#include "stdafx.h" #include "Emu/Memory/Memory.h" #include "Emu/System.h" #include "Emu/IdManager.h" #include "Emu/Cell/RawSPUThread.h" #include "Thread.h" #ifdef _WIN32 #include #include #else #ifdef __APPLE__ #define _XOPEN_SOURCE #define __USE_GNU #endif #include #include #include #endif static void report_fatal_error(const std::string& msg) { std::string _msg = msg + "\n" "HOW TO REPORT ERRORS: Check the FAQ, README, other sources.\n" "Please, don't send incorrect reports. Thanks for understanding.\n"; #ifdef _WIN32 _msg += "Press (Ctrl+C) to copy this message."; MessageBoxA(0, _msg.c_str(), "Fatal error", MB_ICONERROR); // TODO: unicode message #else std::printf("Fatal error: \n%s", _msg.c_str()); #endif } [[noreturn]] void catch_all_exceptions() { try { throw; } catch (const std::exception& e) { report_fatal_error("Unhandled exception of type '"s + typeid(e).name() + "': "s + e.what()); } catch (...) { report_fatal_error("Unhandled exception (unknown)"); } std::abort(); } enum x64_reg_t : u32 { X64R_RAX = 0, X64R_RCX, X64R_RDX, X64R_RBX, X64R_RSP, X64R_RBP, X64R_RSI, X64R_RDI, X64R_R8, X64R_R9, X64R_R10, X64R_R11, X64R_R12, X64R_R13, X64R_R14, X64R_R15, X64R_XMM0 = 0, X64R_XMM1, X64R_XMM2, X64R_XMM3, X64R_XMM4, X64R_XMM5, X64R_XMM6, X64R_XMM7, X64R_XMM8, X64R_XMM9, X64R_XMM10, X64R_XMM11, X64R_XMM12, X64R_XMM13, X64R_XMM14, X64R_XMM15, X64R_AL, X64R_CL, X64R_DL, X64R_BL, X64R_AH, X64R_CH, X64R_DH, X64R_BH, X64_NOT_SET, X64_IMM8, X64_IMM16, X64_IMM32, X64_BIT_O = 0x90, X64_BIT_NO, X64_BIT_C, X64_BIT_NC, X64_BIT_Z, X64_BIT_NZ, X64_BIT_BE, X64_BIT_NBE, X64_BIT_S, X64_BIT_NS, X64_BIT_P, X64_BIT_NP, X64_BIT_L, X64_BIT_NL, X64_BIT_LE, X64_BIT_NLE, X64R_ECX = X64R_CL, }; enum x64_op_t : u32 { X64OP_NONE, X64OP_LOAD, // obtain and put the value into x64 register X64OP_LOAD_BE, X64OP_LOAD_CMP, X64OP_LOAD_TEST, X64OP_STORE, // take the value from x64 register or an immediate and use it X64OP_STORE_BE, X64OP_MOVS, X64OP_STOS, X64OP_XCHG, X64OP_CMPXCHG, X64OP_AND, // lock and [mem], ... X64OP_OR, // lock or [mem], ... X64OP_XOR, // lock xor [mem], ... X64OP_INC, // lock inc [mem] X64OP_DEC, // lock dec [mem] X64OP_ADD, // lock add [mem], ... X64OP_ADC, // lock adc [mem], ... X64OP_SUB, // lock sub [mem], ... X64OP_SBB, // lock sbb [mem], ... }; void decode_x64_reg_op(const u8* code, x64_op_t& out_op, x64_reg_t& out_reg, size_t& out_size, size_t& out_length) { // simple analysis of x64 code allows to reinterpret MOV or other instructions in any desired way out_length = 0; u8 rex = 0, pg2 = 0; bool oso = false, lock = false, repne = false, repe = false; enum : u8 { LOCK = 0xf0, REPNE = 0xf2, REPE = 0xf3, }; // check prefixes: for (;; code++, out_length++) { switch (const u8 prefix = *code) { case LOCK: // group 1 { if (lock) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): LOCK prefix found twice", (size_t)code - out_length); } lock = true; continue; } case REPNE: // group 1 { if (repne) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): REPNE/REPNZ prefix found twice", (size_t)code - out_length); } repne = true; continue; } case REPE: // group 1 { if (repe) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): REP/REPE/REPZ prefix found twice", (size_t)code - out_length); } repe = true; continue; } case 0x2e: // group 2 case 0x36: case 0x3e: case 0x26: case 0x64: case 0x65: { if (pg2) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): 0x%02x (group 2 prefix) found after 0x%02x", (size_t)code - out_length, prefix, pg2); } else { pg2 = prefix; // probably, segment register } continue; } case 0x66: // group 3 { if (oso) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): operand-size override prefix found twice", (size_t)code - out_length); } oso = true; continue; } case 0x67: // group 4 { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): address-size override prefix found", (size_t)code - out_length, prefix); out_op = X64OP_NONE; out_reg = X64_NOT_SET; out_size = 0; out_length = 0; return; } default: { if ((prefix & 0xf0) == 0x40) // check REX prefix { if (rex) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): 0x%02x (REX prefix) found after 0x%02x", (size_t)code - out_length, prefix, rex); } else { rex = prefix; } continue; } } } break; } auto get_modRM_reg = [](const u8* code, const u8 rex) -> x64_reg_t { return (x64_reg_t)(((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_RAX); }; auto get_modRM_reg_xmm = [](const u8* code, const u8 rex) -> x64_reg_t { return (x64_reg_t)(((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_XMM0); }; auto get_modRM_reg_lh = [](const u8* code) -> x64_reg_t { return (x64_reg_t)(((*code & 0x38) >> 3) + X64R_AL); }; auto get_op_size = [](const u8 rex, const bool oso) -> size_t { return rex & 8 ? 8 : (oso ? 2 : 4); }; auto get_modRM_size = [](const u8* code) -> size_t { switch (*code >> 6) // check Mod { case 0: return (*code & 0x07) == 4 ? 2 : 1; // check SIB case 1: return (*code & 0x07) == 4 ? 3 : 2; // check SIB (disp8) case 2: return (*code & 0x07) == 4 ? 6 : 5; // check SIB (disp32) default: return 1; } }; const u8 op1 = (out_length++, *code++), op2 = code[0], op3 = code[1]; switch (op1) { case 0x0f: { out_length++, code++; switch (op2) { case 0x11: case 0x29: { if (!repe && !repne) // MOVUPS/MOVAPS/MOVUPD/MOVAPD xmm/m, xmm { out_op = X64OP_STORE; out_reg = get_modRM_reg_xmm(code, rex); out_size = 16; out_length += get_modRM_size(code); return; } break; } case 0x7f: { if ((repe && !oso) || (!repe && oso)) // MOVDQU/MOVDQA xmm/m, xmm { out_op = X64OP_STORE; out_reg = get_modRM_reg_xmm(code, rex); out_size = 16; out_length += get_modRM_size(code); return; } break; } case 0xb0: { if (!oso) // CMPXCHG r8/m8, r8 { out_op = X64OP_CMPXCHG; out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code); out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0xb1: { if (true) // CMPXCHG r/m, r (16, 32, 64) { out_op = X64OP_CMPXCHG; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97: case 0x98: case 0x9a: case 0x9b: case 0x9c: case 0x9d: case 0x9e: case 0x9f: { if (!lock) // SETcc { out_op = X64OP_STORE; out_reg = x64_reg_t(X64_BIT_O + op2 - 0x90); // 0x90 .. 