#pragma once #define IS_LE_MACHINE // only draft union u128 { u64 _u64[2]; s64 _s64[2]; class u64_reversed_array_2 { u64 data[2]; public: u64& operator [] (s32 index) { return data[1 - index]; } const u64& operator [] (s32 index) const { return data[1 - index]; } } u64r; u32 _u32[4]; s32 _s32[4]; class u32_reversed_array_4 { u32 data[4]; public: u32& operator [] (s32 index) { return data[3 - index]; } const u32& operator [] (s32 index) const { return data[3 - index]; } } u32r; u16 _u16[8]; s16 _s16[8]; class u16_reversed_array_8 { u16 data[8]; public: u16& operator [] (s32 index) { return data[7 - index]; } const u16& operator [] (s32 index) const { return data[7 - index]; } } u16r; u8 _u8[16]; s8 _s8[16]; class u8_reversed_array_16 { u8 data[16]; public: u8& operator [] (s32 index) { return data[15 - index]; } const u8& operator [] (s32 index) const { return data[15 - index]; } } u8r; float _f[4]; double _d[2]; __m128 vf; __m128i vi; __m128d vd; class bit_array_128 { u64 data[2]; public: class bit_element { u64& data; const u64 mask; public: bit_element(u64& data, const u64 mask) : data(data) , mask(mask) { } force_inline operator bool() const { return (data & mask) != 0; } force_inline bit_element& operator = (const bool right) { if (right) { data |= mask; } else { data &= ~mask; } return *this; } force_inline bit_element& operator = (const bit_element& right) { if (right) { data |= mask; } else { data &= ~mask; } return *this; } }; // Index 0 returns the MSB and index 127 returns the LSB bit_element operator [] (u32 index) { assert(index < 128); #ifdef IS_LE_MACHINE return bit_element(data[1 - (index >> 6)], 0x8000000000000000ull >> (index & 0x3F)); #else return bit_element(data[index >> 6], 0x8000000000000000ull >> (index & 0x3F)); #endif } // Index 0 returns the MSB and index 127 returns the LSB const bool operator [] (u32 index) const { assert(index < 128); #ifdef IS_LE_MACHINE return (data[1 - (index >> 6)] & (0x8000000000000000ull >> (index & 0x3F))) != 0; #else return (data[index >> 6] & (0x8000000000000000ull >> (index & 0x3F))) != 0; #endif } } _bit; static u128 from64(u64 _0, u64 _1 = 0) { u128 ret; ret._u64[0] = _0; ret._u64[1] = _1; return ret; } static u128 from64r(u64 _1, u64 _0 = 0) { return from64(_0, _1); } static u128 from32(u32 _0, u32 _1 = 0, u32 _2 = 0, u32 _3 = 0) { u128 ret; ret._u32[0] = _0; ret._u32[1] = _1; ret._u32[2] = _2; ret._u32[3] = _3; return ret; } static u128 from32r(u32 _3, u32 _2 = 0, u32 _1 = 0, u32 _0 = 0) { return from32(_0, _1, _2, _3); } static u128 from32p(u32 value) { u128 ret; ret.vi = _mm_set1_epi32(static_cast(value)); return ret; } static u128 from16p(u16 value) { u128 ret; ret.vi = _mm_set1_epi16(static_cast(value)); return ret; } static u128 from8p(u8 value) { u128 ret; ret.vi = _mm_set1_epi8(static_cast(value)); return ret; } static u128 fromBit(u32 bit) { u128 ret = {}; ret._bit[bit] = true; return ret; } static u128 fromV(__m128i value) { u128 ret; ret.vi = value; return ret; } static u128 fromF(__m128 value) { u128 ret; ret.vf = value; return ret; } static u128 fromD(__m128d value) { u128 ret; ret.vd = value; return ret; } static force_inline u128 add8(const u128& left, const u128& right) { return fromV(_mm_add_epi8(left.vi, right.vi)); } static force_inline u128 add16(const u128& left, const u128& right) { return fromV(_mm_add_epi16(left.vi, right.vi)); } static force_inline u128 add32(const u128& left, const u128& right) { return fromV(_mm_add_epi32(left.vi, right.vi)); } static force_inline u128 addfs(const u128& left, const u128& right) { return fromF(_mm_add_ps(left.vf, right.vf)); } static force_inline u128 addfd(const u128& left, const u128& right) { return fromD(_mm_add_pd(left.vd, right.vd)); } static