Utilize idle time to combine blocks

This commit is contained in:
S Gopal Rajagopal 2014-11-10 01:04:21 +05:30
parent 71c12360c7
commit c12a98510c
2 changed files with 177 additions and 88 deletions

View File

@ -4908,19 +4908,16 @@ raw_fd_ostream & RecompilationEngine::Log() {
}
void RecompilationEngine::Task() {
bool work_done_this_iteration = false;
bool work_done_last_iteration = false;
std::chrono::nanoseconds idling_time(0);
std::chrono::nanoseconds recompiling_time(0);
auto start = std::chrono::high_resolution_clock::now();
while (!TestDestroy() && !Emu.IsStopped()) {
// Wait a few ms for something to happen
auto idling_start = std::chrono::high_resolution_clock::now();
WaitForAnySignal(250);
auto idling_end = std::chrono::high_resolution_clock::now();
idling_time += std::chrono::duration_cast<std::chrono::nanoseconds>(idling_end - idling_start);
u32 num_processed = 0;
while (!TestDestroy() && !Emu.IsStopped()) {
ExecutionTrace * execution_trace;
work_done_last_iteration = work_done_this_iteration;
work_done_this_iteration = false;
ExecutionTrace * execution_trace = nullptr;
{
std::lock_guard<std::mutex> lock(m_pending_execution_traces_lock);
@ -4929,20 +4926,52 @@ void RecompilationEngine::Task() {
if (i != m_pending_execution_traces.end()) {
execution_trace = *i;
m_pending_execution_traces.erase(i);
} else {
break;
}
}
if (execution_trace) {
ProcessExecutionTrace(*execution_trace);
delete execution_trace;
work_done_this_iteration = true;
}
// TODO: Reduce the priority of the recompilation engine thread
if (!work_done_this_iteration) {
// TODO: Reduce the priority of the recompilation engine thread if its set to high priority
}
if (num_processed == 0) {
// If we get here, it means the recompilation engine is idling.
// We should use this oppurtunity to optimize the code.
if (!work_done_this_iteration && !work_done_last_iteration) {
auto recompiling_start = std::chrono::high_resolution_clock::now();
// Recompile the function with the most number of compiled fragments
auto candidate = m_function_table.end();
for (auto function_i = m_function_table.begin(); function_i != m_function_table.end(); function_i++) {
if ((*function_i)->num_compiled_fragments && (*function_i)->blocks.front()->IsFunction() && (*function_i)->blocks.front()->is_compiled) {
if (candidate != m_function_table.end()) {
if ((*function_i)->num_compiled_fragments > (*candidate)->num_compiled_fragments) {
candidate = function_i;
}
} else {
candidate = function_i;
}
}
}
if (candidate != m_function_table.end()) {
Log() << "Recompiling: " << (*candidate)->ToString() << "\n";
CompileBlock(*(*candidate), *((*candidate)->blocks.front()));
work_done_this_iteration = true;
}
auto recompiling_end = std::chrono::high_resolution_clock::now();
recompiling_time += std::chrono::duration_cast<std::chrono::nanoseconds>(recompiling_end - recompiling_start);
}
if (!work_done_this_iteration) {
// Wait a few ms for something to happen
auto idling_start = std::chrono::high_resolution_clock::now();
WaitForAnySignal(250);
auto idling_end = std::chrono::high_resolution_clock::now();
idling_time += std::chrono::duration_cast<std::chrono::nanoseconds>(idling_end - idling_start);
}
}
@ -4955,6 +4984,7 @@ void RecompilationEngine::Task() {
Log() << " Time spent building IR = " << compiler_stats.ir_build_time.count() / 1000000 << "ms\n";
Log() << " Time spent optimizing = " << compiler_stats.optimization_time.count() / 1000000 << "ms\n";
Log() << " Time spent translating = " << compiler_stats.translation_time.count() / 1000000 << "ms\n";
Log() << " Time spent recompiling = " << recompiling_time.count() / 1000000 << "ms\n";
Log() << " Time spent idling = " << idling_time.count() / 1000000 << "ms\n";
