Type hacks removed

This commit is contained in:
Nekotekina 2016-08-13 16:36:04 +03:00
parent 2d512121f1
commit 949200cd3e
5 changed files with 403 additions and 530 deletions

View File

@ -3,54 +3,57 @@
#include "types.h"
#include "Platform.h"
// 128-bit vector type and also se_storage<> storage type
union alignas(16) v128
{
char _bytes[16];
template<typename T, std::size_t N, std::size_t M>
template <typename T, std::size_t N, std::size_t M>
struct masked_array_t // array type accessed as (index ^ M)
{
T m_data[N];
public:
T& operator [](std::size_t index)
T& operator[](std::size_t index)
{
return m_data[index ^ M];
}
const T& operator [](std::size_t index) const
const T& operator[](std::size_t index) const
{
return m_data[index ^ M];
}
};
#if IS_LE_MACHINE == 1
template<typename T, std::size_t N = 16 / sizeof(T)> using normal_array_t = masked_array_t<T, N, 0>;
template<typename T, std::size_t N = 16 / sizeof(T)> using reversed_array_t = masked_array_t<T, N, N - 1>;
template <typename T, std::size_t N = 16 / sizeof(T)>
using normal_array_t = masked_array_t<T, N, 0>;
template <typename T, std::size_t N = 16 / sizeof(T)>
using reversed_array_t = masked_array_t<T, N, N - 1>;
#endif
normal_array_t<u64> _u64;
normal_array_t<s64> _s64;
normal_array_t<u64> _u64;
normal_array_t<s64> _s64;
reversed_array_t<u64> u64r;
reversed_array_t<s64> s64r;
normal_array_t<u32> _u32;
normal_array_t<s32> _s32;
normal_array_t<u32> _u32;
normal_array_t<s32> _s32;
reversed_array_t<u32> u32r;
reversed_array_t<s32> s32r;
normal_array_t<u16> _u16;
normal_array_t<s16> _s16;
normal_array_t<u16> _u16;
normal_array_t<s16> _s16;
reversed_array_t<u16> u16r;
reversed_array_t<s16> s16r;
normal_array_t<u8> _u8;
normal_array_t<s8> _s8;
reversed_array_t<u8> u8r;
reversed_array_t<s8> s8r;
normal_array_t<u8> _u8;
normal_array_t<s8> _s8;
reversed_array_t<u8> u8r;
reversed_array_t<s8> s8r;
normal_array_t<f32> _f;
normal_array_t<f64> _d;
normal_array_t<f32> _f;
normal_array_t<f64> _d;
reversed_array_t<f32> fr;
reversed_array_t<f64> dr;
@ -80,7 +83,7 @@ union alignas(16) v128
return (data & mask) != 0;
}
bit_element& operator =(const bool right)
bit_element& operator=(const bool right)
{
if (right)
{
@ -93,7 +96,7 @@ union alignas(16) v128
return *this;
}
bit_element& operator =(const bit_element& right)
bit_element& operator=(const bit_element& right)
{
if (right)
{
@ -108,7 +111,7 @@ union alignas(16) v128
};
// Index 0 returns the MSB and index 127 returns the LSB
bit_element operator [](u32 index)
bit_element operator[](u32 index)
{
#if IS_LE_MACHINE == 1
return bit_element(m_data[1 - (index >> 6)], 0x8000000000000000ull >> (index & 0x3F));
@ -116,14 +119,13 @@ union alignas(16) v128
}
// Index 0 returns the MSB and index 127 returns the LSB
bool operator [](u32 index) const
bool operator[](u32 index) const
{
#if IS_LE_MACHINE == 1
return (m_data[1 - (index >> 6)] & (0x8000000000000000ull >> (index & 0x3F))) != 0;
#endif
}
}
_bit;
} _bit;
static v128 from64(u64 _0, u64 _1 = 0)
{
@ -277,12 +279,12 @@ union alignas(16) v128
return fromV(_mm_cmpeq_epi32(left.vi, right.vi));
}
bool operator ==(const v128& right) const
bool operator==(const v128& right) const
{
return _u64[0] == right._u64[0] && _u64[1] == right._u64[1];
}
bool operator !=(const v128& right) const
bool operator!=(const v128& right) const
{
return _u64[0] != right._u64[0] || _u64[1] != right._u64[1];
}
@ -300,30 +302,27 @@ union alignas(16) v128
}
};
inline v128 operator |(const v128& left, const v128& right)
inline v128 operator|(const v128& left, const v128& right)
{
return v128::fromV(_mm_or_si128(left.vi, right.vi));
}
inline v128 operator &(const v128& left, const v128& right)
inline v128 operator&(const v128& left, const v128& right)
{
return v128::fromV(_mm_and_si128(left.vi, right.vi));
}
inline v128 operator ^(const v128& left, const v128& right)
inline v128 operator^(const v128& left, const v128& right)
{
return v128::fromV(_mm_xor_si128(left.vi, right.vi));
}
inline v128 operator ~(const v128& other)
inline v128 operator~(const v128& other)
{
return v128::from64(~other._u64[0], ~other._u64[1]);
}
#define IS_INTEGER(t) (std::is_integral<t>::value || std::is_enum<t>::value)
#define IS_BINARY_COMPARABLE(t1, t2) (IS_INTEGER(t1) && IS_INTEGER(t2) && sizeof(t1) == sizeof(t2))
template<typename T, std::size_t Align, std::size_t Size>
template <typename T, std::size_t Align, std::size_t Size>
struct se_storage
{
using type = std::aligned_storage_t<Size, Align>;
@ -359,7 +358,7 @@ struct se_storage
}
};
template<typename T>
template <typename T>
struct se_storage<T, 2, 2>
{
using type = u16;
@ -390,7 +389,7 @@ struct se_storage<T, 2, 2>
}
};
template<typename T>
template <typename T>
struct se_storage<T, 4, 4>
{
using type = u32;
@ -421,7 +420,7 @@ struct se_storage<T, 4, 4>
}
};
template<typename T>
template <typename T>
struct se_storage<T, 8, 8>
{
using type = u64;
@ -452,7 +451,7 @@ struct se_storage<T, 8, 8>
}
};
template<typename T>
template <typename T>
struct se_storage<T, 16, 16>
{
using type = v128;
@ -479,10 +478,8 @@ struct se_storage<T, 16, 16>
}
};
static struct se_raw_tag_t {} constexpr se_raw{};
// Switched endianness
template<typename T, std::size_t Align>
template <typename T, std::size_t Align>
class se_t<T, true, Align>
{
using type = typename std::remove_cv<T>::type;
@ -496,24 +493,6 @@ class se_t<T, true, Align>
static_assert(!std::is_array<type>::value, "se_t<> error: invalid type (array)");
static_assert(sizeof(type) == alignof(type), "se_t<> error: unexpected alignment");
template<typename T2, typename = void>
struct bool_converter
{
static inline bool to_bool(const se_t<T2>& value)
{
return static_cast<bool>(value.value());
}
};
template<typename T2>
struct bool_converter<T2, std::enable_if_t<std::is_integral<T2>::value>>
{
static inline bool to_bool(const se_t<T2>& value)
{
return value.m_data != 0;
}
};
public:
se_t() = default;
@ -524,26 +503,14 @@ public:
{
}
// Construct directly from raw data (don't use)
constexpr se_t(const stype& raw_value, const se_raw_tag_t&)
: m_data(raw_value)
{
}
type value() const
{
return storage::from(m_data);
}
// Access underlying raw data (don't use)
constexpr const stype& raw_data() const noexcept
{
return m_data;
}
se_t& operator=(const se_t&) = default;
se_t& operator =(const se_t&) = default;