0x9f out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0x38: { out_length++, code++; switch (op3) { case 0xf0: case 0xf1: { if (!repne) // MOVBE { out_op = op3 == 0xf0 ? X64OP_LOAD_BE : X64OP_STORE_BE; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } } break; } } break; } case 0x20: { if (!oso) { out_op = X64OP_AND; out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code); out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0x21: { if (true) { out_op = X64OP_AND; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } case 0x80: { switch (auto mod_code = get_modRM_reg(code, 0)) { //case 0: out_op = X64OP_ADD; break; // TODO: strange info in instruction manual case 1: out_op = X64OP_OR; break; case 2: out_op = X64OP_ADC; break; case 3: out_op = X64OP_SBB; break; case 4: out_op = X64OP_AND; break; case 5: out_op = X64OP_SUB; break; case 6: out_op = X64OP_XOR; break; default: out_op = X64OP_LOAD_CMP; break; } out_reg = X64_IMM8; out_size = 1; out_length += get_modRM_size(code) + 1; return; } case 0x81: { switch (auto mod_code = get_modRM_reg(code, 0)) { case 0: out_op = X64OP_ADD; break; case 1: out_op = X64OP_OR; break; case 2: out_op = X64OP_ADC; break; case 3: out_op = X64OP_SBB; break; case 4: out_op = X64OP_AND; break; case 5: out_op = X64OP_SUB; break; case 6: out_op = X64OP_XOR; break; default: out_op = X64OP_LOAD_CMP; break; } out_reg = oso ? X64_IMM16 : X64_IMM32; out_size = get_op_size(rex, oso); out_length += get_modRM_size(code) + (oso ? 2 : 4); return; } case 0x83: { switch (auto mod_code = get_modRM_reg(code, 0)) { case 0: out_op = X64OP_ADD; break; case 1: out_op = X64OP_OR; break; case 2: out_op = X64OP_ADC; break; case 3: out_op = X64OP_SBB; break; case 4: out_op = X64OP_AND; break; case 5: out_op = X64OP_SUB; break; case 6: out_op = X64OP_XOR; break; default: out_op = X64OP_LOAD_CMP; break; } out_reg = X64_IMM8; out_size = get_op_size(rex, oso); out_length += get_modRM_size(code) + 1; return; } case 0x86: { if (!oso) // XCHG r8/m8, r8 { out_op = X64OP_XCHG; out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code); out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0x87: { if (true) // XCHG r/m, r (16, 32, 64) { out_op = X64OP_XCHG; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } case 0x88: { if (!lock && !oso) // MOV r8/m8, r8 { out_op = X64OP_STORE; out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code); out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0x89: { if (!lock) // MOV r/m, r (16, 32, 64) { out_op = X64OP_STORE; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } case 0x8a: { if (!lock && !oso) // MOV r8, r8/m8 { out_op = X64OP_LOAD; out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code); out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0x8b: { if (!lock) // MOV r, r/m (16, 32, 64) { out_op = X64OP_LOAD; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } case 0xa4: { if (!oso && !lock && !repe && !rex) // MOVS { out_op = X64OP_MOVS; out_reg = X64_NOT_SET; out_size = 1; return; } if (!oso && !lock && repe) // REP MOVS { out_op = X64OP_MOVS; out_reg = rex & 8 ? X64R_RCX : X64R_ECX; out_size = 1; return; } break; } case 0xaa: { if (!oso && !lock && !repe && !rex) // STOS { out_op = X64OP_STOS; out_reg = X64_NOT_SET; out_size = 1; return; } if (!oso && !lock && repe) // REP STOS { out_op = X64OP_STOS; out_reg = rex & 8 ? X64R_RCX : X64R_ECX; out_size = 1; return; } break; } case 0xc4: // 3-byte VEX prefix case 0xc5: // 2-byte VEX prefix { // Last prefix byte: op2 or op3 const u8 opx = op1 == 0xc5 ? op2 : op3; // Implied prefixes rex |= op2 & 0x80 ? 0 : 0x4; // REX.R rex |= op1 == 0xc4 && op3 & 0x80 ? 0x8 : 0; // REX.W ??? oso = (opx & 0x3) == 0x1; repe = (opx & 0x3) == 0x2; repne = (opx & 0x3) == 0x3; const u8 vopm = op1 == 0xc5 ? 1 : op2 & 0x1f; const u8 vop1 = op1 == 0xc5 ? op3 : code[2]; const u8 vlen = (opx & 0x4) ? 32 : 16; const u8 vreg = (~opx >> 3) & 0xf; out_length += op1 == 0xc5 ? 2 : 3; code += op1 == 0xc5 ? 2 : 3; if (vopm == 0x1) switch (vop1) // Implied leading byte 0x0F { case 0x11: case 0x29: { if (!repe && !repne) // VMOVAPS/VMOVAPD/VMOVUPS/VMOVUPD mem,reg { out_op = X64OP_STORE; out_reg = get_modRM_reg_xmm(code, rex); out_size = vlen; out_length += get_modRM_size(code); return; } break; } case 0x7f: { if (repe || oso) // VMOVDQU/VMOVDQA mem,reg { out_op = X64OP_STORE; out_reg = get_modRM_reg_xmm(code, rex); out_size = vlen; out_length += get_modRM_size(code); return; } break; } } break; } case 0xc6: { if (!lock && !oso && get_modRM_reg(code, 0) == 0) // MOV r8/m8, imm8 { out_op = X64OP_STORE; out_reg = X64_IMM8; out_size = 1; out_length += get_modRM_size(code) + 1; return; } break; } case 0xc7: { if (!lock && get_modRM_reg(code, 0) == 0) // MOV r/m, imm16/imm32 (16, 32, 64) { out_op = X64OP_STORE; out_reg = oso ? X64_IMM16 : X64_IMM32; out_size = get_op_size(rex, oso); out_length += get_modRM_size(code) + (oso ? 2 : 4); return; } break; } case 0xf6: { switch (auto mod_code = get_modRM_reg(code, 0)) { case 0: out_op = X64OP_LOAD_TEST; break; default: out_op = X64OP_NONE; break; // TODO... } out_reg = X64_IMM8; out_size = 1; out_length += get_modRM_size(code) + 1; return; } case 0xf7: { switch (auto mod_code = get_modRM_reg(code, 0)) { case 0: out_op = X64OP_LOAD_TEST; break; default: out_op = X64OP_NONE; break; // TODO... } out_reg = oso ? X64_IMM16 : X64_IMM32; out_size = get_op_size(rex, oso); out_length += get_modRM_size(code) + (oso ? 