Log() << " Time spent doing misc tasks = " << (total_time.count() - idling_time.count() - compiler_stats.total_time.count()) / 1000000 << "ms\n";
Log() << "Ordinals allocated = " << m_next_ordinal << "\n";
@ -4968,6 +4998,8 @@ void RecompilationEngine::Task() {
}
void RecompilationEngine::ProcessExecutionTrace(const ExecutionTrace & execution_trace) {
auto function_i = m_function_table.end();
auto execution_trace_id = execution_trace.GetId();
auto processed_execution_trace_i = m_processed_execution_traces.find(execution_trace_id);
if (processed_execution_trace_i == m_processed_execution_traces.end()) {
@ -4992,16 +5024,16 @@ void RecompilationEngine::ProcessExecutionTrace(const ExecutionTrace & execution
if (block_i == m_block_table.end()) {
block_i = m_block_table.insert(m_block_table.end(), new BlockEntry(key.cfg.start_address, key.cfg.function_address));
// Update the function to block map
auto function_to_block_i = m_function_to_blocks.find(execution_trace.function_address);
if (function_to_block_i == m_function_to_blocks.end()) {
function_to_block_i = m_function_to_blocks.insert(m_function_to_blocks.end(), std::make_pair(execution_trace.function_address, std::vector<BlockEntry *>()));
if (function_i == m_function_table.end()) {
FunctionEntry key(execution_trace.function_address);
function_i = m_function_table.find(&key);
if (function_i == m_function_table.end()) {
function_i = m_function_table.insert(m_function_table.end(), new FunctionEntry(key.address));
}
}
auto i = std::find(function_to_block_i->second.begin(), function_to_block_i->second.end(), *block_i);
if (i == function_to_block_i->second.end()) {
function_to_block_i->second.push_back(*block_i);
}
// Update the function table
(*function_i)->AddBlock(*block_i);
}
tmp_block_list.push_back(*block_i);
@ -5024,7 +5056,12 @@ void RecompilationEngine::ProcessExecutionTrace(const ExecutionTrace & execution
if (!(*i)->is_compiled) {
(*i)->num_hits++;
if ((*i)->num_hits >= 1000) { // TODO: Make this configurable
CompileBlock(*(*i));
if (function_i == m_function_table.end()) {
FunctionEntry key(execution_trace.function_address);
function_i = m_function_table.find(&key);
}
CompileBlock(*(*function_i), *(*i));
(*i)->is_compiled = true;
}
}
@ -5057,17 +5094,16 @@ void RecompilationEngine::UpdateControlFlowGraph(ControlFlowGraph & cfg, const E
}
}
void RecompilationEngine::CompileBlock(BlockEntry & block_entry) {
void RecompilationEngine::CompileBlock(FunctionEntry & function_entry, BlockEntry & block_entry) {
#ifdef _DEBUG
Log() << "Compile: " << block_entry.ToString() << "\n";
#endif
ControlFlowGraph * cfg;
ControlFlowGraph temp_cfg(block_entry.cfg.start_address, block_entry.cfg.function_address);
ControlFlowGraph * cfg;
if (block_entry.IsFunction()) {
// Form a CFG by merging all the blocks in this function
auto function_to_block_i = m_function_to_blocks.find(block_entry.cfg.function_address);
for (auto block_i = function_to_block_i->second.begin(); block_i != function_to_block_i->second.end(); block_i++) {
for (auto block_i = function_entry.blocks.begin(); block_i != function_entry.blocks.end(); block_i++) {
temp_cfg += (*block_i)->cfg;
}
@ -5084,6 +5120,12 @@ void RecompilationEngine::CompileBlock(BlockEntry & block_entry) {
auto executable = m_compiler.Compile(fmt::Format("fn_0x%08X_%u", block_entry.cfg.start_address, block_entry.revision++), *cfg, true,
block_entry.IsFunction() ? true : false /*generate_linkable_exits*/);
m_executable_lookup[ordinal] = executable;
if (block_entry.IsFunction()) {
function_entry.num_compiled_fragments = 0;
} else {
function_entry.num_compiled_fragments++;
}
}
std::shared_ptr<RecompilationEngine> RecompilationEngine::GetInstance() {

