt_class_string::format(hex, i); if (var == hex) { break; } max = i; } u64 result; const char* start = value.data(); const char* end = start + value.size(); int base = 10; if (start[0] == '0' && (start[1] == 'x' || start[1] == 'X')) { // Limited hex support base = 16; start += 2; } const auto ret = std::from_chars(start, end, result, base); if (ret.ec != std::errc() || ret.ptr != end) { if (out) cfg_log.error("cfg::try_to_enum_value('%s'): invalid enum or integer", value); return false; } if (result > max) { if (out) cfg_log.error("cfg::try_to_enum_value('%s'): out of bounds(val=%u, min=0, max=%u)", value, result, max); return false; } if (out) *out = result; return true; } std::vector cfg::try_to_enum_list(decltype(&fmt_class_string::format) func) { std::vector result; for (u64 i = 0;; i++) { std::string var; func(var, i); std::string hex; fmt_class_string::format(hex, i); if (var == hex) { break; } result.emplace_back(std::move(var)); } return result; } void cfg::encode(YAML::Emitter& out, const cfg::_base& rhs) { switch (rhs.get_type()) { case type::node: { out << YAML::BeginMap; for (const auto& node : static_cast(rhs).get_nodes()) { out << YAML::Key << node->get_name(); out << YAML::Value; encode(out, *node); } out << YAML::EndMap; return; } case type::set: { out << YAML::BeginSeq; for (const auto& str : static_cast(rhs).get_set()) { out << str; } out << YAML::EndSeq; return; } case type::map: { out << YAML::BeginMap; for (const auto& np : static_cast(rhs).get_map()) { out << YAML::Key << np.first; out << YAML::Value << fmt::format("%s", np.second); } out << YAML::EndMap; return; } case type::log: { out << YAML::BeginMap; for (const auto& np : static_cast(rhs).get_map()) { if (np.second == logs::level::notice) continue; out << YAML::Key << np.first; out << YAML::Value << fmt::format("%s", np.second); } out << YAML::EndMap; return; } case type::device: { out << YAML::BeginMap; for (const auto& [key, info] : static_cast(rhs).get_map()) { out << YAML::Key << key; out << YAML::BeginMap; out << YAML::Key << "Path" << YAML::Value << info.path; out << YAML::Key << "Serial" << YAML::Value << info.serial; out << YAML::Key << "VID" << YAML::Value << info.vid; out << YAML::Key << "PID" << YAML::Value << info.pid; out << YAML::EndMap; } out << YAML::EndMap; return; } default: { out << rhs.to_string(); return; } } } void cfg::decode(const YAML::Node& data, cfg::_base& rhs, bool dynamic) { if (dynamic && !rhs.get_is_dynamic()) { return; } switch (rhs.get_type()) { case type::node: { if (data.IsScalar() || data.IsSequence()) { return; // ??? } for (const auto& pair : data) { if (!pair.first.IsScalar()) continue; // Find the key among existing nodes for (const auto& node : static_cast(rhs).get_nodes()) { if (node->get_name() == pair.first.Scalar()) { decode(pair.second, *node, dynamic); } } } break; } case type::set: { std::vector values; if (YAML::convert::decode(data, values)) { rhs.from_list(std::move(values)); } break; } case type::map: { if (!data.IsMap()) { return; } map_of_type values; for (const auto& pair : data) { if (!pair.first.IsScalar() || !pair.second.IsScalar()) continue; values.emplace(pair.first.Scalar(), pair.second.Scalar()); } static_cast(rhs).set_map(std::move(values)); break; } case type::log: { if (data.IsScalar() || data.IsSequence()) { return; // ??? } map_of_type values; for (const auto& pair : data) { if (!pair.first.IsScalar() || !pair.second.IsScalar()) continue; u64 value; if (cfg::try_to_enum_value(&value, &fmt_class_string::format, pair.second.Scalar())) { values.emplace(pair.first.Scalar(), static_cast(static_cast(value))); } } static_cast(rhs).set_map(std::move(values)); break; } case type::device: { if (!data.IsMap()) { return; // ??? } map_of_type values; for (const auto& pair : data) { if (!pair.first.IsScalar() || !pair.second.IsMap()) continue; device_info info{}; for (const auto& key_value : pair.second) { if (!key_value.first.IsScalar() || !key_value.second.IsScalar()) continue; if (key_value.first.Scalar() == "Path") info.path = key_value.second.Scalar(); if (key_value.first.Scalar() == "Serial") info.serial = key_value.second.Scalar(); if (key_value.first.Scalar() == "VID") info.vid = key_value.second.Scalar(); if (key_value.first.Scalar() == "PID") info.pid = key_value.second.Scalar(); } values.emplace(pair.first.Scalar(), std::move(info)); } static_cast(rhs).set_map(std::move(values)); break; } default: { std::string value; if (YAML::convert::decode(data, value)) { rhs.from_string(value, dynamic); } break; // ??? } } } std::string cfg::node::to_string() const { YAML::Emitter out; cfg::encode(out, *this); return {out.c_str(), out.size()}; } bool cfg::node::from_string(std::string_view value, bool dynamic) { auto [result, error] = yaml_load(std::string(value)); if (error.empty()) { cfg::decode(result, *this, dynamic); return true; } cfg_log.error("Failed to load node: %s", error); return false; } void cfg::node::from_default() { for (auto& node : m_nodes) { node->from_default(); } } void cfg::_bool::from_default() { m_value = def; } void cfg::string::from_default() { m_value = def; } void cfg::set_entry::from_default() { m_set = {}; } std::string cfg::map_entry::get_value(std::string_view key) { if (auto it = m_map.find(key); it != m_map.end()) { return it->second; } return {}; } void cfg::map_entry::set_value(std::string key, std::string value) { m_map[std::move(key)] = std::move(value); } void cfg::map_entry::set_map(map_of_type&& map) { m_map = std::move(map); } void cfg::map_entry::erase(std::string_view key) { if (auto it = m_map.find(key); it != m_map.end()) { m_map.erase(it); } } void cfg::map_entry::from_default() { set_map({}); } void cfg::log_entry::set_map(map_of_type&& map) { m_map = std::move(map); } void cfg::log_entry::from_default() { set_map({}); } std::pair cfg::device_info::get_usb_ids() const { auto string_to_hex = [](const std::string& str) -> u16 { u16 value = 0x0000; if (!str.empty() && std::from_chars(str.data(), str.data() + str.size(), value, 16).ec != std::errc{}) cfg_log.error("Failed to parse hex from string \"%s\"", str); return value; }; return {string_to_hex(vid), string_to_hex(pid)}; } void cfg::device_entry::set_map(map_of_type&& map) { m_map = std::move(map); } void cfg::device_entry::from_default() { m_map = m_default; }