se_t& operator =(type value)
se_t& operator=(type value)
{
return m_data = storage::to(value), *this;
}
@ -554,58 +521,10 @@ public:
{
return storage::from(m_data);
}
// Optimization
explicit operator bool() const
{
return bool_converter<type>::to_bool(*this);
}
// Optimization
template<typename T2>
std::enable_if_t<IS_BINARY_COMPARABLE(T, T2), se_t&> operator &=(const se_t<T2>& right)
{
return m_data &= right.raw_data(), *this;
}
// Optimization
template<typename CT>
std::enable_if_t<std::is_integral<T>::value && std::is_convertible<CT, T>::value, se_t&> operator &=(CT right)
{
return m_data &= storage::to(right), *this;
}
// Optimization
template<typename T2>
std::enable_if_t<IS_BINARY_COMPARABLE(T, T2), se_t&> operator |=(const se_t<T2>& right)
{
return m_data |= right.raw_data(), *this;
}
// Optimization
template<typename CT>
std::enable_if_t<std::is_integral<T>::value && std::is_convertible<CT, T>::value, se_t&> operator |=(CT right)
{
return m_data |= storage::to(right), *this;
}
// Optimization
template<typename T2>
std::enable_if_t<IS_BINARY_COMPARABLE(T, T2), se_t&> operator ^=(const se_t<T2>& right)
{
return m_data ^= right.raw_data(), *this;
}
// Optimization
template<typename CT>
std::enable_if_t<std::is_integral<T>::value && std::is_convertible<CT, T>::value, se_t&> operator ^=(CT right)
{
return m_data ^= storage::to(right), *this;
}
};
// Native endianness
template<typename T, std::size_t Align>
template <typename T, std::size_t Align>
class se_t<T, false, Align>
{
using type = typename std::remove_cv<T>::type;
@ -627,26 +546,14 @@ public:
{
}
// Construct directly from raw data (don't use)
constexpr se_t(const stype& raw_value, const se_raw_tag_t&)
: m_data(raw_value)
{
}
type value() const
{
return storage::copy(reinterpret_cast<const type&>(m_data));
}
// Access underlying raw data (don't use)
constexpr const stype& raw_data() const noexcept
{
return m_data;
}
se_t& operator=(const se_t& value) = default;
se_t& operator =(const se_t& value) = default;
se_t& operator =(type value)
se_t& operator=(type value)
{
return m_data = reinterpret_cast<const stype&>(value), *this;
}
@ -657,80 +564,84 @@ public:
{
return storage::copy(reinterpret_cast<const type&>(m_data));
}
template<typename CT>
std::enable_if_t<std::is_integral<T>::value && std::is_convertible<CT, T>::value, se_t&> operator &=(const CT& right)
{
return m_data &= right, *this;
}
template<typename CT>
std::enable_if_t<std::is_integral<T>::value && std::is_convertible<CT, T>::value, se_t&> operator |=(const CT& right)
{
return m_data |= right, *this;
}
template<typename CT>
std::enable_if_t<std::is_integral<T>::value && std::is_convertible<CT, T>::value, se_t&> operator ^=(const CT& right)
{
return m_data ^= right, *this;
}
};
// se_t with native endianness (alias)
template<typename T, std::size_t Align = alignof(T)> using nse_t = se_t<T, false, Align>;
// se_t<> with native endianness
template <typename T, std::size_t Align = alignof(T)>
using nse_t = se_t<T, false, Align>;
template<typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator +=(se_t<T, Se, Align>& left, const T1& right)
template <typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator+=(se_t<T, Se, Align>& left, const T1& right)
{
auto value = left.value();
return left = (value += right);
}
template<typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator -=(se_t<T, Se, Align>& left, const T1& right)
template <typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator-=(se_t<T, Se, Align>& left, const T1& right)
{
auto value = left.value();
return left = (value -= right);
}
template<typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator *=(se_t<T, Se, Align>& left, const T1& right)
template <typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator*=(se_t<T, Se, Align>& left, const T1& right)
{
auto value = left.value();
return left = (value *= right);
}
template<typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator /=(se_t<T, Se, Align>& left, const T1& right)
template <typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator/=(se_t<T, Se, Align>& left, const T1& right)
{
auto value = left.value();
return left = (value /= right);
}
template<typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator %=(se_t<T, Se, Align>& left, const T1& right)
template <typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator%=(se_t<T, Se, Align>& left, const T1& right)
{
auto value = left.value();
return left = (value %= right);
}
template<typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator <<=(se_t<T, Se, Align>& left, const T1& right)
template <typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator&=(se_t<T, Se, Align>& left, const T1& right)
{
auto value = left.value();
return left = (value &= right);
}
template <typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator|=(se_t<T, Se, Align>& left, const T1& right)
{
auto value = left.value();
return left = (value |= right);
}
template <typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator^=(se_t<T, Se, Align>& left, const T1& right)
{
auto value = left.value();
return left = (value ^= right);
}
template <typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator<<=(se_t<T, Se, Align>& left, const T1& right)
{
auto value = left.value();
return left = (value <<= right);
}
template<typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator >>=(se_t<T, Se, Align>& left, const T1& right)
template <typename T, bool Se, std::size_t Align, typename T1>
inline se_t<T, Se, Align>& operator>>=(se_t<T, Se, Align>& left, const T1& right)
{
auto value = left.value();
return left = (value >>= right);
}
template<typename T, bool Se, std::size_t Align>
inline se_t<T, Se, Align> operator ++(se_t<T, Se, Align>& left, int)
template <typename T, bool Se, std::size_t Align>
inline se_t<T, Se, Align> operator++(se_t<T, Se, Align>& left, int)
{
auto value = left.value();
auto result = value++;
@ -738,8 +649,8 @@ inline se_t<T, Se, Align> operator ++(se_t<T, Se, Align>& left, int)
return result;
}
template<typename T, bool Se, std::size_t Align>
inline se_t<T, Se, Align> operator --(se_t<T, Se, Align>& left, int)
template <typename T, bool Se, std::size_t Align>
inline se_t<T, Se, Align> operator--(se_t<T, Se, Align>& left, int)
{
auto value = left.value();
auto result = value--;