View File

@ -246,55 +246,6 @@ namespace ppu_recompiler_llvm {
/// Pointer to an executable
typedef u32(*Executable)(PPUThread * ppu_state, PPUInterpreter * interpreter, u64 context);
/// An entry in the block table
struct BlockEntry {
/// Number of times this block was hit
u32 num_hits;
/// The current revision number of this function
u32 revision;
/// The CFG for this block
ControlFlowGraph cfg;
/// Indicates whether the block has been compiled or not
bool is_compiled;
BlockEntry(u32 start_address, u32 function_address)
: num_hits(0)
, revision(0)
, is_compiled(false)
, cfg(start_address, function_address) {
}
std::string ToString() const {
return fmt::Format("0x%08X (0x%08X): NumHits=%u, Revision=%u, IsCompiled=%c",
cfg.start_address, cfg.function_address, num_hits, revision, is_compiled ? 'Y' : 'N');
}
bool operator == (const BlockEntry & other) const {
return cfg.start_address == other.cfg.start_address;
}
bool IsFunction() const {
return cfg.function_address == cfg.start_address;
}
struct hash {
size_t operator()(const BlockEntry * e) const {
return e->cfg.start_address;
}
};
struct equal_to {
bool operator()(const BlockEntry * lhs, const BlockEntry * rhs) const {
return *lhs == *rhs;
}
};
};
}
namespace ppu_recompiler_llvm {
/// PPU compiler that uses LLVM for code generation and optimization
class Compiler : protected PPUOpcodes, protected PPCDecoder {
public:
@ -1008,6 +959,102 @@ namespace ppu_recompiler_llvm {
static std::shared_ptr<RecompilationEngine> GetInstance();
private:
/// An entry in the block table
struct BlockEntry {
/// Number of times this block was hit
u32 num_hits;
/// The current revision number of this function
u32 revision;
/// The CFG for this block
ControlFlowGraph cfg;
/// Indicates whether the block has been compiled or not
bool is_compiled;
BlockEntry(u32 start_address, u32 function_address)
: num_hits(0)
, revision(0)
, is_compiled(false)
, cfg(start_address, function_address) {
}
std::string ToString() const {
return fmt::Format("0x%08X (0x%08X): NumHits=%u, Revision=%u, IsCompiled=%c",
cfg.start_address, cfg.function_address, num_hits, revision, is_compiled ? 'Y' : 'N');
}
bool operator == (const BlockEntry & other) const {
return cfg.start_address == other.cfg.start_address;
}
bool IsFunction() const {
return cfg.function_address == cfg.start_address;
}
struct hash {
size_t operator()(const BlockEntry * e) const {
return e->cfg.start_address;
}
};
struct equal_to {
bool operator()(const BlockEntry * lhs, const BlockEntry * rhs) const {
return *lhs == *rhs;
}
};
};
/// An entry in the function table
struct FunctionEntry {
/// Address of the function
u32 address;
/// Number of compiled fragments
u32 num_compiled_fragments;
/// Blocks in the function
std::list<BlockEntry *> blocks;
FunctionEntry(u32 address)
: address(address)
, num_compiled_fragments(0) {
}
void AddBlock(BlockEntry * block_entry) {
auto i = std::find(blocks.begin(), blocks.end(), block_entry);
if (i == blocks.end()) {
if (block_entry->IsFunction()) {
// The first block must be the starting block of the function
blocks.push_front(block_entry);
} else {
blocks.push_back(block_entry);
}
}
}
std::string ToString() const {
return fmt::Format("0x%08X: NumCompiledFragments=%u, NumBlocks=%u", address, num_compiled_fragments, blocks.size());
}
bool operator == (const FunctionEntry & other) const {
return address == other.address;
}
struct hash {
size_t operator()(const FunctionEntry * f) const {
return f->address;
}
};
struct equal_to {
bool operator()(const FunctionEntry * lhs, const FunctionEntry * rhs) const {
return *lhs == *rhs;
}
};
};
/// Lock for accessing m_pending_execution_traces. TODO: Eliminate this and use a lock-free queue.
std::mutex m_pending_execution_traces_lock;
@ -1017,8 +1064,8 @@ namespace ppu_recompiler_llvm {
/// Block table
std::unordered_set<BlockEntry *, BlockEntry::hash, BlockEntry::equal_to> m_block_table;
/// Maps a function to the set of all blocks in the function. Key is the address of the function.
std::unordered_map<u32, std::vector<BlockEntry *>> m_function_to_blocks;
/// Function table
std::unordered_set<FunctionEntry *, FunctionEntry::hash, FunctionEntry::equal_to> m_function_table;
/// Execution traces that have been already encountered. Data is the list of all blocks that this trace includes.
std::unordered_map<ExecutionTrace::Id, std::vector<BlockEntry *>> m_processed_execution_traces;
@ -1057,7 +1104,7 @@ namespace ppu_recompiler_llvm {
void UpdateControlFlowGraph(ControlFlowGraph & cfg, const ExecutionTraceEntry & this_entry, const ExecutionTraceEntry * next_entry);
/// Compile a block
void CompileBlock(BlockEntry & block_entry);
void CompileBlock(FunctionEntry & function_entry, BlockEntry & block_entry);
/// Mutex used to prevent multiple creation
static std::mutex s_mutex;