#pragma once union u128 { u64 _u64[2]; s64 _s64[2]; class u64_reversed_array_2 { u64 data[2]; public: u64& operator [] (s32 index) { return data[1 - index]; } const u64& operator [] (s32 index) const { return data[1 - index]; } } u64r; u32 _u32[4]; s32 _s32[4]; class u32_reversed_array_4 { u32 data[4]; public: u32& operator [] (s32 index) { return data[3 - index]; } const u32& operator [] (s32 index) const { return data[3 - index]; } } u32r; u16 _u16[8]; s16 _s16[8]; class u16_reversed_array_8 { u16 data[8]; public: u16& operator [] (s32 index) { return data[7 - index]; } const u16& operator [] (s32 index) const { return data[7 - index]; } } u16r; u8 _u8[16]; s8 _s8[16]; class u8_reversed_array_16 { u8 data[16]; public: u8& operator [] (s32 index) { return data[15 - index]; } const u8& operator [] (s32 index) const { return data[15 - index]; } } u8r; float _f[4]; double _d[2]; __m128 vf; __m128i vi; class bit_array_128 { u64 data[2]; public: class bit_element { u64& data; const u64 mask; public: bit_element(u64& data, const u64 mask) : data(data) , mask(mask) { } __forceinline operator bool() const { return (data & mask) != 0; } __forceinline bit_element& operator = (const bool right) { if (right) { data |= mask; } else { data &= ~mask; } return *this; } __forceinline bit_element& operator = (const bit_element& right) { if (right) { data |= mask; } else { data &= ~mask; } return *this; } }; bit_element operator [] (u32 index) { assert(index < 128); return bit_element(data[index / 64], 1ull << (index % 64)); } const bool operator [] (u32 index) const { assert(index < 128); return (data[index / 64] & (1ull << (index % 64))) != 0; } } _bit; //operator u64() const { return _u64[0]; } //operator u32() const { return _u32[0]; } //operator u16() const { return _u16[0]; } //operator u8() const { return _u8[0]; } //operator bool() const { return _u64[0] != 0 || _u64[1] != 0; } static u128 from64(u64 _0, u64 _1 = 0) { u128 ret; ret._u64[0] = _0; ret._u64[1] = _1; return ret; } static u128 from64r(u64 _1, u64 _0 = 0) { return from64(_0, _1); } static u128 from32(u32 _0, u32 _1 = 0, u32 _2 = 0, u32 _3 = 0) { u128 ret; ret._u32[0] = _0; ret._u32[1] = _1; ret._u32[2] = _2; ret._u32[3] = _3; return ret; } static u128 from32r(u32 _3, u32 _2 = 0, u32 _1 = 0, u32 _0 = 0) { return from32(_0, _1, _2, _3); } static u128 from32p(u32 value) { u128 ret; ret.vi = _mm_set1_epi32((int)value); return ret; } static u128 from8p(u8 value) { u128 ret; ret.vi = _mm_set1_epi8((char)value); return ret; } static u128 fromBit(u32 bit) { u128 ret = {}; ret._bit[bit] = true; return ret; } static u128 fromV(__m128i value) { u128 ret; ret.vi = value; return ret; } static __forceinline u128 add8(const u128& left, const u128& right) { return fromV(_mm_add_epi8(left.vi, right.vi)); } static __forceinline u128 sub8(const u128& left, const u128& right) { return fromV(_mm_sub_epi8(left.vi, right.vi)); } static __forceinline u128 minu8(const u128& left, const u128& right) { return fromV(_mm_min_epu8(left.vi, right.vi)); } static __forceinline u128 eq8(const u128& left, const u128& right) { return fromV(_mm_cmpeq_epi8(left.vi, right.vi)); } static __forceinline u128 gtu8(const u128& left, const u128& right) { return fromV(_mm_cmpgt_epu8(left.vi, right.vi)); } static __forceinline u128 leu8(const u128& left, const u128& right) { return fromV(_mm_cmple_epu8(left.vi, right.vi)); } bool operator == (const u128& right) const { return (_u64[0] == right._u64[0]) && (_u64[1] == right._u64[1]); } bool operator != (const u128& right) const { return (_u64[0] != right._u64[0]) || (_u64[1] != right._u64[1]); } __forceinline u128 operator | (const u128& right) const { return fromV(_mm_or_si128(vi, right.vi)); } __forceinline u128 operator & (const u128& right) const { return fromV(_mm_and_si128(vi, right.vi)); } __forceinline u128 operator ^ (const u128& right) const { return fromV(_mm_xor_si128(vi, right.vi)); } u128 operator ~ () const { return from64(~_u64[0], ~_u64[1]); } // result = (~left) & (right) static __forceinline u128 andnot(const u128& left, const u128& right) { return