@ -747,148 +658,38 @@ inline se_t<T, Se, Align> operator --(se_t<T, Se, Align>& left, int)
return result;
}
template<typename T, bool Se, std::size_t Align>
inline se_t<T, Se, Align>& operator ++(se_t<T, Se, Align>& right)
template <typename T, bool Se, std::size_t Align>
inline se_t<T, Se, Align>& operator++(se_t<T, Se, Align>& right)
{
auto value = right.value();
return right = ++value;
}
template<typename T, bool Se, std::size_t Align>
inline se_t<T, Se, Align>& operator --(se_t<T, Se, Align>& right)
template <typename T, bool Se, std::size_t Align>
inline se_t<T, Se, Align>& operator--(se_t<T, Se, Align>& right)
{
auto value = right.value();
return right = --value;
}
// Optimization
template<typename T1, typename T2>
inline std::enable_if_t<IS_BINARY_COMPARABLE(T1, T2), bool> operator ==(const se_t<T1>& left, const se_t<T2>& right)
{
return left.raw_data() == right.raw_data();
}
// Optimization
template<typename T1, typename T2>
inline std::enable_if_t<std::is_integral<T1>::value && IS_INTEGER(T2) && sizeof(T1) >= sizeof(T2), bool> operator ==(const se_t<T1>& left, T2 right)
{
return left.raw_data() == se_storage<T1>::to(right);
}
// Optimization
template<typename T1, typename T2>
inline std::enable_if_t<IS_INTEGER(T1) && std::is_integral<T2>::value && sizeof(T1) <= sizeof(T2), bool> operator ==(T1 left, const se_t<T2>& right)
{
return se_storage<T2>::to(left) == right.raw_data();
}
// Optimization
template<typename T1, typename T2>
inline std::enable_if_t<IS_BINARY_COMPARABLE(T1, T2), bool> operator !=(const se_t<T1>& left, const se_t<T2>& right)
{
return left.raw_data() != right.raw_data();
}
// Optimization
template<typename T1, typename T2>
inline std::enable_if_t<std::is_integral<T1>::value && IS_INTEGER(T2) && sizeof(T1) >= sizeof(T2), bool> operator !=(const se_t<T1>& left, T2 right)
{
return left.raw_data() != se_storage<T1>::to(right);
}
// Optimization
template<typename T1, typename T2>
inline std::enable_if_t<IS_INTEGER(T1) && std::is_integral<T2>::value && sizeof(T1) <= sizeof(T2), bool> operator !=(T1 left, const se_t<T2>& right)
{
return se_storage<T2>::to(left) != right.raw_data();
}
// Optimization
template<typename T1, typename T2>
inline std::enable_if_t<IS_BINARY_COMPARABLE(T1, T2) && sizeof(T1) >= 4, se_t<decltype(T1() & T2())>> operator &(const se_t<T1>& left, const se_t<T2>& right)
{
return{ left.raw_data() & right.raw_data(), se_raw };
}
// Optimization
template<typename T1, typename T2>
inline std::enable_if_t<std::is_integral<T1>::value && IS_INTEGER(T2) && sizeof(T1) >= sizeof(T2) && sizeof(T1) >= 4, se_t<decltype(T1() & T2())>> operator &(const se_t<T1>& left, T2 right)
{
return{ left.raw_data() & se_storage<T1>::to(right), se_raw };
}
// Optimization
template<typename T1, typename T2>
inline std::enable_if_t<IS_INTEGER(T1) && std::is_integral<T2>::value && sizeof(T1) <= sizeof(T2) && sizeof(T2) >= 4, se_t<decltype(T1() & T2())>> operator &(T1 left, const se_t<T2>& right)
{
return{ se_storage<T2>::to(left) & right.raw_data(), se_raw };
}
// Optimization
template<typename T1, typename T2>
inline std::enable_if_t<IS_BINARY_COMPARABLE(T1, T2) && sizeof(T1) >= 4, se_t<decltype(T1() | T2())>> operator |(const se_t<T1>& left, const se_t<T2>& right)
{
return{ left.raw_data() | right.raw_data(), se_raw };
}
// Optimization
template<typename T1, typename T2>
inline std::enable_if_t<std::is_integral<T1>::value && IS_INTEGER(T2) && sizeof(T1) >= sizeof(T2) && sizeof(T1) >= 4, se_t<decltype(T1() | T2())>> operator |(const se_t<T1>& left, T2 right)
{
return{ left.raw_data() | se_storage<T1>::to(right), se_raw };
}
// Optimization
template<typename T1, typename T2>
inline std::enable_if_t<IS_INTEGER(T1) && std::is_integral<T2>::value && sizeof(T1) <= sizeof(T2) && sizeof(T2) >= 4, se_t<decltype(T1() | T2())>> operator |(T1 left, const se_t<T2>& right)
{
return{ se_storage<T2>::to(left) | right.raw_data(), se_raw };
}
// Optimization
template<typename T1, typename T2>
inline std::enable_if_t<IS_BINARY_COMPARABLE(T1, T2) && sizeof(T1) >= 4, se_t<decltype(T1() ^ T2())>> operator ^(const se_t<T1>& left, const se_t<T2>& right)
{
return{ left.raw_data() ^ right.raw_data(), se_raw };
}
// Optimization
template<typename T1, typename T2>
inline std::enable_if_t<std::is_integral<T1>::value && IS_INTEGER(T2) && sizeof(T1) >= sizeof(T2) && sizeof(T1) >= 4, se_t<decltype(T1() ^ T2())>> operator ^(const se_t<T1>& left, T2 right)
{
return{ left.raw_data() ^ se_storage<T1>::to(right), se_raw };
}
// Optimization
template<typename T1, typename T2>
inline std::enable_if_t<IS_INTEGER(T1) && std::is_integral<T2>::value && sizeof(T1) <= sizeof(T2) && sizeof(T2) >= 4, se_t<decltype(T1() ^ T2())>> operator ^(T1 left, const se_t<T2>& right)
{
return{ se_storage<T2>::to(left) ^ right.raw_data(), se_raw };
}
// Optimization
template<typename T>
inline std::enable_if_t<std::is_integral<T>::value && sizeof(T) >= 4, se_t<decltype(~T())>> operator ~(const se_t<T>& right)
{
return{ ~right.raw_data(), se_raw };
}
#if IS_LE_MACHINE == 1
template<typename T, std::size_t Align = alignof(T)> using be_t = se_t<T, true, Align>;
template<typename T, std::size_t Align = alignof(T)> using le_t = se_t<T, false, Align>;
template <typename T, std::size_t Align = alignof(T)>
using be_t = se_t<T, true, Align>;
template <typename T, std::size_t Align = alignof(T)>
using le_t = se_t<T, false, Align>;
#endif
// Type converter: converts native endianness arithmetic/enum types to appropriate se_t<> type
template<typename T, bool Se, typename = void>
template <typename T, bool Se, typename = void>
struct to_se
{
template<typename T2, typename = void>
template <typename T2, typename = void>
struct to_se_
{
using type = T2;
};
template<typename T2>
template <typename T2>
struct to_se_<T2, std::enable_if_t<std::is_arithmetic<T2>::value || std::is_enum<T2>::value>>
{
using type = se_t<T2, Se>;
@ -898,34 +699,70 @@ struct to_se
using type = typename to_se_<T>::type;
};
template<bool Se> struct to_se<v128, Se> { using type = se_t<v128, Se>; };
template<bool Se> struct to_se<bool, Se> { using type = bool; };
template<bool Se> struct to_se<char, Se> { using type = char; };
template<bool Se> struct to_se<u8, Se> { using type = u8; };
template<bool Se> struct to_se<s8, Se> { using type = s8; };
template <bool Se>
struct to_se<v128, Se>
{