2 : 4); return; } } out_op = X64OP_NONE; out_reg = X64_NOT_SET; out_size = 0; out_length = 0; } #ifdef _WIN32 typedef CONTEXT x64_context; #define X64REG(context, reg) (&(&(context)->Rax)[reg]) #define XMMREG(context, reg) (reinterpret_cast(&(&(context)->Xmm0)[reg])) #define EFLAGS(context) ((context)->EFlags) #define ARG1(context) RCX(context) #define ARG2(context) RDX(context) #else typedef ucontext_t x64_context; #ifdef __APPLE__ #define X64REG(context, reg) (darwin_x64reg(context, reg)) #define XMMREG(context, reg) (reinterpret_cast(&(context)->uc_mcontext->__fs.__fpu_xmm0.__xmm_reg[reg])) #define EFLAGS(context) ((context)->uc_mcontext->__ss.__rflags) uint64_t* darwin_x64reg(x64_context *context, int reg) { auto *state = &context->uc_mcontext->__ss; switch(reg) { case 0: return &state->__rax; case 1: return &state->__rcx; case 2: return &state->__rdx; case 3: return &state->__rbx; case 4: return &state->__rsp; case 5: return &state->__rbp; case 6: return &state->__rsi; case 7: return &state->__rdi; case 8: return &state->__r8; case 9: return &state->__r9; case 10: return &state->__r10; case 11: return &state->__r11; case 12: return &state->__r12; case 13: return &state->__r13; case 14: return &state->__r14; case 15: return &state->__r15; case 16: return &state->__rip; default: LOG_ERROR(GENERAL, "Invalid register index: %d", reg); return nullptr; } } #else static const decltype(REG_RAX) reg_table[] = { REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI, REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, REG_RIP }; #define X64REG(context, reg) (&(context)->uc_mcontext.gregs[reg_table[reg]]) #define XMMREG(context, reg) (reinterpret_cast(&(context)->uc_mcontext.fpregs->_xmm[reg])) #define EFLAGS(context) ((context)->uc_mcontext.gregs[REG_EFL]) #endif // __APPLE__ #define ARG1(context) RDI(context) #define ARG2(context) RSI(context) #endif #define RAX(c) (*X64REG((c), 0)) #define RCX(c) (*X64REG((c), 1)) #define RDX(c) (*X64REG((c), 2)) #define RSP(c) (*X64REG((c), 4)) #define RSI(c) (*X64REG((c), 6)) #define RDI(c) (*X64REG((c), 7)) #define RIP(c) (*X64REG((c), 16)) bool get_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, size_t i_size, u64& out_value) { // get x64 reg value (for store operations) if (reg - X64R_RAX < 16) { // load the value from x64 register const u64 reg_value = *X64REG(context, reg - X64R_RAX); switch (d_size) { case 1: out_value = (u8)reg_value; return true; case 2: out_value = (u16)reg_value; return true; case 4: out_value = (u32)reg_value; return true; case 8: out_value = reg_value; return true; } } else if (reg - X64R_AL < 4 && d_size == 1) { out_value = (u8)(*X64REG(context, reg - X64R_AL)); return true; } else if (reg - X64R_AH < 4 && d_size == 1) { out_value = (u8)(*X64REG(context, reg - X64R_AH) >> 8); return true; } else if (reg == X64_IMM8) { // load the immediate value (assuming it's at the end of the instruction) const s8 imm_value = *(s8*)(RIP(context) + i_size - 1); switch (d_size) { case 1: out_value = (u8)imm_value; return true; case 2: out_value = (u16)imm_value; return true; // sign-extended case 4: out_value = (u32)imm_value; return true; // sign-extended case 8: out_value = (u64)imm_value; return true; // sign-extended } } else if (reg == X64_IMM16) { const s16 imm_value = *(s16*)(RIP(context) + i_size - 2); switch (d_size) { case 2: out_value = (u16)imm_value; return true; } } else if (reg == X64_IMM32) { const s32 imm_value = *(s32*)(RIP(context) + i_size - 4); switch (d_size) { case 4: out_value = (u32)imm_value; return true; case 8: out_value = (u64)imm_value; return true; // sign-extended } } else if (reg == X64R_ECX) { out_value = (u32)RCX(context); return true; } else if (reg >= X64_BIT_O && reg <= X64_BIT_NLE) { const u32 _cf = EFLAGS(context) & 0x1; const u32 _zf = EFLAGS(context) & 0x40; const u32 _sf = EFLAGS(context) & 0x80; const u32 _of = EFLAGS(context) & 0x800; const u32 _pf = EFLAGS(context) & 0x4; const u32 _l = (_sf << 4) ^ _of; // SF != OF switch (reg & ~1) { case X64_BIT_O: out_value = !!_of ^ (reg & 1); break; case X64_BIT_C: out_value = !!_cf ^ (reg & 1); break; case X64_BIT_Z: out_value = !!_zf ^ (reg & 1); break; case X64_BIT_BE: out_value = !!(_cf | _zf) ^ (reg & 1); break; case X64_BIT_S: out_value = !!_sf ^ (reg & 1); break; case X64_BIT_P: out_value = !!_pf ^ (reg & 1); break; case X64_BIT_L: out_value = !!_l ^ (reg & 1); break; case X64_BIT_LE: out_value = !!(_l | _zf) ^ (reg & 1); break; } return true; } LOG_ERROR(MEMORY, "get_x64_reg_value(): invalid arguments (reg=%d, d_size=%lld, i_size=%lld)", (u32)reg, d_size, i_size); return false; } bool put_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, u64 value) { // save x64 reg value (for load operations) if (reg - X64R_RAX < 16) { // save the value into x64 register switch (d_size) { case 1: *X64REG(context, reg - X64R_RAX) = value & 0xff | *X64REG(context, reg - X64R_RAX) & 0xffffff00; return true; case 2: *X64REG(context, reg - X64R_RAX) = value & 0xffff | *X64REG(context, reg - X64R_RAX) & 0xffff0000; return true; case 4: *X64REG(context, reg - X64R_RAX) = value & 0xffffffff; return true; case 8: *X64REG(context, reg - X64R_RAX) = value; return true; } } LOG_ERROR(MEMORY, "put_x64_reg_value(): invalid destination (reg=%d, d_size=%lld, value=0x%llx)", (u32)reg, d_size, value); return false; } bool set_x64_cmp_flags(x64_context* context, size_t d_size, u64 x, u64 y, bool carry = true) { switch (d_size) { case 1: break; case 2: break; case 4: break; case 8: break; default: LOG_ERROR(MEMORY, "set_x64_cmp_flags(): invalid d_size (%lld)", d_size); return false; } const u64 sign = 1ull << (d_size * 8 - 1); // sign mask const u64 diff = x - y; const u64 summ = x + y; if (carry && ((x & y) | ((x ^ y) & ~summ)) & sign) { EFLAGS(context) |= 0x1; // set CF } else if (carry) { EFLAGS(context) &= ~0x1; // clear CF } if (x == y) { EFLAGS(context) |= 0x40; // set ZF } else { EFLAGS(context) &= ~0x40; // clear ZF } if (diff & sign) { EFLAGS(context) |= 0x80; // set SF } else { EFLAGS(context) &= ~0x80; // clear SF } if ((x ^ summ) & (y ^ summ) & sign) { EFLAGS(context) |= 0x800; // set OF } else { EFLAGS(context) &= ~0x800; // clear OF } const u8 p1 = (u8)diff ^ ((u8)diff >> 4); const u8 p2 = p1 ^ (p1 >> 2); const u8 p3 = p2 ^ (p2 >> 1); if ((p3 & 1) == 0) { EFLAGS(context) |= 0x4; // set PF } else { EFLAGS(context) &= ~0x4; // clear PF } if (((x & y) | ((x ^ y) & ~summ)) & 0x8) { EFLAGS(context) |= 0x10; // set AF } else { EFLAGS(context) &= ~0x10; // clear AF } return true; } size_t get_x64_access_size(x64_context* context, x64_op_t op, x64_reg_t reg, size_t d_size, size_t i_size) { if (op == X64OP_MOVS || op == X64OP_STOS) { if (EFLAGS(context) & 0x400 /* direction flag */) { // skip reservation bound check (TODO) return 0; } if (reg != X64_NOT_SET) // get "full" access size from RCX register { u64 counter; if (!get_x64_reg_value(context, reg, 8, i_size, counter)) { return -1; } return d_size * counter; } } if (op == X64OP_CMPXCHG) { // Detect whether the instruction can't actually modify memory to avoid breaking reservation u64 cmp, exch; if (!get_x64_reg_value(context, reg, d_size, i_size, cmp) || !get_x64_reg_value(context, X64R_RAX, d_size, i_size, exch)) { return -1; } if (cmp == exch) { // skip reservation bound check return 0; } } return d_size; } namespace rsx { extern std::function g_access_violation_handler; } bool handle_access_violation(u32 addr, bool is_writing, x64_context* context) { if (rsx::g_access_violation_handler && rsx::g_access_violation_handler(addr, is_writing)) { return true; } auto code = (const u8*)RIP(context); x64_op_t op; x64_reg_t reg; size_t d_size; size_t i_size; // decode single x64 instruction that causes memory access decode_x64_reg_op(code, op, reg, d_size, i_size); auto report_opcode = [=]() { if (op == X64OP_NONE) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%ph): unsupported opcode: %s", code, *(be_t*)(code)); } }; if ((d_size | d_size + addr) >= 0x100000000ull) { LOG_ERROR(MEMORY, "Invalid d_size (0x%llx)", d_size); report_opcode(); return false; } // get length of data being accessed size_t a_size = get_x64_access_size(context, op, reg, d_size, i_size); if ((a_size | a_size + addr) >= 0x100000000ull) { LOG_ERROR(MEMORY, "Invalid a_size (0x%llx)", a_size); report_opcode(); return false; } // check if address is RawSPU MMIO register if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET) { auto thread = idm::get((addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET); if (!thread) { return false; } if (a_size != 4 || !d_size || !i_size) { LOG_ERROR(MEMORY, "Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", (u32)op, (u32)reg, d_size, a_size, i_size); report_opcode(); return false; } switch (op) { case X64OP_LOAD: case X64OP_LOAD_BE: case X64OP_LOAD_CMP: case X64OP_LOAD_TEST: { u32 value; if (is_writing || !thread->read_reg(addr, value)) { return false; } if (op != X64OP_LOAD_BE) { value = se_storage::swap(value); } if (op == X64OP_LOAD_CMP) { u64 rvalue; if (!get_x64_reg_value(context, reg, d_size, i_size, rvalue) || !set_x64_cmp_flags(context, d_size, value, rvalue)) { return false; } break; } if (op == X64OP_LOAD_TEST) { u64 rvalue; if (!get_x64_reg_value(context, reg, d_size, i_size, rvalue) || !set_x64_cmp_flags(context, d_size, value & rvalue, 0)) { return false; } break; } if (!put_x64_reg_value(context, reg, d_size, value)) { return false; } break; } case X64OP_STORE: case X64OP_STORE_BE: { u64 reg_value; if (!is_writing || !get_x64_reg_value(context, reg, d_size, i_size, reg_value)) { return false; } if (!thread->write_reg(addr, op == X64OP_STORE ? se_storage::swap((u32)reg_value) : (u32)reg_value)) { return false; } break; } case X64OP_MOVS: // possibly, TODO case X64OP_STOS: default: { LOG_ERROR(MEMORY, "Invalid or unsupported operation (op=%d, reg=%d, d_size=%lld, i_size=%lld)", (u32)op, (u32)reg, d_size, i_size); report_opcode(); return false; } } // skip processed instruction RIP(context) += i_size; return true; } // check if fault is caused by the reservation return vm::reservation_query(addr, (u32)a_size, is_writing, [&]() -> bool { // write memory using "privileged" access to avoid breaking reservation if (!d_size || !i_size) { LOG_ERROR(MEMORY, "Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", (u32)op, (u32)reg, d_size, a_size, i_size); report_opcode(); return false; } switch (op) { case X64OP_STORE: case X64OP_STORE_BE: { if (d_size == 16 && op == X64OP_STORE) { if (reg - X64R_XMM0 >= 16) { LOG_ERROR(MEMORY, "X64OP_STORE: d_size=16, reg=%d", (u32)reg); return false; } std::memcpy(vm::base_priv(addr), XMMREG(context, reg - X64R_XMM0), 16); break; } u64 reg_value; if (!get_x64_reg_value(context, reg, d_size, i_size, reg_value)) { return false; } if (op == X64OP_STORE_BE && d_size == 2) { reg_value = se_storage::swap((u16)reg_value); } else if (op == X64OP_STORE_BE && d_size == 4) { reg_value = se_storage::swap((u32)reg_value); } else if (op == X64OP_STORE_BE && d_size == 8) { reg_value = se_storage::swap(reg_value); } else if (op == X64OP_STORE_BE) { return false; } if (d_size == 1) { *(volatile u8*)vm::base_priv(addr) = (u8)reg_value; } else if (d_size == 2 && addr % 2 == 0) { *(volatile u16*)vm::base_priv(addr) = (u16)reg_value; } else if (d_size == 4 && addr % 4 == 0) { *(volatile u32*)vm::base_priv(addr) = (u32)reg_value; } else if (d_size == 8 && addr % 8 == 0) { *(volatile u64*)vm::base_priv(addr) = (u64)reg_value; } else { std::memcpy(vm::base_priv(addr), ®_value, d_size); } break; } case X64OP_MOVS: { if (d_size > 8) { LOG_ERROR(MEMORY, "X64OP_MOVS: d_size=%lld", d_size); return false; } if (vm::base(addr) != (void*)RDI(context)) { LOG_ERROR(MEMORY, "X64OP_MOVS: rdi=0x%llx, rsi=0x%llx, addr=0x%x", (u64)RDI(context), (u64)RSI(context), addr); return false; } u32 a_addr = addr; while (a_addr >> 12 == addr >> 12) { u64 value; // copy data std::memcpy(&value, (void*)RSI(context), d_size); std::memcpy(vm::base_priv(a_addr), &value, d_size); // shift pointers if (EFLAGS(context) & 0x400 /* direction flag */) { LOG_ERROR(MEMORY, "X64OP_MOVS TODO: reversed direction"); return false; //RSI(context) -= d_size; //RDI(context) -= d_size; //a_addr -= (u32)d_size; } else { RSI(context) += d_size; RDI(context) += d_size; a_addr += (u32)d_size; } // decrement counter if (reg == X64_NOT_SET || !