force_inline u128 sub8(const u128& left, const u128& right) { return fromV(_mm_sub_epi8(left.vi, right.vi)); } static force_inline u128 sub16(const u128& left, const u128& right) { return fromV(_mm_sub_epi16(left.vi, right.vi)); } static force_inline u128 sub32(const u128& left, const u128& right) { return fromV(_mm_sub_epi32(left.vi, right.vi)); } static force_inline u128 subfs(const u128& left, const u128& right) { return fromF(_mm_sub_ps(left.vf, right.vf)); } static force_inline u128 subfd(const u128& left, const u128& right) { return fromD(_mm_sub_pd(left.vd, right.vd)); } static force_inline u128 maxu8(const u128& left, const u128& right) { return fromV(_mm_max_epu8(left.vi, right.vi)); } static force_inline u128 minu8(const u128& left, const u128& right) { return fromV(_mm_min_epu8(left.vi, right.vi)); } static force_inline u128 eq8(const u128& left, const u128& right) { return fromV(_mm_cmpeq_epi8(left.vi, right.vi)); } static force_inline u128 eq16(const u128& left, const u128& right) { return fromV(_mm_cmpeq_epi16(left.vi, right.vi)); } static force_inline u128 eq32(const u128& left, const u128& right) { return fromV(_mm_cmpeq_epi32(left.vi, right.vi)); } bool operator == (const u128& right) const { return (_u64[0] == right._u64[0]) && (_u64[1] == right._u64[1]); } bool operator != (const u128& right) const { return (_u64[0] != right._u64[0]) || (_u64[1] != right._u64[1]); } force_inline bool is_any_1() const // check if any bit is 1 { return _u64[0] || _u64[1]; } force_inline bool is_any_0() const // check if any bit is 0 { return ~_u64[0] || ~_u64[1]; } // result = (~left) & (right) static force_inline u128 andnot(const u128& left, const u128& right) { return fromV(_mm_andnot_si128(left.vi, right.vi)); } void clear() { _u64[1] = _u64[0] = 0; } std::string to_hex() const; std::string to_xyzw() const; static force_inline u128 byteswap(const u128 val) { return fromV(_mm_shuffle_epi8(val.vi, _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15))); } }; CHECK_SIZE_ALIGN(u128, 16, 16); inline u128 operator |(const u128& left, const u128& right) { return u128::fromV(_mm_or_si128(left.vi, right.vi)); } inline u128 operator &(const u128& left, const u128& right) { return u128::fromV(_mm_and_si128(left.vi, right.vi)); } inline u128 operator ^(const u128& left, const u128& right) { return u128::fromV(_mm_xor_si128(left.vi, right.vi)); } inline u128 operator ~(const u128& other) { return u128::from64(~other._u64[0], ~other._u64[1]); } static force_inline u128 sync_val_compare_and_swap(volatile u128* dest, u128 comp, u128 exch) { #if !defined(_MSC_VER) auto res = __sync_val_compare_and_swap((volatile __int128_t*)dest, (__int128_t&)comp, (__int128_t&)exch); return (u128&)res; #else _InterlockedCompareExchange128((volatile long long*)dest, exch._u64[1], exch._u64[0], (long long*)&comp); return comp; #endif } static force_inline bool sync_bool_compare_and_swap(volatile u128* dest, u128 comp, u128 exch) { #if !defined(_MSC_VER) return __sync_bool_compare_and_swap((volatile __int128_t*)dest, (__int128_t&)comp, (__int128_t&)exch); #else return _InterlockedCompareExchange128((volatile long long*)dest, exch._u64[1], exch._u64[0], (long long*)&comp) != 0; #endif } static force_inline u128 sync_lock_test_and_set(volatile u128* dest, u128 value) { while (true) { const u128 old = *(u128*)dest; if (sync_bool_compare_and_swap(dest, old, value)) return old; } } static force_inline u128 sync_fetch_and_or(volatile u128* dest, u128 value) { while (true) { const u128 old = *(u128*)dest; if (sync_bool_compare_and_swap(dest, old, value | old)) return old; } } static force_inline u128 sync_fetch_and_and(volatile u128* dest, u128 value) { while (true) { const