using type = se_t<v128, Se>;
};
template<typename T, bool Se>
template <bool Se>
struct to_se<u128, Se>
{
using type = se_t<u128, Se>;
};
template <bool Se>
struct to_se<s128, Se>
{
using type = se_t<s128, Se>;
};
template <bool Se>
struct to_se<bool, Se>
{
using type = bool;
};
template <bool Se>
struct to_se<char, Se>
{
using type = char;
};
template <bool Se>
struct to_se<u8, Se>
{
using type = u8;
};
template <bool Se>
struct to_se<s8, Se>
{
using type = s8;
};
template <typename T, bool Se>
struct to_se<const T, Se, std::enable_if_t<!std::is_array<T>::value>>
{
// Move const qualifier
using type = const typename to_se<T, Se>::type;
};
template<typename T, bool Se>
template <typename T, bool Se>
struct to_se<volatile T, Se, std::enable_if_t<!std::is_array<T>::value && !std::is_const<T>::value>>
{
// Move volatile qualifier
using type = volatile typename to_se<T, Se>::type;
};
template<typename T, bool Se>
template <typename T, bool Se>
struct to_se<T[], Se>
{
// Move array qualifier
using type = typename to_se<T, Se>::type[];
};
template<typename T, bool Se, std::size_t N>
template <typename T, bool Se, std::size_t N>
struct to_se<T[N], Se>
{
// Move array qualifier
@ -934,17 +771,21 @@ struct to_se<T[N], Se>
// BE/LE aliases for to_se<>
#if IS_LE_MACHINE == 1
template<typename T> using to_be_t = typename to_se<T, true>::type;
template<typename T> using to_le_t = typename to_se<T, false>::type;
template <typename T>
using to_be_t = typename to_se<T, true>::type;
template <typename T>
using to_le_t = typename to_se<T, false>::type;
#endif
// BE/LE aliases for atomic_t
#if IS_LE_MACHINE == 1
template<typename T> using atomic_be_t = atomic_t<be_t<T>>;
template<typename T> using atomic_le_t = atomic_t<le_t<T>>;
template <typename T>
using atomic_be_t = atomic_t<be_t<T>>;
template <typename T>
using atomic_le_t = atomic_t<le_t<T>>;
#endif
template<typename T, bool Se, std::size_t Align>
template <typename T, bool Se, std::size_t Align>
struct fmt_unveil<se_t<T, Se, Align>, void>
{
using type = typename fmt_unveil<T>::type;
@ -954,6 +795,3 @@ struct fmt_unveil<se_t<T, Se, Align>, void>
return fmt_unveil<T>::get(arg);
}
};
#undef IS_BINARY_COMPARABLE
#undef IS_INTEGER

View File

@ -11,115 +11,109 @@ void fmt_class_string<const void*>::format(std::string& out, u64 arg)
fmt::append(out, "%p", reinterpret_cast<const void*>(static_cast<std::uintptr_t>(arg)));
}
template<>
void fmt_class_string<std::nullptr_t>::format(std::string& out, u64 arg)
{
fmt::append(out, "%p", reinterpret_cast<const void*>(static_cast<std::uintptr_t>(arg)));
}
void fmt_class_string<const char*>::format(std::string& out, u64 arg)
{
out += reinterpret_cast<const char*>(static_cast<std::uintptr_t>(arg));
}
template<>
template <>
void fmt_class_string<std::string>::format(std::string& out, u64 arg)
{
out += get_object(arg).c_str(); // TODO?
}
template<>
template <>
void fmt_class_string<std::vector<char>>::format(std::string& out, u64 arg)
{
const std::vector<char>& obj = get_object(arg);
out.append(obj.cbegin(), obj.cend());
}
template<>
template <>
void fmt_class_string<char>::format(std::string& out, u64 arg)
{
fmt::append(out, "%#hhx", static_cast<char>(arg));
}
template<>
template <>
void fmt_class_string<uchar>::format(std::string& out, u64 arg)
{
fmt::append(out, "%#hhx", static_cast<uchar>(arg));
}
template<>
template <>
void fmt_class_string<schar>::format(std::string& out, u64 arg)
{
fmt::append(out, "%#hhx", static_cast<schar>(arg));
}
template<>
template <>
void fmt_class_string<short>::format(std::string& out, u64 arg)
{
fmt::append(out, "%#hx", static_cast<short>(arg));
}
template<>
template <>
void fmt_class_string<ushort>::format(std::string& out, u64 arg)
{
fmt::append(out, "%#hx", static_cast<ushort>(arg));
}
template<>
template <>
void fmt_class_string<int>::format(std::string& out, u64 arg)
{
fmt::append(out, "%#x", static_cast<int>(arg));
}
template<>
template <>
void fmt_class_string<uint>::format(std::string& out, u64 arg)
{
fmt::append(out, "%#x", static_cast<uint>(arg));
}
template<>
template <>
void fmt_class_string<long>::format(std::string& out, u64 arg)
{
fmt::append(out, "%#lx", static_cast<long>(arg));
}
template<>
template <>
void fmt_class_string<ulong>::format(std::string& out, u64 arg)
{
fmt::append(out, "%#lx", static_cast<ulong>(arg));
}
template<>
template <>
void fmt_class_string<llong>::format(std::string& out, u64 arg)
{
fmt::append(out, "%#llx", static_cast<llong>(arg));
}
template<>
template <>
void fmt_class_string<ullong>::format(std::string& out, u64 arg)
{
fmt::append(out, "%#llx", static_cast<ullong>(arg));
}
template<>
template <>
void fmt_class_string<float>::format(std::string& out, u64 arg)
{
fmt::append(out, "%gf", static_cast<float>(reinterpret_cast<f64&>(arg)));
}
template<>
template <>
void fmt_class_string<double>::format(std::string& out, u64 arg)
{
fmt::append(out, "%g", reinterpret_cast<f64&>(arg));
}
template<>
template <>
void fmt_class_string<bool>::format(std::string& out, u64 arg)
{
out += arg ? "true" : "false";
}
template<>
template <>
void fmt_class_string<v128>::format(std::string& out, u64 arg)
{
const v128& vec = get_object(arg);
@ -130,21 +124,38 @@ namespace fmt
{
void raw_error(const char* msg)
{
std::string out;
std::string out{"Error"};
out += "Error: ";
out += ": ";
out += msg;
throw std::runtime_error(out);
throw std::runtime_error{out};
}
void raw_verify_error(const char* msg, uint position)
{
std::string out{"Verification failed"};
if (position)
{
out += " (+";
out += std::to_string(position);
out += ")";
}
out += ": ";
out += msg;
throw std::runtime_error{out};
}
void raw_narrow_error(const char* msg, const fmt_type_info* sup, u64 arg)
{
std::string out;
std::string out{"Narrow error"};
out += "Narrow error: (";
out += " (";
sup->fmt_string(out, arg); // Print value
out += ")";
out += "): ";
if (msg)
{
@ -152,11 +163,11 @@ namespace fmt
out += msg;
}
throw std::range_error(out);
throw std::range_error{out};
}
// Hidden template
template<typename T>
template <typename T>
void raw_throw_exception(const char* fmt, const fmt_type_info* sup, const u64* args)
{
std::string out;
@ -193,7 +204,7 @@ struct fmt::cfmt_src
return true;
}
template<typename T>
template <typename T>
T get(std::size_t index) const
{
return reinterpret_cast<const T&>(args[index]);