--RCX(context)) { break; } } if (reg == X64_NOT_SET || !RCX(context)) { break; } // don't skip partially processed instruction return true; } case X64OP_STOS: { if (d_size > 8) { LOG_ERROR(MEMORY, "X64OP_STOS: d_size=%lld", d_size); return false; } if (vm::base(addr) != (void*)RDI(context)) { LOG_ERROR(MEMORY, "X64OP_STOS: rdi=0x%llx, addr=0x%x", (u64)RDI(context), addr); return false; } u64 value; if (!get_x64_reg_value(context, X64R_RAX, d_size, i_size, value)) { return false; } u32 a_addr = addr; while (a_addr >> 12 == addr >> 12) { // fill data with value std::memcpy(vm::base_priv(a_addr), &value, d_size); // shift pointers if (EFLAGS(context) & 0x400 /* direction flag */) { LOG_ERROR(MEMORY, "X64OP_STOS TODO: reversed direction"); return false; //RDI(context) -= d_size; //a_addr -= (u32)d_size; } else { RDI(context) += d_size; a_addr += (u32)d_size; } // decrement counter if (reg == X64_NOT_SET || !--RCX(context)) { break; } } if (reg == X64_NOT_SET || !RCX(context)) { break; } // don't skip partially processed instruction return true; } case X64OP_XCHG: { u64 reg_value; if (!get_x64_reg_value(context, reg, d_size, i_size, reg_value)) { return false; } switch (d_size) { case 1: reg_value = ((atomic_t*)vm::base_priv(addr))->exchange((u8)reg_value); break; case 2: reg_value = ((atomic_t*)vm::base_priv(addr))->exchange((u16)reg_value); break; case 4: reg_value = ((atomic_t*)vm::base_priv(addr))->exchange((u32)reg_value); break; case 8: reg_value = ((atomic_t*)vm::base_priv(addr))->exchange((u64)reg_value); break; default: return false; } if (!put_x64_reg_value(context, reg, d_size, reg_value)) { return false; } break; } case X64OP_CMPXCHG: { u64 reg_value, old_value, cmp_value; if (!get_x64_reg_value(context, reg, d_size, i_size, reg_value) || !get_x64_reg_value(context, X64R_RAX, d_size, i_size, cmp_value)) { return false; } switch (d_size) { case 1: old_value = ((atomic_t*)vm::base_priv(addr))->compare_and_swap((u8)cmp_value, (u8)reg_value); break; case 2: old_value = ((atomic_t*)vm::base_priv(addr))->compare_and_swap((u16)cmp_value, (u16)reg_value); break; case 4: old_value = ((atomic_t*)vm::base_priv(addr))->compare_and_swap((u32)cmp_value, (u32)reg_value); break; case 8: old_value = ((atomic_t*)vm::base_priv(addr))->compare_and_swap((u64)cmp_value, (u64)reg_value); break; default: return false; } if (!put_x64_reg_value(context, X64R_RAX, d_size, old_value) || !set_x64_cmp_flags(context, d_size, cmp_value, old_value)) { return false; } break; } case X64OP_AND: { u64 value; if (!get_x64_reg_value(context, reg, d_size, i_size, value)) { return false; } switch (d_size) { case 1: value = *(atomic_t*)vm::base_priv(addr) &= (u8)value; break; case 2: value = *(atomic_t*)vm::base_priv(addr) &= (u16)value; break; case 4: value = *(atomic_t*)vm::base_priv(addr) &= (u32)value; break; case 8: value = *(atomic_t*)vm::base_priv(addr) &= (u64)value; break; default: return false; } if (!set_x64_cmp_flags(context, d_size, value, 0)) { return false; } break; } case X64OP_OR: { u64 value; if (!get_x64_reg_value(context, reg, d_size, i_size, value)) { return false; } switch (d_size) { case 1: value = *(atomic_t*)vm::base_priv(addr) |= (u8)value; break; case 2: value = *(atomic_t*)vm::base_priv(addr) |= (u16)value; break; case 4: value = *(atomic_t*)vm::base_priv(addr) |= (u32)value; break; case 8: value = *(atomic_t*)vm::base_priv(addr) |= (u64)value; break; default: return false; } if (!set_x64_cmp_flags(context, d_size, value, 0)) { return false; } break; } case X64OP_XOR: { u64 value; if (!get_x64_reg_value(context, reg, d_size, i_size, value)) { return false; } switch (d_size) { case 1: value = *(atomic_t*)vm::base_priv(addr) ^= (u8)value; break; case 2: value = *(atomic_t*)vm::base_priv(addr) ^= (u16)value; break; case 4: value = *(atomic_t*)vm::base_priv(addr) ^= (u32)value; break; case 8: value = *(atomic_t*)vm::base_priv(addr) ^= (u64)value; break; default: return false; } if (!set_x64_cmp_flags(context, d_size, value, 0)) { return false; } break; } case X64OP_INC: { u64 value; switch (d_size) { case 1: value = ++*(atomic_t*)vm::base_priv(addr); break; case 2: value = ++*(atomic_t*)vm::base_priv(addr); break; case 4: value = ++*(atomic_t*)vm::base_priv(addr); break; case 8: value = ++*(atomic_t*)vm::base_priv(addr); break; default: return false; } if (!set_x64_cmp_flags(context, d_size, value, 1, false)) // ??? { return false; } break; } case X64OP_DEC: { u64 value; switch (d_size) { case 1: value = --*(atomic_t*)vm::base_priv(addr); break; case 2: value = --*(atomic_t*)vm::base_priv(addr); break; case 4: value = --*(atomic_t*)vm::base_priv(addr); break; case 8: value = --*(atomic_t*)vm::base_priv(addr); break; default: return false; } if (!set_x64_cmp_flags(context, d_size, value, -1, false)) // ??? { return false; } break; } case X64OP_ADD: { u64 value, new_value; if (!get_x64_reg_value(context, reg, d_size, i_size, value)) { return false; } switch (d_size) { case 1: new_value = *(atomic_t*)vm::base_priv(addr) += (u8)value; break; case 2: new_value = *(atomic_t*)vm::base_priv(addr) += (u16)value; break; case 4: new_value = *(atomic_t*)vm::base_priv(addr) += (u32)value; break; case 8: new_value = *(atomic_t*)vm::base_priv(addr) += (u64)value; break; default: return false; } if (!set_x64_cmp_flags(context, d_size, new_value, value)) // ??? { return false; } break; } case X64OP_ADC: { u64 value, new_value; if (!get_x64_reg_value(context, reg, d_size, i_size, value)) { return false; } switch (d_size) { case 1: new_value = *(atomic_t*)vm::base_priv(addr) += (u8)(value + (EFLAGS(context) & 1)); break; case 2: new_value = *(atomic_t*)vm::base_priv(addr) += (u16)(value + (EFLAGS(context) & 1)); break; case 4: new_value = *(atomic_t*)vm::base_priv(addr) += (u32)(value + (EFLAGS(context) & 1)); break; case 8: new_value = *(atomic_t*)vm::base_priv(addr) += (u64)(value + (EFLAGS(context) & 1)); break; default: return false; } if (!set_x64_cmp_flags(context, d_size, new_value, value + (EFLAGS(context) & 1))) // ??? { return false; } break; } case X64OP_SUB: { u64 value, new_value; if (!get_x64_reg_value(context, reg, d_size, i_size, value)) { return false; } switch (d_size) { case 1: new_value = *(atomic_t*)vm::base_priv(addr) -= (u8)value; break; case 2: new_value = *(atomic_t*)vm::base_priv(addr) -= (u16)value; break; case 4: new_value = *(atomic_t*)vm::base_priv(addr) -= (u32)value; break; case 8: new_value = *(atomic_t*)vm::base_priv(addr) -= (u64)value; break; default: return false; } if (!set_x64_cmp_flags(context, d_size, new_value, 0 - value)) // ??? { return false; } break; } case X64OP_SBB: { u64 value, new_value; if (!get_x64_reg_value(context, reg, d_size, i_size, value)) { return false; } switch (d_size) { case 1: new_value = *(atomic_t*)vm::base_priv(addr) -= (u8)(value + (EFLAGS(context) & 1)); break; case 2: new_value = *(atomic_t*)vm::base_priv(addr) -= (u16)(value + (EFLAGS(context) & 1)); break; case 4: new_value = *(atomic_t*)vm::base_priv(addr) -= (u32)(value + (EFLAGS(context) & 1)); break; case 8: new_value = *(atomic_t*)vm::base_priv(addr) -= (u64)(value + (EFLAGS(context) & 1)); break; default: return false; } if (!set_x64_cmp_flags(context, d_size, new_value, 0 - (value + (EFLAGS(context) & 1)))) // ??? { return false; } break; } default: { LOG_ERROR(MEMORY, "Invalid or unsupported operation (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", (u32)op, (u32)reg, d_size, a_size, i_size); report_opcode(); return false; } } // skip processed instruction RIP(context) += i_size; return true; }); // TODO: allow recovering from a page fault as a feature of PS3 virtual memory } // Detect leaf function static bool is_leaf_function(u64 rip) { #ifdef _WIN32 DWORD64 base = 0; if (const auto rtf = RtlLookupFunctionEntry(rip, &base, nullptr)) { // Access UNWIND_INFO structure const auto uw = (u8*)(base + rtf->UnwindData); // Leaf function has zero epilog size and no unwind codes return uw[0] == 1 && uw[1] == 0 && uw[2] == 0 && uw[3] == 0; } // No unwind info implies leaf function return true; #else // TODO return false; #endif } static thread_local u64 s_tls_ret_pos = 0; static thread_local u64 s_tls_ret_addr = 0; [[noreturn]] static void throw_access_violation(const char* cause, u64 addr) { if (s_tls_ret_pos) *(u64*)s_tls_ret_pos = s_tls_ret_addr; // Fix stack vm::throw_access_violation(addr, cause); std::abort(); } // Modify context in order to convert hardware exception to C++ exception static void prepare_throw_access_violation(x64_context* context, const char* cause, u32 address) { // Set throw_access_violation() call args (old register values are lost) ARG1(context) = (u64)cause; ARG2(context) = address; // Push the exception address as a "return" address (throw_access_violation() shall not return) s_tls_ret_addr = RIP(context); s_tls_ret_pos = is_leaf_function(s_tls_ret_addr) ? 0 : RSP(context) -= sizeof(u64); RIP(context) = (u64)std::addressof(throw_access_violation); } static void _handle_interrupt(x64_context* ctx); #ifdef _WIN32 static LONG exception_handler(PEXCEPTION_POINTERS pExp) { const u64 addr64 = pExp->ExceptionRecord->ExceptionInformation[1] - (u64)vm::base(0); const bool is_writing = pExp->ExceptionRecord->ExceptionInformation[0] != 0; if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && addr64 < 0x100000000ull) { vm::g_tls_fault_count++; if (thread_ctrl::get_current() && handle_access_violation((u32)addr64, is_writing, pExp->ContextRecord)) { return EXCEPTION_CONTINUE_EXECUTION; } } return EXCEPTION_CONTINUE_SEARCH; } static LONG exception_filter(PEXCEPTION_POINTERS pExp) { std::string msg = fmt::format("Unhandled Win32 exception 0x%08X.\n", pExp->ExceptionRecord->ExceptionCode); if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION) { const u64 addr64 = pExp->ExceptionRecord->ExceptionInformation[1] - (u64)vm::base(0); const auto cause = pExp->ExceptionRecord->ExceptionInformation[0] != 0 ? "writing" : "reading"; if (!(vm::g_tls_fault_count & (1ull << 63)) && addr64 < 0x100000000ull) { vm::g_tls_fault_count |= (1ull << 63); // Setup throw_access_violation() call on the context prepare_throw_access_violation(pExp->ContextRecord, cause, (u32)addr64); return EXCEPTION_CONTINUE_EXECUTION; } msg += fmt::format("Segfault %s location %p at %p.\n", cause, pExp->ExceptionRecord->ExceptionInformation[1], pExp->ExceptionRecord->ExceptionAddress); } else { msg += fmt::format("Exception address: %p.\n", pExp->ExceptionRecord->ExceptionAddress); for (DWORD i = 0; i < pExp->ExceptionRecord->NumberParameters; i++) { msg += fmt::format("ExceptionInformation[0x%x]: %p.\n", i, pExp->ExceptionRecord->ExceptionInformation[i]); } } std::vector modules; for (DWORD size = 256; modules.size() < size; size /= sizeof(HMODULE)) { modules.resize(size); if (!EnumProcessModules(GetCurrentProcess(), modules.data(), size * sizeof(HMODULE), &size)) { modules.clear(); break; } } msg += fmt::format("Instruction address: %p.\n", pExp->ContextRecord->Rip); DWORD64 unwind_base; if (const auto rtf = RtlLookupFunctionEntry(pExp->ContextRecord->Rip, &unwind_base, nullptr)) { // Get function address const DWORD64 func_addr = rtf->BeginAddress + unwind_base; msg += fmt::format("Function address: %p (base+0x%x).