u128 old = *(u128*)dest; if (sync_bool_compare_and_swap(dest, old, value & old)) return old; } } static force_inline u128 sync_fetch_and_xor(volatile u128* dest, u128 value) { while (true) { const u128 old = *(u128*)dest; if (sync_bool_compare_and_swap(dest, old, value ^ old)) return old; } } template struct se_t; template struct se_t { static force_inline u16 to(const T& src) { return _byteswap_ushort((u16&)src); } static force_inline T from(const u16 src) { const u16 res = _byteswap_ushort(src); return (T&)res; } }; template struct se_t { static force_inline u32 to(const T& src) { return _byteswap_ulong((u32&)src); } static force_inline T from(const u32 src) { const u32 res = _byteswap_ulong(src); return (T&)res; } }; template struct se_t { static force_inline u64 to(const T& src) { return _byteswap_uint64((u64&)src); } static force_inline T from(const u64 src) { const u64 res = _byteswap_uint64(src); return (T&)res; } }; template struct se_t { static force_inline u128 to(const T& src) { return u128::byteswap((u128&)src); } static force_inline T from(const u128& src) { const u128 res = u128::byteswap(src); return (T&)res; } }; template struct const_se_t; template struct const_se_t { static const u16 value = ((_value >> 8) & 0x00ff) | ((_value << 8) & 0xff00); }; template struct const_se_t { static const u32 value = ((_value >> 24) & 0x000000ff) | ((_value >> 8) & 0x0000ff00) | ((_value << 8) & 0x00ff0000) | ((_value << 24) & 0xff000000); }; template struct const_se_t { static const u64 value = ((_value >> 56) & 0x00000000000000ff) | ((_value >> 40) & 0x000000000000ff00) | ((_value >> 24) & 0x0000000000ff0000) | ((_value >> 8) & 0x00000000ff000000) | ((_value << 8) & 0x000000ff00000000) | ((_value << 24) & 0x0000ff0000000000) | ((_value << 40) & 0x00ff000000000000) | ((_value << 56) & 0xff00000000000000); }; template struct be_storage { static_assert(!size, "Bad be_storage_t<> type"); }; template struct be_storage { using type = u16; }; template struct be_storage { using type = u32; }; template struct be_storage { using type = u64; }; template struct be_storage { using type = u128; }; template using be_storage_t = typename be_storage::type; template class be_t { // TODO (complicated cases like int-float conversions are not handled correctly) template struct _convert { static force_inline be_t& func(Tfrom& be_value) { Tto res = be_value; return (be_t&)res; } }; template struct _convert { static force_inline be_t& func(Tfrom& be_value) { Tto res = se_t::func(se_t::func(be_value)); return (be_t&)res; } }; template struct _convert { static force_inline be_t& func(Tfrom& be_value) { Tto res = be_value >> ((sizeof(Tfrom) - sizeof(Tto)) * 8); return (be_t&)res; } }; public: using type = std::remove_cv_t; using stype = be_storage_t>; #ifdef IS_LE_MACHINE stype m_data; // don't access directly #else type m_data; // don't access directly #endif static_assert(!std::is_class::value, "be_t<> error: invalid type (class or structure)"); static_assert(!std::is_union::value || std::is_same::value, "be_t<> error: invalid type (union)"); static_assert(!std::is_pointer::value, "be_t<> error: invalid type (pointer)"); static_assert(!std::is_reference::value, "be_t<> error: invalid type (reference)"); static_assert(!std::is_array::value, "be_t<> error: invalid type (array)"); static_assert(!std::is_enum::value, "be_t<> error: invalid type (enumeration), use integral type instead"); static_assert(__alignof(type) == __alignof(stype), "be_t<> error: unexpected alignment"); be_t() = default; be_t(const be_t&) = default; template::value>> be_t(const type& value) #ifdef IS_LE_MACHINE : m_data(se_t::to(value)) #else : m_data(value) #endif { } // get value in current machine byte