@ -215,9 +226,9 @@ struct fmt::cfmt_src
// Returns type size (0 if unknown, pointer, unsigned, assumed max)
std::size_t type(std::size_t extra) const
{
// Hack: use known function pointers to determine type
#define TYPE(type)\
if (sup[extra].fmt_string == &fmt_class_string<type>::format) return sizeof(type);
// Hack: use known function pointers to determine type
#define TYPE(type) \
if (sup[extra].fmt_string == &fmt_class_string<type>::format) return sizeof(type);
TYPE(int);
TYPE(llong);
@ -249,7 +260,7 @@ std::string fmt::replace_first(const std::string& src, const std::string& from,
return (pos ? src.substr(0, pos) + to : to) + std::string(src.c_str() + pos + from.length());
}
std::string fmt::replace_all(const std::string &src, const std::string& from, const std::string& to)
std::string fmt::replace_all(const std::string& src, const std::string& from, const std::string& to)
{
std::string target = src;
for (auto pos = target.find(from); pos != std::string::npos; pos = target.find(from, pos + 1))
@ -269,7 +280,7 @@ std::vector<std::string> fmt::split(const std::string& source, std::initializer_
for (size_t cursor_end = 0; cursor_end < source.length(); ++cursor_end)
{
for (auto &separator : separators)
for (auto& separator : separators)
{
if (strncmp(source.c_str() + cursor_end, separator.c_str(), separator.length()) == 0)
{
@ -278,7 +289,7 @@ std::vector<std::string> fmt::split(const std::string& source, std::initializer_
result.push_back(candidate);
cursor_begin = cursor_end + separator.length();
cursor_end = cursor_begin - 1;
cursor_end = cursor_begin - 1;
break;
}
}
@ -297,7 +308,7 @@ std::string fmt::trim(const std::string& source, const std::string& values)
std::size_t begin = source.find_first_not_of(values);
if (begin == source.npos)
return{};
return {};
return source.substr(begin, source.find_last_not_of(values) + 1);
}
@ -310,7 +321,7 @@ std::string fmt::to_upper(const std::string& string)
return result;
}
bool fmt::match(const std::string &source, const std::string &mask)
bool fmt::match(const std::string& source, const std::string& mask)
{
std::size_t source_position = 0, mask_position = 0;

View File

@ -8,11 +8,11 @@
namespace fmt
{
template<typename... Args>
template <typename... Args>
static std::string format(const char*, const Args&...);
}
template<typename T, typename>
template <typename T, typename>
struct fmt_unveil
{
static_assert(sizeof(T) > 0, "fmt_unveil<>: cannot pass forward-declared object");
@ -43,7 +43,7 @@ struct fmt_unveil
}
};
template<typename T>
template <typename T>
struct fmt_unveil<T, std::enable_if_t<std::is_integral<T>::value && sizeof(T) <= 8 && alignof(T) <= 8>>
{
using type = T;
@ -54,7 +54,7 @@ struct fmt_unveil<T, std::enable_if_t<std::is_integral<T>::value && sizeof(T) <=
}
};
template<typename T>
template <typename T>
struct fmt_unveil<T, std::enable_if_t<std::is_floating_point<T>::value && sizeof(T) <= 8 && alignof(T) <= 8>>
{
using type = T;
@ -66,7 +66,7 @@ struct fmt_unveil<T, std::enable_if_t<std::is_floating_point<T>::value && sizeof
}
};
template<typename T>
template <typename T>
struct fmt_unveil<T, std::enable_if_t<std::is_enum<T>::value>>
{
using type = T;
@ -77,7 +77,7 @@ struct fmt_unveil<T, std::enable_if_t<std::is_enum<T>::value>>
}
};
template<typename T>
template <typename T>
struct fmt_unveil<T*, void>
{
using type = const T*;
@ -88,7 +88,7 @@ struct fmt_unveil<T*, void>
}
};
template<typename T, std::size_t N>
template <typename T, std::size_t N>
struct fmt_unveil<T[N], void>
{
using type = const T*;
@ -99,7 +99,7 @@ struct fmt_unveil<T[N], void>
}
};
template<>
template <>
struct fmt_unveil<b8, void>
{
using type = bool;
@ -111,7 +111,7 @@ struct fmt_unveil<b8, void>
};
// String type format provider, also type classifier (format() called if an argument is formatted as "%s")
template<typename T, typename = void>
template <typename T, typename = void>
struct fmt_class_string
{
// Formatting function (must be explicitly specialized)
@ -127,7 +127,7 @@ struct fmt_class_string
}
// Helper function (safely converts arg to enum value)
static SAFE_BUFFERS FORCE_INLINE void format_enum(std::string& out, u64 arg, const char*(*get)(T value))
static SAFE_BUFFERS FORCE_INLINE void format_enum(std::string& out, u64 arg, const char* (*get)(T value))
{
const auto value = static_cast<std::underlying_type_t<T>>(arg);
@ -146,7 +146,7 @@ struct fmt_class_string
}
// Helper function (bitset formatting)
static SAFE_BUFFERS FORCE_INLINE void format_bitset(std::string& out, u64 arg, const char* prefix, const char* delim, const char* suffix, void(*fmt)(std::string&, u64))
static SAFE_BUFFERS FORCE_INLINE void format_bitset(std::string& out, u64 arg, const char* prefix, const char* delim, const char* suffix, void (*fmt)(std::string&, u64))
{
// Start from raw value
fmt_class_string<u64>::format(out, arg);
@ -175,25 +175,25 @@ struct fmt_class_string
static constexpr const char* unknown = nullptr;
};
template<>
template <>
struct fmt_class_string<const void*, void>
{
static void format(std::string& out, u64 arg);
};
template<typename T>
template <typename T>
struct fmt_class_string<T*, void> : fmt_class_string<const void*, void>
{
// Classify all pointers as const void*
};
template<>
template <>
struct fmt_class_string<const char*, void>
{
static void format(std::string& out, u64 arg);
};
template<>
template <>
struct fmt_class_string<char*, void> : fmt_class_string<const char*>
{
// Classify char* as const char*
@ -203,7 +203,7 @@ struct fmt_type_info
{
decltype(&fmt_class_string<int>::format) fmt_string;
template<typename T>
template <typename T>
static constexpr fmt_type_info make()
{
return fmt_type_info
@ -213,23 +213,20 @@ struct fmt_type_info
}
};
template<typename Arg>
template <typename Arg>
using fmt_unveil_t = typename fmt_unveil<Arg>::type;
// Argument array type (each element generated via fmt_unveil<>)
template<typename... Args>
template <typename... Args>
using fmt_args_t = const u64(&&)[sizeof...(Args) + 1];
namespace fmt
{
template<typename... Args>
const fmt_type_info* get_type_info()
template <typename... Args>
SAFE_BUFFERS FORCE_INLINE const fmt_type_info* get_type_info()
{
// Constantly initialized null-terminated list of type-specific information
static constexpr fmt_type_info result[sizeof...(Args) + 1]
{
fmt_type_info::make<Args>()...