fromV(_mm_andnot_si128(left.vi, right.vi)); } void clear() { _u64[1] = _u64[0] = 0; } std::string to_hex() const { return fmt::Format("%016llx%016llx", _u64[1], _u64[0]); } std::string to_xyzw() const { return fmt::Format("x: %g y: %g z: %g w: %g", _f[3], _f[2], _f[1], _f[0]); } static __forceinline u128 byteswap(const u128 val) { u128 ret; ret._u64[0] = _byteswap_uint64(val._u64[1]); ret._u64[1] = _byteswap_uint64(val._u64[0]); return ret; } }; #ifndef InterlockedCompareExchange static __forceinline u128 InterlockedCompareExchange(volatile u128* dest, u128 exch, u128 comp) { #if defined(__GNUG__) auto res = __sync_val_compare_and_swap((volatile __int128_t*)dest, (__int128_t&)comp, (__int128_t&)exch); return (u128&)res; #else _InterlockedCompareExchange128((volatile long long*)dest, exch._u64[1], exch._u64[0], (long long*)&comp); return comp; #endif } #endif static __forceinline bool InterlockedCompareExchangeTest(volatile u128* dest, u128 exch, u128 comp) { #if defined(__GNUG__) return __sync_bool_compare_and_swap((volatile __int128_t*)dest, (__int128_t&)comp, (__int128_t&)exch); #else return _InterlockedCompareExchange128((volatile long long*)dest, exch._u64[1], exch._u64[0], (long long*)&comp) != 0; #endif } #ifndef InterlockedExchange static __forceinline u128 InterlockedExchange(volatile u128* dest, u128 value) { while (true) { const u128 old = *(u128*)dest; if (InterlockedCompareExchangeTest(dest, value, old)) return old; } } #endif #ifndef InterlockedOr static __forceinline u128 InterlockedOr(volatile u128* dest, u128 value) { while (true) { const u128 old = *(u128*)dest; if (InterlockedCompareExchangeTest(dest, old | value, old)) return old; } } #endif #ifndef InterlockedAnd static __forceinline u128 InterlockedAnd(volatile u128* dest, u128 value) { while (true) { const u128 old = *(u128*)dest; if (InterlockedCompareExchangeTest(dest, old & value, old)) return old; } } #endif #ifndef InterlockedXor static __forceinline u128 InterlockedXor(volatile u128* dest, u128 value) { while (true) { const u128 old = *(u128*)dest; if (InterlockedCompareExchangeTest(dest, old ^ value, old)) return old; } } #endif #define re16(val) _byteswap_ushort(val) #define re32(val) _byteswap_ulong(val) #define re64(val) _byteswap_uint64(val) #define re128(val) u128::byteswap(val) template struct se_t; template struct se_t { static __forceinline T func(const T src) { return src; } }; template struct se_t { static __forceinline T func(const T src) { const u16 res = _byteswap_ushort((u16&)src); return (T&)res; } }; template struct se_t { static __forceinline T func(const T src) { const u32 res = _byteswap_ulong((u32&)src); return (T&)res; } }; template struct se_t { static __forceinline T func(const T src) { const u64 res = _byteswap_uint64((u64&)src); return (T&)res; } }; //template T re(const T val) { T res; se_t::func(res, val); return res; } //template void re(T1& dst, const T2 val) { se_t::func(dst, val); } template struct const_se_t; template struct const_se_t { static const T value = (T)_value; }; template struct const_se_t { static const T value = ((_value >> 8) & 0xff) | ((_value << 8) & 0xff00); }; template struct const_se_t { static const T value = ((_value >> 24) & 0x000000ff) | ((_value >> 8) & 0x0000ff00) | ((_value << 8) & 0x00ff0000) | ((_value << 24) & 0xff000000); }; template struct const_se_t { static const T value = ((_value >> 56) & 0x00000000000000ff) | ((_value >> 40) & 0x000000000000ff00) | ((_value >> 24) & 0x0000000000ff0000) | ((_value >> 8) & 0x00000000ff000000) | ((_value << 8) & 0x000000ff00000000) | ((_value << 24) & 0x0000ff0000000000) | ((_value << 40) & 0x00ff000000000000) | ((_value << 56) & 0xff00000000000000); }; template class be_t { static_assert(sizeof(T2) == 1 || sizeof(T2) == 2 || sizeof(T2) == 4 || sizeof(T2) == 8, "Bad be_t type"); T m_data; template struct _convert { static __forceinline be_t& func(Tfrom& be_value) { Tto res = be_value; return (be_t&)res; } }; template struct _convert { static __forceinline be_t& func(Tfrom& be_value) { Tto res = se_t::func(se_t::func(be_value)); return (be_t&)res; } }; template struct _convert { static __forceinline be_t& func(Tfrom& be_value) { Tto res = be_value >> ((sizeof(Tfrom)-sizeof(Tto)) * 8); return (be_t&)res; } }; public: typedef T type; const T& ToBE() const { return m_data; } T ToLE() const { return se_t::func(m_data); } void FromBE(const T& value) { m_data = value; } void FromLE(const T& value) { m_data = se_t::func(value); } static be_t make(const T value) { T data = se_t::func(value); return (be_t&)data; } //template operator const T() const { return ToLE(); } be_t& operator = (const be_t& value) = default; be_t& operator = (T value) { m_data = se_t::func(value); return *this; } template operator const be_t() const { return be_t::make(ToLE()); //return _convert sizeof(T)) ? 1 : (sizeof(T1) < sizeof(T) ? 2 : 0))>::func(m_data); } template be_t& operator += (T1 right) { return *this = T(*this) + right; } template be_t& operator -= (T1 right) { return *this = T(*this) - right; } template be_t& operator *= (T1 right) { return *this = T(*this) * right; } template be_t& operator /= (T1 right) { return *this = T(*this) / right; } template be_t& operator %= (T1 right) { return *this = T(*this) % right; } template be_t& operator &= (T1 right) { return *this = T(*this) & right; } template be_t& operator |= (T1 right) { return *this = T(*this) | right; } template be_t& operator ^= (T1 right) { return *this = T(*this) ^ right; } template be_t& operator <<= (T1 right) { return *this = T(*this) << right; } template be_t& operator >>= (T1 right) { return *this = T(*this) >> right; } template be_t& operator += (const be_t& right) { return *this = ToLE() + right.ToLE(); } template be_t& operator -= (const be_t& right) { return *this = ToLE() - right.ToLE(); } template be_t& operator *= (const be_t& right) { return *this = ToLE() * right.ToLE(); } template be_t& operator /= (const be_t& right) { return *this = ToLE() / right.ToLE(); } template be_t& operator %= (const be_t& right) { return *this = ToLE() % right.ToLE(); } template be_t& operator &= (const be_t& right) { return *this = ToBE() & right.ToBE(); } template be_t& operator |= (const be_t& right) { return *this = ToBE() | right.ToBE(); } template be_t& operator ^= (const be_t& right) { return *this = ToBE() ^ right.ToBE(); } template be_t operator & (const be_t& right) const { be_t res; res.FromBE(ToBE() & right.ToBE()); return res; } template be_t operator | (const be_t& right) const { be_t res; res.FromBE(ToBE() | right.ToBE()); return res; } template be_t operator ^ (const be_t& right) const { be_t res; res.FromBE(ToBE() ^ right.ToBE()); return res; } template bool operator == (T1 right) const { return (T1)ToLE() == right; } template bool operator != (T1 right) const { return !(*this == right); } template bool operator > (T1 right) const { return (T1)ToLE() > right; } template bool operator < (T1 right) const { return (T1)ToLE() < right; } template bool operator >= (T1 right) const { return (T1)ToLE() >= right; } template bool operator <= (T1 right) const { return (T1)ToLE() <= right; } template bool operator == (const be_t& right) const { return ToBE() == right.ToBE(); } template bool operator != (const be_t& right) const { return !(*this == right); } template bool operator > (const be_t& right) const { return (T1)ToLE() > right.ToLE(); } template bool operator < (const be_t& right) const { return (T1)ToLE() < right.ToLE(); } template bool operator >= (const be_t& right) const { return (T1)ToLE() >= right.ToLE(); } template bool operator <= (const be_t& right) const { return (T1)ToLE() <= right.ToLE(); } be_t operator++ (int) { be_t res = *this; *this += 1; return res; } be_t operator-- (int) { be_t res = *this; *this -= 1; return res; } be_t& operator++ () { *this += 1; return *this; } be_t& operator-- () { *this -= 1; return *this; } }; template class be_t { static_assert(sizeof(T2) == 1 || sizeof(T2) == 2 || sizeof(T2) == 4 || sizeof(T2) == 8, "Bad be_t type"); const T m_data; public: typedef const T type; const T& ToBE() const { return m_data; } const T ToLE() const { return se_t::func(m_data); } static be_t make(const T value) { const T data = se_t::func(value); return (be_t&)data; } //template operator const T() const { return ToLE(); } template operator const be_t() const { return be_t::make(ToLE()); } template be_t operator & (const be_t& right) const { const T res = ToBE() & right.ToBE(); return (be_t&)res; } template be_t operator | (const be_t& right) const { const T res = ToBE() | right.ToBE(); return (be_t&)res; } template be_t operator ^ (const be_t& right) const { const T res = ToBE() ^ right.ToBE(); return (be_t&)res; } template bool operator == (T1 right) const { return (T1)ToLE() == right; } template bool operator != (T1 right) const { return !