#pragma once #include #include #include using schar = signed char; using uchar = unsigned char; using ushort = unsigned short; using uint = unsigned int; using ulong = unsigned long; using ullong = unsigned long long; using llong = long long; using u8 = std::uint8_t; using u16 = std::uint16_t; using u32 = std::uint32_t; using u64 = std::uint64_t; using s8 = std::int8_t; using s16 = std::int16_t; using s32 = std::int32_t; using s64 = std::int64_t; namespace gsl { enum class byte : u8; } // Formatting helper, type-specific preprocessing for improving safety and functionality template struct fmt_unveil; struct fmt_type_info; namespace fmt { template const fmt_type_info* get_type_info(); } template struct se_storage; template class se_t; template struct atomic_storage; template struct atomic_add; template struct atomic_sub; template struct atomic_and; template struct atomic_or; template struct atomic_xor; template struct atomic_pre_inc; template struct atomic_post_inc; template struct atomic_pre_dec; template struct atomic_post_dec; template struct atomic_test_and_set; template struct atomic_test_and_reset; template struct atomic_test_and_complement; template class atomic_t; #ifdef _MSC_VER using std::void_t; #else namespace void_details { template struct make_void { using type = void; }; } template using void_t = typename void_details::make_void::type; #endif // Extract T::simple_type if available, remove cv qualifiers template struct simple_type_helper { using type = typename std::remove_cv::type; }; template struct simple_type_helper> { using type = typename T::simple_type; }; template using simple_t = typename simple_type_helper::type; // Bool type equivalent class b8 { u8 m_value; public: b8() = default; constexpr b8(bool value) : m_value(value) { } constexpr operator bool() const { return m_value != 0; } }; // Bool wrapper for restricting bool result conversions struct explicit_bool_t { const bool value; constexpr explicit_bool_t(bool value) : value(value) { } explicit constexpr operator bool() const { return value; } }; #ifndef _MSC_VER using u128 = __uint128_t; using s128 = __int128_t; #else #include "intrin.h" // Unsigned 128-bit integer implementation (TODO) struct alignas(16) u128 { u64 lo, hi; u128() = default; constexpr u128(u64 l) : lo(l) , hi(0) { } friend u128 operator+(const u128& l, const u128& r) { u128 value; _addcarry_u64(_addcarry_u64(0, r.lo, l.lo, &value.lo), r.hi, l.hi, &value.hi); return value; } friend u128 operator+(const u128& l, u64 r) { u128 value; _addcarry_u64(_addcarry_u64(0, r, l.lo, &value.lo), l.hi, 0, &value.hi); return value; } friend u128 operator+(u64 l, const u128& r) { u128 value; _addcarry_u64(_addcarry_u64(0, r.lo, l, &value.lo), 0, r.hi, &value.hi); return value; } friend u128 operator-(const u128& l, const u128& r) { u128 value; _subborrow_u64(_subborrow_u64(0, r.lo, l.lo, &value.lo), r.hi, l.hi, &value.hi); return value; } friend u128 operator-(const u128& l, u64 r) { u128 value; _subborrow_u64(_subborrow_u64(0, r, l.lo, &value.lo), 0, l.hi, &value.hi); return value; } friend u128 operator-(u64 l, const u128& r) { u128 value; _subborrow_u64(_subborrow_u64(0, r.lo, l, &value.lo), r.hi, 0, &value.hi); return value; } u128 operator+() const { return *this; } u128 operator-() const { u128 value; _subborrow_u64(_subborrow_u64(0, lo, 0, &value.lo), hi, 0, &value.hi); return value; } u128& operator++() { _addcarry_u64(_addcarry_u64(0, 1, lo, &lo), 0, hi, &hi); return *this; } u128 operator++(int) { u128 value = *this; _addcarry_u64(_addcarry_u64(0, 1, lo, &lo), 0, hi, &hi); return value; } u128& operator--() { _subborrow_u64(_subborrow_u64(0, 1, lo, &lo), 0, hi, &hi); return *this; } u128 operator--(int) { u128 value = *this; _subborrow_u64(_subborrow_u64(0, 1, lo, &lo), 0, hi, &hi); return value; } u128 operator~() const { u128 value; value.lo = ~lo; value.hi = ~hi; return value; } friend u128 operator&(const u128& l, const u128& r) { u128 value; value.lo = l.lo & r.lo; value.hi = l.hi & r.hi; return value; } friend u128 operator|(const u128& l, const u128& r) { u128 value; value.lo = l.lo | r.lo; value.hi = l.hi | r.hi; return value; } friend u128 operator^(const u128& l, const u128& r) { u128 value; value.lo = l.lo ^ r.lo; value.hi = l.hi ^ r.hi; return value; } u128& operator+=(const u128& r) { _addcarry_u64(_addcarry_u64(0, r.lo, lo, &lo), r.hi, hi, &hi); return *this; } u128& operator+=(uint64_t r) { _addcarry_u64(_addcarry_u64(0, r, lo, &lo), 0, hi, &hi); return *this; } u128& operator&=(const u128& r) { lo &= r.lo; hi &= r.hi; return *this; } u128& operator|=(const u128& r) { lo |= r.lo; hi |= r.hi; return *this; } u128& operator^=(const u128& r) { lo ^= r.lo; hi ^= r.hi; return *this; } }; // Signed 128-bit integer implementation (TODO) struct alignas(16) s128 { u64 lo; s64 hi; s128() = default; constexpr s128(s64 l) : hi(l >> 63) , lo(l) { } constexpr s128(u64 l) : hi(0) , lo(l) { } }; #endif static_assert(alignof(u128) == 16 && sizeof(u128) == 16, "Wrong u128 implementation"); static_assert(alignof(s128) == 16 && sizeof(s128) == 16, "Wrong s128 implementation"); union alignas(2) f16 { u16 _u16; u8 _u8[2]; explicit f16(u16 raw) { _u16 = raw; } explicit operator float() const { // See http://stackoverflow.com/a/26779139 // The conversion doesn't handle NaN/Inf u32 raw = ((_u16 & 0x8000) << 16) | // Sign (just moved) (((_u16 & 0x7c00) + 0x1C000) << 13) | // Exponent ( exp - 15 + 127) ((_u16 & 0x03FF) << 13); // Mantissa return (float&)raw; } }; using f32 = float; using f64 = double; struct ignore { template ignore(T) { } }; template ::value>> constexpr T align(const T& value, std::uint64_t align) { return static_cast((value + (align - 1)) & ~(align - 1)); } namespace fmt { [[noreturn]] void raw_error(const char* msg); [[noreturn]] void raw_verify_error(const char* msg, uint position); [[noreturn]] void raw_narrow_error(const char* msg, const fmt_type_info* sup, u64 arg); } struct verify_func { template bool operator()(T&& value) const { if (std::forward(value)) { return true; } return false; } }; template struct verify_impl { const char* cause; template auto operator,(T&& value) const { // Verification (can be safely disabled) if (!verify_func()(std::forward(value))) { fmt::raw_verify_error(cause, N); } return verify_impl{cause}; } }; // Verification helper, checks several conditions delimited with comma operator inline auto verify(const char* cause) { return verify_impl<0>{cause}; } // Verification helper (returns value or lvalue reference, may require to use verify_move instead) template inline T verify(T&& value, const char* cause, F&& func = F()) { if (!func(std::forward(value))) { fmt::raw_verify_error(cause, 0); } return std::forward(value); } // Verification helper (must be used in return expression or in place of std::move) template inline std::remove_reference_t&& verify_move(T&& value, const char* cause, F&& func = F()) { if (!func(std::forward(value))) { fmt::raw_verify_error(cause, 0); } return std::move(value); } // Narrow cast (throws on failure) template (std::declval()))> inline To narrow(const From& value, const char* msg = nullptr) { // Allow "narrowing to void" and ensure it always fails in this case auto&& result = static_cast::value, From, To>>(value); if (std::is_void::value || static_cast(result) != value) { // Pack value as formatting argument fmt::raw_narrow_error(msg, fmt::get_type_info::type>(), fmt_unveil::get(value)); } return static_cast::value, void, decltype(result)>>(result); } // Returns u32 size() for container template (std::declval().size()))> inline u32 size32(const CT& container, const char* msg = nullptr) { return narrow(container.size(), msg); } // Returns u32 size for an array template constexpr u32 size32(const T (&)[Size], const char* msg = nullptr) { return static_cast(Size); } template ::value>> constexpr bool test(const T1& value) { return value != 0; } template ::value && std::is_integral::value>> constexpr bool test(const T1& lhs, const T2& rhs) { return (lhs & rhs) != 0; } template ::value && std::is_integral::value>> inline bool test_and_set(T& lhs, const T2& rhs) { const bool result = (lhs & rhs) != 0; lhs |= rhs; return result; } template ::value && std::is_integral::value>> inline bool test_and_reset(T& lhs, const T2& rhs) { const bool result = (lhs & rhs) != 0; lhs &= ~rhs; return result; } template ::value && std::is_integral::value>> inline bool test_and_complement(T& lhs, const T2& rhs) { const bool result = (lhs & rhs) != 0; lhs ^= rhs; return result; } // Simplified hash algorithm for pointers. May be used in std::unordered_(map|set). template struct pointer_hash { std::size_t operator()(T* ptr) const { return reinterpret_cast(ptr) / Align; } }; template struct value_hash { std::size_t operator()(T value) const { return static_cast(value) >> Shift; } }; // Contains value of any POD type with fixed size and alignment. TT<> is the type converter applied. // For example, `simple_t` may be used to remove endianness. template