#include "stdafx.h" #include "Config.h" #include "Utilities/types.h" #include "util/yaml.hpp" #include #include [[noreturn]] void report_fatal_error(const std::string&); LOG_CHANNEL(cfg_log, "CFG"); namespace cfg { _base::_base(type _type) : m_type(_type) { if (_type != type::node) { cfg_log.fatal("Invalid root node" HERE); } } _base::_base(type _type, node* owner, const std::string& name, bool dynamic) : m_type(_type), m_dynamic(dynamic) { for (const auto& pair : owner->m_nodes) { if (pair.first == name) { cfg_log.fatal("Node already exists: %s" HERE, name); } } owner->m_nodes.emplace_back(name, this); } bool _base::from_string(const std::string&, bool) { report_fatal_error("from_string() purecall" HERE); } bool _base::from_list(std::vector&&) { report_fatal_error("from_list() purecall" HERE); } // Emit YAML static void encode(YAML::Emitter& out, const class _base& rhs); // Incrementally load config entries from YAML::Node. // The config value is preserved if the corresponding YAML node doesn't exist. static void decode(const YAML::Node& data, class _base& rhs, bool dynamic = false); } std::vector cfg::make_int_range(s64 min, s64 max) { return {std::to_string(min), std::to_string(max)}; } bool cfg::try_to_int64(s64* out, const std::string& value, s64 min, s64 max) { s64 result; const char* start = &value.front(); const char* end = &value.back() + 1; int base = 10; if (start[0] == '0' && (start[1] == 'x' || start[1] == 'X')) { // Limited hex support base = 16; start += 2; } const auto ret = std::from_chars(start, end, result, base); if (ret.ec != std::errc() || ret.ptr != end) { if (out) cfg_log.error("cfg::try_to_int('%s'): invalid integer", value); return false; } if (result < min || result > max) { if (out) cfg_log.error("cfg::try_to_int('%s'): out of bounds (%d..%d)", value, min, max); return false; } if (out) *out = result; return true; } std::vector cfg::make_uint_range(u64 min, u64 max) { return {std::to_string(min), std::to_string(max)}; } bool cfg::try_to_uint64(u64* out, const std::string& value, u64 min, u64 max) { u64 result; const char* start = &value.front(); const char* end = &value.back() + 1; int base = 10; if (start[0] == '0' && (start[1] == 'x' || start[1] == 'X')) { // Limited hex support base = 16; start += 2; } const auto ret = std::from_chars(start, end, result, base); if (ret.ec != std::errc() || ret.ptr != end) { if (out) cfg_log.error("cfg::try_to_int('%s'): invalid integer", value); return false; } if (result < min || result > max) { if (out) cfg_log.error("cfg::try_to_int('%s'): out of bounds (%u..%u)", value, min, max); return false; } if (out) *out = result; return true; } bool cfg::try_to_enum_value(u64* out, decltype(&fmt_class_string::format) func, const std::string& value) { u64 max = -1; for (u64 i = 0;; i++) { std::string var; func(var, i); if (var == value) { if (out) *out = i; return true; } std::string hex; fmt_class_string::format(hex, i); if (var == hex) { break; } max = i; } u64 result; const char* start = &value.front(); const char* end = &value.back() + 1; int base = 10; if (start[0] == '0' && (start[1] == 'x' || start[1] == 'X')) { // Limited hex support base = 16; start += 2; } const auto ret = std::from_chars(start, end, result, base); if (ret.ec != std::errc() || ret.ptr != end) { if (out) cfg_log.error("cfg::try_to_enum_value('%s'): invalid enum or integer", value); return false; } if (result > max) { if (out) cfg_log.error("cfg::try_to_enum_value('%s'): out of bounds(0..%u)", value, max); return false; } if (out) *out = result; return true; } std::vector cfg::try_to_enum_list(decltype(&fmt_class_string::format) func) { std::vector result; for (u64 i = 0;; i++) { std::string var; func(var, i); std::string hex; fmt_class_string::format(hex, i); if (var == hex) { break; } result.emplace_back(std::move(var)); } return result; } void cfg::encode(YAML::Emitter& out, const cfg::_base& rhs) { switch (rhs.get_type()) { case type::node: { out << YAML::BeginMap; for (const auto& np : static_cast(rhs).get_nodes()) { out << YAML::Key << np.first; out << YAML::Value; encode(out, *np.second); } out << YAML::EndMap; return; } case type::set: { out << YAML::BeginSeq; for (const auto& str : static_cast(rhs).get_set()) { out << str; } out << YAML::EndSeq; return; } case type::log: { out << YAML::BeginMap; for (const auto& np : static_cast(rhs).get_map()) { if (np.second == logs::level::notice) continue; out << YAML::Key << np.first; out << YAML::Value << fmt::format("%s", np.second); } out << YAML::EndMap; return; } default: { out << rhs.to_string(); return; } } } void cfg::decode(const YAML::Node& data, cfg::_base& rhs, bool dynamic) { if (dynamic && !rhs.get_is_dynamic()) { return; } switch (rhs.get_type()) { case type::node: { if (data.IsScalar() || data.IsSequence()) { return; // ??? } for (const auto& pair : data) { if (!pair.first.IsScalar()) continue; // Find the key among existing nodes for (const auto& _pair : static_cast(rhs).get_nodes()) { if (_pair.first == pair.first.Scalar()) { decode(pair.second, *_pair.second, dynamic); } } } break; } case type::set: { std::vector values; if (YAML::convert::decode(data, values)) { rhs.from_list(std::move(values)); } break; } case type::log: { if (data.IsScalar() || data.IsSequence()) { return; // ??? } std::map values; for (const auto& pair : data) { if (!pair.first.IsScalar() || !pair.second.IsScalar()) continue; u64 value; if (cfg::try_to_enum_value(&value, &fmt_class_string::format, pair.second.Scalar())) { values.emplace(pair.first.Scalar(), static_cast(static_cast(value))); } } static_cast(rhs).set_map(std::move(values)); break; } default: { std::string value; if (YAML::convert::decode(data, value)) { rhs.from_string(value, dynamic); } break; // ??? } } } std::string cfg::node::to_string() const { YAML::Emitter out; cfg::encode(out, *this); return {out.c_str(), out.size()}; } bool cfg::node::from_string(const std::string& value, bool dynamic) { auto [result, error] = yaml_load(value); if (error.empty()) { cfg::decode(result, *this, dynamic); return true; } cfg_log.fatal("Failed to load node: %s", error); return false; } void cfg::node::from_default() { for (auto& node : m_nodes) { node.second->from_default(); } } void cfg::_bool::from_default() { m_value = def; } void cfg::string::from_default() { m_value = m_value.make(def); } void cfg::set_entry::from_default() { m_set = {}; } void cfg::log_entry::set_map(std::map&& map) { m_map = std::move(map); } void cfg::log_entry::from_default() { set_map({}); }