ordering force_inline type value() const { #ifdef IS_LE_MACHINE return se_t::from(m_data); #else return m_data; #endif } // get underlying data without any byte order manipulation const stype& data() const { #ifdef IS_LE_MACHINE return m_data; #else return reinterpret_cast(m_data); #endif } be_t& operator =(const be_t&) = default; template std::enable_if_t::value, be_t&> operator =(const CT& value) { #ifdef IS_LE_MACHINE m_data = se_t::to(value); #else m_data = value; #endif return *this; } //template::value>> operator CT() const //{ // return value(); //} operator type() const { return value(); } // conversion to another be_t type //template operator be_t() const //{ // return value(); // //return _convert sizeof(T)) ? 1 : (sizeof(T1) < sizeof(T) ? 2 : 0))>::func(m_data); //} template be_t& operator +=(const T1& right) { return *this = value() + right; } template be_t& operator -=(const T1& right) { return *this = value() - right; } template be_t& operator *=(const T1& right) { return *this = value() * right; } template be_t& operator /=(const T1& right) { return *this = value() / right; } template be_t& operator %=(const T1& right) { return *this = value() % right; } template be_t& operator <<=(const T1& right) { return *this = value() << right; } template be_t& operator >>=(const T1& right) { return *this = value() >> right; } template be_t& operator &=(const T1& right) { return m_data &= be_t(right).data(), *this; } template be_t& operator |=(const T1& right) { return m_data |= be_t(right).data(), *this; } template be_t& operator ^=(const T1& right) { return m_data ^= be_t(right).data(), *this; } be_t operator ++(int) { be_t res = *this; *this += 1; return res; } be_t operator --(int) { be_t res = *this; *this -= 1; return res; } be_t& operator ++() { *this += 1; return *this; } be_t& operator --() { *this -= 1; return *this; } }; template inline std::enable_if_t::value && std::is_integral::value, bool> operator ==(const be_t& left, const be_t& right) { return left.data() == right.data(); } template inline std::enable_if_t::value && std::is_integral::value, bool> operator !=(const be_t& left, const be_t& right) { return left.data() != right.data(); } template inline std::enable_if_t::value && std::is_integral::value, be_t> operator &(const be_t& left, const be_t& right) { be_t result; result.m_data = left.data() & right.data(); return result; } template inline std::enable_if_t::value && std::is_integral::value, be_t> operator |(const be_t& left, const be_t& right) { be_t result; result.m_data = left.data() | right.data(); return result; } template inline std::enable_if_t::value && std::is_integral::value, be_t> operator ^(const be_t& left, const be_t& right) { be_t result; result.m_data = left.data() ^ right.data(); return result; } template inline std::enable_if_t::value, be_t> operator ~(const be_t& arg) { be_t result; result.m_data = ~arg.data(); return result; } template struct is_be_t : public std::integral_constant { }; template struct is_be_t> : public std::integral_constant { }; template struct is_be_t : public std::integral_constant::value> { }; template struct is_be_t : public std::integral_constant::value> { }; // to_be_t helper struct template struct to_be { using type = std::conditional_t::value || std::is_enum::value || std::is_same::value, be_t, T>; }; // be_t if possible, T otherwise template using to_be_t = typename to_be::type; template struct to_be { // move const qualifier using type = const to_be_t; }; template struct to_be { // move volatile qualifier using type = volatile to_be_t; }; template<> struct to_be { using type = void; }; template<> struct to_be { using type = bool; }; template<> struct to_be { using type = char; }; template<> struct