};
static constexpr fmt_type_info result[sizeof...(Args) + 1]{fmt_type_info::make<Args>()...};
return result;
}
@ -238,15 +235,15 @@ namespace fmt
void raw_append(std::string& out, const char*, const fmt_type_info*, const u64*) noexcept;
// Formatting function
template<typename... Args>
static SAFE_BUFFERS void append(std::string& out, const char* fmt, const Args&... args)
template <typename... Args>
SAFE_BUFFERS FORCE_INLINE void append(std::string& out, const char* fmt, const Args&... args)
{
raw_append(out, fmt, fmt::get_type_info<fmt_unveil_t<Args>...>(), fmt_args_t<Args...>{fmt_unveil<Args>::get(args)...});
}
// Formatting function
template<typename... Args>
static SAFE_BUFFERS std::string format(const char* fmt, const Args&... args)
template <typename... Args>
SAFE_BUFFERS FORCE_INLINE std::string format(const char* fmt, const Args&... args)
{
std::string result;
append<Args...>(result, fmt, args...);
@ -254,11 +251,11 @@ namespace fmt
}
// Internal exception message formatting template, must be explicitly specialized or instantiated in cpp to minimize code bloat
template<typename T>
template <typename T>
[[noreturn]] void raw_throw_exception(const char*, const fmt_type_info*, const u64*);
// Throw exception with formatting
template<typename T = std::runtime_error, typename... Args>
template <typename T = std::runtime_error, typename... Args>
[[noreturn]] SAFE_BUFFERS FORCE_INLINE void throw_exception(const char* fmt, const Args&... args)
{
raw_throw_exception<T>(fmt, fmt::get_type_info<fmt_unveil_t<Args>...>(), fmt_args_t<Args...>{fmt_unveil<Args>::get(args)...});

View File

@ -7,8 +7,8 @@
#include <functional>
// Copy null-terminated string from std::string to char array with truncation
template<std::size_t N>
inline void strcpy_trunc(char(&dst)[N], const std::string& src)
template <std::size_t N>
inline void strcpy_trunc(char (&dst)[N], const std::string& src)
{
const std::size_t count = src.size() >= N ? N - 1 : src.size();
std::memcpy(dst, src.c_str(), count);
@ -16,8 +16,8 @@ inline void strcpy_trunc(char(&dst)[N], const std::string& src)
}
// Copy null-terminated string from char array to another char array with truncation
template<std::size_t N, std::size_t N2>
inline void strcpy_trunc(char(&dst)[N], const char(&src)[N2])
template <std::size_t N, std::size_t N2>
inline void strcpy_trunc(char (&dst)[N], const char (&src)[N2])
{
const std::size_t count = N2 >= N ? N - 1 : N2;
std::memcpy(dst, src, count);
@ -27,10 +27,10 @@ inline void strcpy_trunc(char(&dst)[N], const char(&src)[N2])
namespace fmt
{
std::string replace_first(const std::string& src, const std::string& from, const std::string& to);
std::string replace_all(const std::string &src, const std::string& from, const std::string& to);
std::string replace_all(const std::string& src, const std::string& from, const std::string& to);
template<size_t list_size>
std::string replace_all(std::string src, const std::pair<std::string, std::string>(&list)[list_size])
template <size_t list_size>
std::string replace_all(std::string src, const std::pair<std::string, std::string> (&list)[list_size])
{
for (size_t pos = 0; pos < src.length(); ++pos)
{
@ -53,8 +53,8 @@ namespace fmt
return src;
}
template<size_t list_size>
std::string replace_all(std::string src, const std::pair<std::string, std::function<std::string()>>(&list)[list_size])
template <size_t list_size>
std::string replace_all(std::string src, const std::pair<std::string, std::function<std::string()>> (&list)[list_size])
{
for (size_t pos = 0; pos < src.length(); ++pos)
{
@ -80,17 +80,17 @@ namespace fmt
std::vector<std::string> split(const std::string& source, std::initializer_list<std::string> separators, bool is_skip_empty = true);
std::string trim(const std::string& source, const std::string& values = " \t");
template<typename T>
template <typename T>
std::string merge(const T& source, const std::string& separator)
{
if (!source.size())
{
return{};
return {};
}
std::string result;
auto it = source.begin();
auto it = source.begin();
auto end = source.end();
for (--end; it != end; ++it)
{
@ -100,23 +100,23 @@ namespace fmt
return result + source.back();
}
template<typename T>
template <typename T>
std::string merge(std::initializer_list<T> sources, const std::string& separator)
{
if (!sources.size())
{
return{};
return {};
}
std::string result;
bool first = true;
for (auto &v : sources)
for (auto& v : sources)
{
if (first)
{
result = fmt::merge(v, separator);
first = false;
first = false;
}
else
{
@ -129,5 +129,5 @@ namespace fmt
std::string to_upper(const std::string& string);
bool match(const std::string &source, const std::string &mask);
bool match(const std::string& source, const std::string& mask);
}

View File

@ -4,20 +4,20 @@
#include <climits>
#include <type_traits>
using schar = signed char;
using uchar = unsigned char;
using schar = signed char;
using uchar = unsigned char;
using ushort = unsigned short;
using uint = unsigned int;
using ulong = unsigned long;
using uint = unsigned int;
using ulong = unsigned long;
using ullong = unsigned long long;
using llong = long long;
using llong = long long;
using u8 = std::uint8_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using s8 = std::int8_t;
using s8 = std::int8_t;
using s16 = std::int16_t;
using s32 = std::int32_t;
using s64 = std::int64_t;
@ -28,63 +28,63 @@ namespace gsl
}
// Formatting helper, type-specific preprocessing for improving safety and functionality
template<typename T, typename = void>
template <typename T, typename = void>
struct fmt_unveil;
struct fmt_type_info;
namespace fmt
{
template<typename... Args>
template <typename... Args>
const fmt_type_info* get_type_info();
}
template<typename T, std::size_t Align = alignof(T), std::size_t Size = sizeof(T)>
template <typename T, std::size_t Align = alignof(T), std::size_t Size = sizeof(T)>
struct se_storage;
template<typename T, bool Se = true, std::size_t Align = alignof(T)>
template <typename T, bool Se = true, std::size_t Align = alignof(T)>
class se_t;
template<typename T, std::size_t Size = sizeof(T)>
template <typename T, std::size_t Size = sizeof(T)>
struct atomic_storage;
template<typename T1, typename T2, typename = void>
template <typename T1, typename T2, typename = void>
struct atomic_add;
template<typename T1, typename T2, typename = void>
template <typename T1, typename T2, typename = void>
struct atomic_sub;
template<typename T1, typename T2, typename = void>
template <typename T1, typename T2, typename = void>
struct atomic_and;
template<typename T1, typename T2, typename = void>
template <typename T1, typename T2, typename = void>
struct atomic_or;
template<typename T1, typename T2, typename = void>
template <typename T1, typename T2, typename = void>
struct atomic_xor;
template<typename T, typename = void>
template <typename T, typename = void>
struct atomic_pre_inc;
template<typename T, typename = void>
template <typename T, typename = void>
struct atomic_post_inc;
template<typename T, typename = void>
template <typename T, typename = void>
struct atomic_pre_dec;
template<typename T, typename = void>
template <typename T, typename = void>
struct atomic_post_dec;
template<typename T1, typename T2, typename = void>
template <typename T1, typename T2, typename = void>
struct atomic_test_and_set;
template<typename T1, typename T2, typename = void>