(*this == right); } template bool operator > (T1 right) const { return (T1)ToLE() > right; } template bool operator < (T1 right) const { return (T1)ToLE() < right; } template bool operator >= (T1 right) const { return (T1)ToLE() >= right; } template bool operator <= (T1 right) const { return (T1)ToLE() <= right; } template bool operator == (const be_t& right) const { return ToBE() == right.ToBE(); } template bool operator != (const be_t& right) const { return !(*this == right); } template bool operator > (const be_t& right) const { return (T1)ToLE() > right.ToLE(); } template bool operator < (const be_t& right) const { return (T1)ToLE() < right.ToLE(); } template bool operator >= (const be_t& right) const { return (T1)ToLE() >= right.ToLE(); } template bool operator <= (const be_t& right) const { return (T1)ToLE() <= right.ToLE(); } }; template struct is_be_t : public std::integral_constant {}; template struct is_be_t, T2> : public std::integral_constant {}; template struct remove_be_t { typedef T type; }; template struct remove_be_t> { typedef T type; }; template class to_be_t { template struct _be_type_selector { typedef TT type; }; template struct _be_type_selector { typedef be_t type; }; public: //true if need swap endianes for be static const bool value = (sizeof(T2) > 1) && (std::is_arithmetic::value || std::is_enum::value); //be_t if need swap endianes, T otherwise typedef typename _be_type_selector< T, T2, value >::type type; }; template class to_be_t { public: //true if need swap endianes for be static const bool value = false; //be_t if need swap endianes, T otherwise typedef void type; }; template class to_be_t { public: //true if need swap endianes for be static const bool value = false; //be_t if need swap endianes, T otherwise typedef const void type; }; template struct invert_be_t { typedef typename to_be_t::type type; }; template struct invert_be_t> { typedef T type; }; template struct _se : public const_se_t {}; template struct _se, T1, value> : public const_se_t {}; //#define se(t, x) _se::value #define se16(x) _se::value #define se32(x) _se::value #define se64(x) _se::value template __forceinline static u8 Read8(T& f) { u8 ret; f.Read(&ret, sizeof(ret)); return ret; } template __forceinline static u16 Read16(T& f) { be_t ret; f.Read(&ret, sizeof(ret)); return ret; } template __forceinline static u32 Read32(T& f) { be_t ret; f.Read(&ret, sizeof(ret)); return ret; } template __forceinline static u64 Read64(T& f) { be_t ret; f.Read(&ret, sizeof(ret)); return ret; } template __forceinline static u16 Read16LE(T& f) { u16 ret; f.Read(&ret, sizeof(ret)); return ret; } template __forceinline static u32 Read32LE(T& f) { u32 ret; f.Read(&ret, sizeof(ret)); return ret; } template __forceinline static u64 Read64LE(T& f) { u64 ret; f.Read(&ret, sizeof(ret)); return ret; } template __forceinline static void Write8(T& f, const u8 data) { f.Write(&data, sizeof(data)); } template __forceinline static void Write16LE(T& f, const u16 data) { f.Write(&data, sizeof(data)); } template __forceinline static void Write32LE(T& f, const u32 data) { f.Write(&data, sizeof(data)); } template __forceinline static void Write64LE(T& f, const u64 data) { f.Write(&data, sizeof(data)); } template __forceinline static void Write16(T& f, const u16 data) { Write16LE(f, re16(data)); } template __forceinline static void Write32(T& f, const u32 data) { Write32LE(f, re32(data)); } template __forceinline static void Write64(T& f, const u64 data) { Write64LE(f, re64(data)); }