\n", func_addr, rtf->BeginAddress); // Access UNWIND_INFO structure //const auto uw = (u8*)(unwind_base + rtf->UnwindData); } for (HMODULE module : modules) { MODULEINFO info; if (GetModuleInformation(GetCurrentProcess(), module, &info, sizeof(info))) { const DWORD64 base = (DWORD64)info.lpBaseOfDll; if (pExp->ContextRecord->Rip >= base && pExp->ContextRecord->Rip < base + info.SizeOfImage) { std::string module_name; for (DWORD size = 256; module_name.size() < size;) { module_name.resize(size); size = GetModuleBaseNameA(GetCurrentProcess(), module, &module_name.front(), size); if (!size) { module_name.resize(1, '\0'); break; } } msg += fmt::format("Module name: '%s'.\n", module_name); msg += fmt::format("Module base: %p.\n", info.lpBaseOfDll); } } } msg += fmt::format("RPCS3 image base: %p.\n", GetModuleHandle(NULL)); if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ILLEGAL_INSTRUCTION) { msg += "\n" "Illegal instruction exception occured.\n" "Note that your CPU must support SSSE3 extension.\n"; } // TODO: print registers and the callstack // Report fatal error report_fatal_error(msg); return EXCEPTION_CONTINUE_SEARCH; } const bool s_exception_handler_set = []() -> bool { if (!AddVectoredExceptionHandler(1, (PVECTORED_EXCEPTION_HANDLER)exception_handler)) { report_fatal_error("AddVectoredExceptionHandler() failed."); std::abort(); } if (!SetUnhandledExceptionFilter((LPTOP_LEVEL_EXCEPTION_FILTER)exception_filter)) { report_fatal_error("SetUnhandledExceptionFilter() failed."); std::abort(); } return true; }(); #else static void signal_handler(int sig, siginfo_t* info, void* uct) { x64_context* context = (ucontext_t*)uct; if (sig == SIGUSR1) { return _handle_interrupt(context); } #ifdef __APPLE__ const bool is_writing = context->uc_mcontext->__es.__err & 0x2; #else const bool is_writing = context->uc_mcontext.gregs[REG_ERR] & 0x2; #endif const u64 addr64 = (u64)info->si_addr - (u64)vm::base(0); const auto cause = is_writing ? "writing" : "reading"; if (addr64 < 0x100000000ull) { vm::g_tls_fault_count++; // Try to process access violation if (!thread_ctrl::get_current() || !handle_access_violation((u32)addr64, is_writing, context)) { // Setup throw_access_violation() call on the context prepare_throw_access_violation(context, cause, (u32)addr64); } } else { // TODO (debugger interaction) report_fatal_error(fmt::format("Segfault %s location %p at %p.", cause, info->si_addr, RIP(context))); std::abort(); } } const bool s_exception_handler_set = []() -> bool { struct ::sigaction sa; sa.sa_flags = SA_SIGINFO; sigemptyset(&sa.sa_mask); sa.sa_sigaction = signal_handler; if (::sigaction(SIGSEGV, &sa, NULL) == -1) { std::printf("sigaction(SIGSEGV) failed (0x%x).", errno); std::abort(); } sa.sa_sigaction = signal_handler; if (::sigaction(SIGUSR1, &sa, NULL) == -1) { std::printf("sigaction(SIGUSR1) failed (0x%x).", errno); std::abort(); } return true; }(); #endif const bool s_self_test = []() -> bool { // Find ret instruction if ((*(u8*)throw_access_violation & 0xF6) == 0xC2) { std::abort(); } return true; }(); #include #include #include #include #include thread_local DECLARE(thread_ctrl::g_tls_this_thread) = nullptr; struct thread_ctrl::internal { std::mutex mutex; std::condition_variable cond; std::condition_variable jcv; // Allows simultaneous joining std::condition_variable icv; task_stack atexit; std::exception_ptr exception; // Stored exception std::chrono::high_resolution_clock::time_point time_limit; #ifdef _WIN32 DWORD thread_id = 0; #endif x64_context _context{}; x64_context* const thread_ctx = &this->_context; atomic_t interrupt{}; // Interrupt function }; thread_local thread_ctrl::internal* g_tls_internal = nullptr; extern std::condition_variable& get_current_thread_cv() { return g_tls_internal->cond; } // TODO extern atomic_t g_thread_count(0); extern thread_local std::string(*g_tls_log_prefix)(); void thread_ctrl::start(const std::shared_ptr& ctrl, task_stack task) { reinterpret_cast(ctrl->m_thread) = std::thread([ctrl, task = std::move(task)] { try { ctrl->initialize(); task.exec(); } catch (...) { ctrl->m_data->exception = std::current_exception(); } ctrl->finalize(); }); } void thread_ctrl::wait_start(u64 timeout) { m_data->time_limit = std::chrono::high_resolution_clock::now() + std::chrono::microseconds(timeout); } bool thread_ctrl::wait_wait(u64 timeout) { std::unique_lock lock(m_data->mutex, std::adopt_lock); if (timeout && m_data->cond.wait_until(lock, m_data->time_limit) == std::cv_status::timeout) { lock.release(); return false; } m_data->cond.wait(lock); lock.release(); return true; } void thread_ctrl::test() { if (m_data && m_data->exception) { std::rethrow_exception(m_data->exception); } } void thread_ctrl::initialize() { // Initialize TLS variable g_tls_this_thread = this; g_tls_internal = this->m_data; #ifdef _WIN32 m_data->thread_id = GetCurrentThreadId(); #endif g_tls_log_prefix = [] { return g_tls_this_thread->m_name; }; ++g_thread_count; #if defined(_MSC_VER) struct THREADNAME_INFO { DWORD dwType; LPCSTR szName; DWORD dwThreadID; DWORD dwFlags; }; // Set thread name for VS debugger if (IsDebuggerPresent()) { THREADNAME_INFO info; info.dwType = 0x1000; info.szName = m_name.c_str(); info.dwThreadID = -1; info.dwFlags = 0; __try { RaiseException(0x406D1388, 0, sizeof(info) / sizeof(ULONG_PTR), (ULONG_PTR*)&info); } __except (EXCEPTION_EXECUTE_HANDLER) { } } #endif } void thread_ctrl::finalize() noexcept { // Disable and discard possible interrupts interrupt_disable(); test_interrupt(); // TODO vm::reservation_free(); // Call atexit functions if (m_data) m_data->atexit.exec(); --g_thread_count; #ifdef _WIN32 ULONG64 time; QueryThreadCycleTime(GetCurrentThread(), &time); LOG_NOTICE(GENERAL, "Thread time: %f Gc", time / 1000000000.); #endif } void thread_ctrl::push_atexit(task_stack task) { m_data->atexit.push(std::move(task)); } thread_ctrl::thread_ctrl(std::string&& name) : m_name(std::move(name)) { CHECK_STORAGE(std::thread, m_thread); #pragma push_macro("new") #undef new new (&m_thread) std::thread; #pragma pop_macro("new") initialize_once(); } thread_ctrl::~thread_ctrl() { if (reinterpret_cast(m_thread).joinable()) { reinterpret_cast(m_thread).detach(); } delete m_data; reinterpret_cast(m_thread).