template <typename T1, typename T2, typename = void>
struct atomic_test_and_reset;
template<typename T1, typename T2, typename = void>
template <typename T1, typename T2, typename = void>
struct atomic_test_and_complement;
template<typename T>
template <typename T>
class atomic_t;
#ifdef _MSC_VER
@ -92,30 +92,32 @@ using std::void_t;
#else
namespace void_details
{
template<class... >
template <typename...>
struct make_void
{
using type = void;
};
}
template<class... T> using void_t = typename void_details::make_void<T...>::type;
template <typename... T>
using void_t = typename void_details::make_void<T...>::type;
#endif
// Extract T::simple_type if available, remove cv qualifiers
template<typename T, typename = void>
template <typename T, typename = void>
struct simple_type_helper
{
using type = typename std::remove_cv<T>::type;
};
template<typename T>
template <typename T>
struct simple_type_helper<T, void_t<typename T::simple_type>>
{
using type = typename T::simple_type;
};
template<typename T> using simple_t = typename simple_type_helper<T>::type;
template <typename T>
using simple_t = typename simple_type_helper<T>::type;
// Bool type equivalent
class b8
@ -172,87 +174,87 @@ struct alignas(16) u128
{
}
friend u128 operator +(const u128& l, const u128& r)
friend u128 operator+(const u128& l, const u128& r)
{
u128 value;
_addcarry_u64(_addcarry_u64(0, r.lo, l.lo, &value.lo), r.hi, l.hi, &value.hi);
return value;
}
friend u128 operator +(const u128& l, u64 r)
friend u128 operator+(const u128& l, u64 r)
{
u128 value;
_addcarry_u64(_addcarry_u64(0, r, l.lo, &value.lo), l.hi, 0, &value.hi);
return value;
}
friend u128 operator +(u64 l, const u128& r)
friend u128 operator+(u64 l, const u128& r)
{
u128 value;
_addcarry_u64(_addcarry_u64(0, r.lo, l, &value.lo), 0, r.hi, &value.hi);
return value;
}
friend u128 operator -(const u128& l, const u128& r)
friend u128 operator-(const u128& l, const u128& r)
{
u128 value;
_subborrow_u64(_subborrow_u64(0, r.lo, l.lo, &value.lo), r.hi, l.hi, &value.hi);
return value;
}
friend u128 operator -(const u128& l, u64 r)
friend u128 operator-(const u128& l, u64 r)
{
u128 value;
_subborrow_u64(_subborrow_u64(0, r, l.lo, &value.lo), 0, l.hi, &value.hi);
return value;
}
friend u128 operator -(u64 l, const u128& r)
friend u128 operator-(u64 l, const u128& r)
{
u128 value;
_subborrow_u64(_subborrow_u64(0, r.lo, l, &value.lo), r.hi, 0, &value.hi);
return value;
}
u128 operator +() const
u128 operator+() const
{
return *this;
}
u128 operator -() const
u128 operator-() const
{
u128 value;
_subborrow_u64(_subborrow_u64(0, lo, 0, &value.lo), hi, 0, &value.hi);
return value;
}
u128& operator ++()
u128& operator++()
{
_addcarry_u64(_addcarry_u64(0, 1, lo, &lo), 0, hi, &hi);
return *this;
}
u128 operator ++(int)
u128 operator++(int)
{
u128 value = *this;
_addcarry_u64(_addcarry_u64(0, 1, lo, &lo), 0, hi, &hi);
return value;
}
u128& operator --()
u128& operator--()
{
_subborrow_u64(_subborrow_u64(0, 1, lo, &lo), 0, hi, &hi);
return *this;
}
u128 operator --(int)
u128 operator--(int)
{
u128 value = *this;
_subborrow_u64(_subborrow_u64(0, 1, lo, &lo), 0, hi, &hi);
return value;
}
u128 operator ~() const
u128 operator~() const
{
u128 value;
value.lo = ~lo;
@ -260,7 +262,7 @@ struct alignas(16) u128
return value;
}
friend u128 operator &(const u128& l, const u128& r)
friend u128 operator&(const u128& l, const u128& r)
{
u128 value;
value.lo = l.lo & r.lo;
@ -268,7 +270,7 @@ struct alignas(16) u128
return value;
}
friend u128 operator |(const u128& l, const u128& r)
friend u128 operator|(const u128& l, const u128& r)
{
u128 value;
value.lo = l.lo | r.lo;
@ -276,7 +278,7 @@ struct alignas(16) u128
return value;
}
friend u128 operator ^(const u128& l, const u128& r)
friend u128 operator^(const u128& l, const u128& r)
{
u128 value;
value.lo = l.lo ^ r.lo;
@ -284,33 +286,33 @@ struct alignas(16) u128
return value;
}
u128& operator +=(const u128& r)
u128& operator+=(const u128& r)
{
_addcarry_u64(_addcarry_u64(0, r.lo, lo, &lo), r.hi, hi, &hi);
return *this;
}
u128& operator +=(uint64_t r)
u128& operator+=(uint64_t r)
{
_addcarry_u64(_addcarry_u64(0, r, lo, &lo), 0, hi, &hi);
return *this;
}
u128& operator &=(const u128& r)
u128& operator&=(const u128& r)
{
lo &= r.lo;
hi &= r.hi;
return *this;
}
u128& operator |=(const u128& r)
u128& operator|=(const u128& r)
{
lo |= r.lo;
hi |= r.hi;
return *this;
}
u128& operator ^=(const u128& r)
u128& operator^=(const u128& r)
{
lo ^= r.lo;
hi ^= r.hi;
@ -340,47 +342,8 @@ struct alignas(16) s128
};
#endif
namespace std
{
/* Let's hack. */
template<>
struct is_integral<u128> : true_type
{
};
template<>
struct is_integral<s128> : true_type
{
};
template<>
struct make_unsigned<u128>
{
using type = u128;
};
template<>
struct make_unsigned<s128>
{
using type = u128;
};
template<>
struct make_signed<u128>
{
using type = s128;
};
template<>
struct make_signed<s128>
{
using type = s128;
};
}
static_assert(std::is_arithmetic<u128>::value && std::is_integral<u128>::value && alignof(u128) == 16 && sizeof(u128) == 16, "Wrong u128 implementation");
static_assert(std::is_arithmetic<s128>::value && std::is_integral<s128>::value && alignof(s128) == 16 && sizeof(s128) == 16, "Wrong s128 implementation");
static_assert(alignof(u128) == 16 && sizeof(u128) == 16, "Wrong u128 implementation");
static_assert(alignof(s128) == 16 && sizeof(s128) == 16, "Wrong s128 implementation");
union alignas(2) f16
{
@ -396,9 +359,9 @@ union alignas(2) f16
{
// See http://stackoverflow.com/a/26779139
// The conversion doesn't handle NaN/Inf
u32 raw = ((_u16 & 0x8000) << 16) | // Sign (just moved)
(((_u16 & 0x7c00) + 0x1C000) << 13) | // Exponent ( exp - 15 + 127)
((_u16 & 0x03FF) << 13); // Mantissa
u32 raw = ((_u16 & 0x8000) << 16) | // Sign (just moved)
(((_u16 & 0x7c00) + 0x1C000) << 13) | // Exponent ( exp - 15 + 127)
((_u16 & 0x03FF) << 13); // Mantissa
return (float&)raw;
}
};
@ -408,13 +371,13 @@ using f64 = double;
struct ignore
{
template<typename T>
template <typename T>
ignore(T)
{
}
};
template<typename T, typename = std::enable_if_t<std::is_integral<T>::value>>
template <typename T, typename = std::enable_if_t<std::is_integral<T>::value>>
constexpr T align(const T& value, std::uint64_t align)
{
return static_cast<T>((value + (align - 1)) & ~(align - 1));
@ -423,12 +386,74 @@ constexpr T align(const T& value, std::uint64_t align)
namespace fmt
{
[[noreturn]] void raw_error(const char* msg);
[[noreturn]] void raw_verify_error(const char* msg, uint position);
[[noreturn]] void raw_narrow_error(const char* msg, const fmt_type_info* sup, u64 arg);
}
struct verify_func
{
template <typename T>
bool operator()(T&& value) const
{
if (std::forward<T>(value))
{
return true;
}
return false;
}
};
template <uint N>
struct verify_impl
{
const char* cause;
template <typename T>
auto operator,(T&& value) const
{
// Verification (can be safely disabled)
if (!verify_func()(std::forward<T>(value)))
{
fmt::raw_verify_error(cause, N);
}
return verify_impl<N + 1>{cause};
}
};
// Verification helper, checks several conditions delimited with comma operator
inline auto verify(const char* cause)
{
return verify_impl<0>{cause};
}
// Verification helper (returns value or lvalue reference, may require to use verify_move instead)
template <typename F = verify_func, typename T>
inline T verify(T&& value, const char* cause, F&& func = F())