to_be { using type = u8; }; template<> struct to_be { using type = s8; }; template class le_t { public: using type = std::remove_cv_t; using stype = be_storage_t>; type m_data; // don't access directly static_assert(!std::is_class::value, "le_t<> error: invalid type (class or structure)"); static_assert(!std::is_union::value || std::is_same::value, "le_t<> error: invalid type (union)"); static_assert(!std::is_pointer::value, "le_t<> error: invalid type (pointer)"); static_assert(!std::is_reference::value, "le_t<> error: invalid type (reference)"); static_assert(!std::is_array::value, "le_t<> error: invalid type (array)"); static_assert(!std::is_enum::value, "le_t<> error: invalid type (enumeration), use integral type instead"); static_assert(__alignof(type) == __alignof(stype), "le_t<> error: unexpected alignment"); le_t() = default; le_t(const le_t&) = default; template::value>> le_t(const type& value) : m_data(value) { } type value() const { return m_data; } const stype& data() const { return reinterpret_cast(m_data); } le_t& operator =(const le_t& value) = default; template std::enable_if_t::value, le_t&> operator =(const CT& value) { m_data = value; return *this; } operator type() const { return value(); } // conversion to another le_t type //template operator le_t() const //{ // return value(); //} template le_t& operator +=(const T1& right) { return *this = value() + right; } template le_t& operator -=(const T1& right) { return *this = value() - right; } template le_t& operator *=(const T1& right) { return *this = value() * right; } template le_t& operator /=(const T1& right) { return *this = value() / right; } template le_t& operator %=(const T1& right) { return *this = value() % right; } template le_t& operator <<=(const T1& right) { return *this = value() << right; } template le_t& operator >>=(const T1& right) { return *this = value() >> right; } template le_t& operator &=(const T1& right) { return m_data &= le_t(right).data(), *this; } template le_t& operator |=(const T1& right) { return m_data |= le_t(right).data(), *this; } template le_t& operator ^=(const T1& right) { return m_data ^= le_t(right).data(), *this; } le_t operator ++(int) { le_t res = *this; *this += 1; return res; } le_t operator --(int) { le_t res = *this; *this -= 1; return res; } le_t& operator ++() { *this += 1; return *this; } le_t& operator --() { *this -= 1; return *this; } }; template struct is_le_t : public std::integral_constant { }; template struct is_le_t> : public std::integral_constant { }; template struct is_le_t : public std::integral_constant::value> { }; template struct is_le_t : public std::integral_constant::value> { }; template struct to_le { using type = std::conditional_t::value || std::is_enum::value || std::is_same::value, le_t, T>; }; // le_t if possible, T otherwise template using to_le_t = typename to_le::type; template struct to_le { // move const qualifier using type = const to_le_t; }; template struct to_le { // move volatile qualifier using type = volatile to_le_t; }; template<> struct to_le { using type = void; }; template<> struct to_le { using type = bool; }; template<> struct to_le { using type = char; }; template<> struct to_le { using type = u8; }; template<> struct to_le { using type = s8; }; // to_ne_t helper struct template struct to_ne { using type = T; }; template struct to_ne> { using type = T; }; template struct to_ne> { using type = T; }; // restore native endianness for T: returns T for be_t or le_t, T otherwise template using to_ne_t = typename to_ne::type; template struct to_ne { // move const qualifier using type = const to_ne_t; }; template struct to_ne { // move volatile qualifier using type = volatile to_ne_t; };