~thread(); } void thread_ctrl::initialize_once() { if (UNLIKELY(!m_data)) { auto ptr = new thread_ctrl::internal; if (!m_data.compare_and_swap_test(nullptr, ptr)) { delete ptr; } } } void thread_ctrl::join() { // Increase contention counter const u32 _j = m_joining++; if (LIKELY(_j >= 0x80000000)) { // Already joined (signal condition) m_joining = 0x80000000; } else if (LIKELY(_j == 0)) { // Winner joins the thread reinterpret_cast(m_thread).join(); // Notify others if necessary if (UNLIKELY(m_joining.exchange(0x80000000) != 1)) { // Serialize for reliable notification m_data->mutex.lock(); m_data->mutex.unlock(); m_data->jcv.notify_all(); } } else { // Hard way std::unique_lock lock(m_data->mutex); m_data->jcv.wait(lock, WRAP_EXPR(m_joining >= 0x80000000)); } if (UNLIKELY(m_data && m_data->exception && !std::uncaught_exception())) { std::rethrow_exception(m_data->exception); } } void thread_ctrl::lock() { m_data->mutex.lock(); } void thread_ctrl::unlock() { m_data->mutex.unlock(); } void thread_ctrl::lock_notify() { if (UNLIKELY(g_tls_this_thread == this)) { return; } // Serialize for reliable notification, condition is assumed to be changed externally m_data->mutex.lock(); m_data->mutex.unlock(); m_data->cond.notify_one(); } void thread_ctrl::notify() { m_data->cond.notify_one(); } void thread_ctrl::set_exception(std::exception_ptr e) { m_data->exception = e; } static void _handle_interrupt(x64_context* ctx) { // Copy context for further use (TODO: is it safe on all platforms?) g_tls_internal->_context = *ctx; thread_ctrl::handle_interrupt(); } static thread_local void(*s_tls_handler)() = nullptr; [[noreturn]] static void execute_interrupt_handler() { // Fix stack for throwing if (s_tls_ret_pos) s_tls_ret_addr = std::exchange(*(u64*)s_tls_ret_pos, s_tls_ret_addr); // Run either throwing or returning interrupt handler s_tls_handler(); // Restore context in the case of return const auto ctx = g_tls_internal->thread_ctx; if (s_tls_ret_pos) { RIP(ctx) = std::exchange(*(u64*)s_tls_ret_pos, s_tls_ret_addr); RSP(ctx) += sizeof(u64); } else { RIP(ctx) = s_tls_ret_addr; } #ifdef _WIN32 RtlRestoreContext(ctx, nullptr); #else ::setcontext(ctx); #endif } void thread_ctrl::handle_interrupt() { const auto _this = g_tls_this_thread; const auto ctx = g_tls_internal->thread_ctx; if (_this->m_guard & 0x80000000) { // Discard interrupt if interrupts are disabled if (g_tls_internal->interrupt.exchange(nullptr)) { _this->lock(); _this->unlock(); g_tls_internal->icv.notify_one(); } } else if (_this->m_guard == 0) { // Set interrupt immediately if no guard set if (const auto handler = g_tls_internal->interrupt.exchange(nullptr)) { _this->lock(); _this->unlock(); g_tls_internal->icv.notify_one(); #ifdef _WIN32 // Install function call s_tls_ret_addr = RIP(ctx); s_tls_ret_pos = is_leaf_function(s_tls_ret_addr) ? 0 : RSP(ctx) -= sizeof(u64); s_tls_handler = handler; RIP(ctx) = (u64)execute_interrupt_handler; #else // Call handler directly (TODO: install function call preserving red zone) return handler(); #endif } } else { // Set delayed interrupt otherwise _this->m_guard |= 0x40000000; } #ifdef _WIN32 RtlRestoreContext(ctx, nullptr); #endif } void thread_ctrl::interrupt(void(*handler)()) { VERIFY(this != g_tls_this_thread); // TODO: self-interrupt VERIFY(m_data->interrupt.compare_and_swap_test(nullptr, handler)); // TODO: multiple interrupts #ifdef _WIN32 const auto ctx = m_data->thread_ctx; const HANDLE nt = OpenThread(THREAD_ALL_ACCESS, FALSE, m_data->thread_id); VERIFY(nt); VERIFY(SuspendThread(nt) != -1); ctx->ContextFlags = CONTEXT_FULL; VERIFY(GetThreadContext(nt, ctx)); ctx->ContextFlags = CONTEXT_FULL; const u64 _rip = RIP(ctx); RIP(ctx) = (u64)std::addressof(thread_ctrl::handle_interrupt); VERIFY(SetThreadContext(nt, ctx)); RIP(ctx) = _rip; VERIFY(ResumeThread(nt) != -1); CloseHandle(nt); #else pthread_kill(reinterpret_cast(m_thread).native_handle(), SIGUSR1); #endif std::unique_lock lock(m_data->mutex, std::adopt_lock); while (m_data->interrupt) { m_data->icv.wait(lock); } lock.release(); } void thread_ctrl::test_interrupt() { if (m_guard & 0x80000000) { if (m_data->interrupt.exchange(nullptr)) { lock(), unlock(), m_data->icv.notify_one(); } return; } if (m_guard == 0x40000000 && !std::uncaught_exception()) { m_guard = 0; // Execute delayed interrupt handler if (const auto handler = m_data->interrupt.exchange(nullptr)) { lock(), unlock(), m_data->icv.notify_one(); return handler(); } } } void thread_ctrl::sleep(u64 useconds) { std::this_thread::sleep_for(std::chrono::microseconds(useconds)); } named_thread::named_thread() { } named_thread::~named_thread() { } std::string named_thread::get_name() const { return fmt::format("('%s') Unnamed Thread", typeid(*this).name()); } void named_thread::start_thread(const std::shared_ptr& _this) { // Ensure it's not called from the constructor and the correct object is passed ENSURES(_this.get() == this); // Run thread thread_ctrl::spawn(m_thread, get_name(), [this, _this]() { try { LOG_TRACE(GENERAL, "Thread started"); on_task(); LOG_TRACE(GENERAL, "Thread ended"); } catch (const std::exception& e) { LOG_FATAL(GENERAL, "%s thrown: %s", typeid(e).name(), e.what()); Emu.Pause(); } catch (EmulationStopped) { LOG_NOTICE(GENERAL, "Thread aborted"); } on_exit(); }); }