{
if (!func(std::forward<T>(value)))
{
fmt::raw_verify_error(cause, 0);
}
return std::forward<T>(value);
}
// Verification helper (must be used in return expression or in place of std::move)
template <typename F = verify_func, typename T>
inline std::remove_reference_t<T>&& verify_move(T&& value, const char* cause, F&& func = F())
{
if (!func(std::forward<T>(value)))
{
fmt::raw_verify_error(cause, 0);
}
return std::move(value);
}
// Narrow cast (throws on failure)
template<typename To = void, typename From, typename = decltype(static_cast<To>(std::declval<From>()))>
template <typename To = void, typename From, typename = decltype(static_cast<To>(std::declval<From>()))>
inline To narrow(const From& value, const char* msg = nullptr)
{
// Allow "narrowing to void" and ensure it always fails in this case
@ -443,32 +468,32 @@ inline To narrow(const From& value, const char* msg = nullptr)
}
// Returns u32 size() for container
template<typename CT, typename = decltype(static_cast<u32>(std::declval<CT>().size()))>
template <typename CT, typename = decltype(static_cast<u32>(std::declval<CT>().size()))>
inline u32 size32(const CT& container, const char* msg = nullptr)
{
return narrow<u32>(container.size(), msg);
}
// Returns u32 size for an array
template<typename T, std::size_t Size>
constexpr u32 size32(const T(&)[Size], const char* msg = nullptr)
template <typename T, std::size_t Size>
constexpr u32 size32(const T (&)[Size], const char* msg = nullptr)
{
return static_cast<u32>(Size);
}
template<typename T1, typename = std::enable_if_t<std::is_integral<T1>::value>>
template <typename T1, typename = std::enable_if_t<std::is_integral<T1>::value>>
constexpr bool test(const T1& value)
{
return value != 0;
}
template<typename T1, typename T2, typename = std::enable_if_t<std::is_integral<T1>::value && std::is_integral<T2>::value>>
template <typename T1, typename T2, typename = std::enable_if_t<std::is_integral<T1>::value && std::is_integral<T2>::value>>
constexpr bool test(const T1& lhs, const T2& rhs)
{
return (lhs & rhs) != 0;
}
template<typename T, typename T2, typename = std::enable_if_t<std::is_integral<T>::value && std::is_integral<T2>::value>>
template <typename T, typename T2, typename = std::enable_if_t<std::is_integral<T>::value && std::is_integral<T2>::value>>
inline bool test_and_set(T& lhs, const T2& rhs)
{
const bool result = (lhs & rhs) != 0;
@ -476,7 +501,7 @@ inline bool test_and_set(T& lhs, const T2& rhs)
return result;
}
template<typename T, typename T2, typename = std::enable_if_t<std::is_integral<T>::value && std::is_integral<T2>::value>>
template <typename T, typename T2, typename = std::enable_if_t<std::is_integral<T>::value && std::is_integral<T2>::value>>
inline bool test_and_reset(T& lhs, const T2& rhs)
{
const bool result = (lhs & rhs) != 0;
@ -484,7 +509,7 @@ inline bool test_and_reset(T& lhs, const T2& rhs)
return result;
}
template<typename T, typename T2, typename = std::enable_if_t<std::is_integral<T>::value && std::is_integral<T2>::value>>
template <typename T, typename T2, typename = std::enable_if_t<std::is_integral<T>::value && std::is_integral<T2>::value>>
inline bool test_and_complement(T& lhs, const T2& rhs)
{
const bool result = (lhs & rhs) != 0;
@ -493,7 +518,7 @@ inline bool test_and_complement(T& lhs, const T2& rhs)
}
// Simplified hash algorithm for pointers. May be used in std::unordered_(map|set).
template<typename T, std::size_t Align = alignof(T)>
template <typename T, std::size_t Align = alignof(T)>
struct pointer_hash
{
std::size_t operator()(T* ptr) const
@ -502,7 +527,7 @@ struct pointer_hash
}
};
template<typename T, std::size_t Shift = 0>
template <typename T, std::size_t Shift = 0>
struct value_hash
{
std::size_t operator()(T value) const
@ -513,26 +538,26 @@ struct value_hash
// Contains value of any POD type with fixed size and alignment. TT<> is the type converter applied.
// For example, `simple_t` may be used to remove endianness.
template<template<typename> class TT, std::size_t S, std::size_t A = S>
template <template <typename> class TT, std::size_t S, std::size_t A = S>
struct alignas(A) any_pod
{
std::aligned_storage_t<S, A> data;
any_pod() = default;
template<typename T, typename T2 = TT<T>, typename = std::enable_if_t<std::is_pod<T2>::value && sizeof(T2) == S && alignof(T2) <= A>>
template <typename T, typename T2 = TT<T>, typename = std::enable_if_t<std::is_pod<T2>::value && sizeof(T2) == S && alignof(T2) <= A>>
any_pod(const T& value)
{
reinterpret_cast<T2&>(data) = value;
}
template<typename T, typename T2 = TT<T>, typename = std::enable_if_t<std::is_pod<T2>::value && sizeof(T2) == S && alignof(T2) <= A>>
template <typename T, typename T2 = TT<T>, typename = std::enable_if_t<std::is_pod<T2>::value && sizeof(T2) == S && alignof(T2) <= A>>
T2& as()
{
return reinterpret_cast<T2&>(data);
}
template<typename T, typename T2 = TT<T>, typename = std::enable_if_t<std::is_pod<T2>::value && sizeof(T2) == S && alignof(T2) <= A>>
template <typename T, typename T2 = TT<T>, typename = std::enable_if_t<std::is_pod<T2>::value && sizeof(T2) == S && alignof(T2) <= A>>
const T2& as() const
{
return reinterpret_cast<const T2&>(data);
@ -553,13 +578,13 @@ struct cmd64 : any64
cmd64() = default;
template<typename T>
template <typename T>
cmd64(const T& value)
: any64(value)
{
}
template<typename T1, typename T2>
template <typename T1, typename T2>
cmd64(const T1& arg1, const T2& arg2)
: any64(pair_t{arg1, arg2})
{
@ -572,25 +597,25 @@ struct cmd64 : any64
// TODO: compatibility with std::pair/std::tuple?
template<typename T>
template <typename T>
decltype(auto) arg1()
{
return as<pair_t>().arg1.as<T>();
}
template<typename T>
template <typename T>
decltype(auto) arg1() const
{
return as<const pair_t>().arg1.as<const T>();
}
template<typename T>
template <typename T>
decltype(auto) arg2()
{
return as<pair_t>().arg2.as<T>();
}
template<typename T>
template <typename T>
decltype(auto) arg2() const
{
return as<const pair_t>().arg2.as<const T>();
@ -600,7 +625,7 @@ struct cmd64 : any64
static_assert(sizeof(cmd64) == 8 && std::is_pod<cmd64>::value, "Incorrect cmd64 type");
// Allows to define integer convertible to multiple types
template<typename T, T Value, typename T1 = void, typename... Ts>
template <typename T, T Value, typename T1 = void, typename... Ts>
struct multicast : multicast<T, Value, Ts...>
{
constexpr multicast() = default;
@ -613,7 +638,7 @@ struct multicast : multicast<T, Value, Ts...>
};
// Recursion terminator
template<typename T, T Value>
template <typename T, T Value>
struct multicast<T, Value, void>
{
constexpr multicast() = default;
@ -626,23 +651,25 @@ struct multicast<T, Value, void>
};
// Tagged ID type
template<typename T = void, typename ID = u32>
template <typename T = void, typename ID = u32>
class id_value
{
// Initial value
mutable ID m_value{ static_cast<ID>(-1) };
mutable ID m_value{static_cast<ID>(-1)};
// Allow access for ID manager
friend class idm;
// Update ID
void operator =(const ID& value) const
void operator=(const ID& value) const
{
m_value = value;
}
public:
constexpr id_value() {}
constexpr id_value()
{
}
// Get the value
operator ID() const
@ -651,7 +678,7 @@ public:
}
};
template<typename T, typename ID>
template <typename T, typename ID>
struct fmt_unveil<id_value<T, ID>>
{
using type = typename fmt_unveil<ID>::type;