2377 lines
88 KiB
C++
2377 lines
88 KiB
C++
// ---------------------------------------------------------------------------
|
|
// Copyright (c) 2019, Gregory Popovitch - greg7mdp@gmail.com
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// Includes work from abseil-cpp (https://github.com/abseil/abseil-cpp)
|
|
// with modifications.
|
|
//
|
|
// Copyright 2018 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// ---------------------------------------------------------------------------
|
|
|
|
#include <numeric>
|
|
#include "btree_test.h"
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable: 4244 4100 4389)
|
|
#endif
|
|
|
|
namespace phmap {
|
|
namespace test_internal {
|
|
size_t BaseCountedInstance::num_instances_ = 0;
|
|
size_t BaseCountedInstance::num_live_instances_ = 0;
|
|
size_t BaseCountedInstance::num_moves_ = 0;
|
|
size_t BaseCountedInstance::num_copies_ = 0;
|
|
size_t BaseCountedInstance::num_swaps_ = 0;
|
|
size_t BaseCountedInstance::num_comparisons_ = 0;
|
|
|
|
} // namespace test_internal
|
|
} // namespace phmap\
|
|
|
|
|
|
static const size_t test_values = 10000;
|
|
|
|
namespace phmap {
|
|
namespace priv {
|
|
namespace {
|
|
|
|
using ::phmap::test_internal::CopyableMovableInstance;
|
|
using ::phmap::test_internal::InstanceTracker;
|
|
using ::phmap::test_internal::MovableOnlyInstance;
|
|
using ::testing::ElementsAre;
|
|
using ::testing::ElementsAreArray;
|
|
using ::testing::IsEmpty;
|
|
using ::testing::Pair;
|
|
|
|
#define PHMAP_INTERNAL_CHECK(condition, message) \
|
|
if (!(condition)) assert(0)
|
|
|
|
template <typename T, typename U>
|
|
void CheckPairEquals(const T &x, const U &y) {
|
|
PHMAP_INTERNAL_CHECK(x == y, "Values are unequal.");
|
|
}
|
|
|
|
template <typename T, typename U, typename V, typename W>
|
|
void CheckPairEquals(const std::pair<T, U> &x, const std::pair<V, W> &y) {
|
|
CheckPairEquals(x.first, y.first);
|
|
CheckPairEquals(x.second, y.second);
|
|
}
|
|
} // namespace
|
|
|
|
// The base class for a sorted associative container checker. TreeType is the
|
|
// container type to check and CheckerType is the container type to check
|
|
// against. TreeType is expected to be btree_{set,map,multiset,multimap} and
|
|
// CheckerType is expected to be {set,map,multiset,multimap}.
|
|
template <typename TreeType, typename CheckerType>
|
|
class base_checker {
|
|
public:
|
|
using key_type = typename TreeType::key_type;
|
|
using value_type = typename TreeType::value_type;
|
|
using key_compare = typename TreeType::key_compare;
|
|
using pointer = typename TreeType::pointer;
|
|
using const_pointer = typename TreeType::const_pointer;
|
|
using reference = typename TreeType::reference;
|
|
using const_reference = typename TreeType::const_reference;
|
|
using size_type = typename TreeType::size_type;
|
|
using difference_type = typename TreeType::difference_type;
|
|
using iterator = typename TreeType::iterator;
|
|
using const_iterator = typename TreeType::const_iterator;
|
|
using reverse_iterator = typename TreeType::reverse_iterator;
|
|
using const_reverse_iterator = typename TreeType::const_reverse_iterator;
|
|
|
|
public:
|
|
base_checker() : const_tree_(tree_) {}
|
|
base_checker(const base_checker &x)
|
|
: tree_(x.tree_), const_tree_(tree_), checker_(x.checker_) {}
|
|
template <typename InputIterator>
|
|
base_checker(InputIterator b, InputIterator e)
|
|
: tree_(b, e), const_tree_(tree_), checker_(b, e) {}
|
|
|
|
iterator begin() { return tree_.begin(); }
|
|
const_iterator begin() const { return tree_.begin(); }
|
|
iterator end() { return tree_.end(); }
|
|
const_iterator end() const { return tree_.end(); }
|
|
reverse_iterator rbegin() { return tree_.rbegin(); }
|
|
const_reverse_iterator rbegin() const { return tree_.rbegin(); }
|
|
reverse_iterator rend() { return tree_.rend(); }
|
|
const_reverse_iterator rend() const { return tree_.rend(); }
|
|
|
|
template <typename IterType, typename CheckerIterType>
|
|
IterType iter_check(IterType tree_iter, CheckerIterType checker_iter) const {
|
|
if (tree_iter == tree_.end()) {
|
|
PHMAP_INTERNAL_CHECK(checker_iter == checker_.end(),
|
|
"Checker iterator not at end.");
|
|
} else {
|
|
CheckPairEquals(*tree_iter, *checker_iter);
|
|
}
|
|
return tree_iter;
|
|
}
|
|
template <typename IterType, typename CheckerIterType>
|
|
IterType riter_check(IterType tree_iter, CheckerIterType checker_iter) const {
|
|
if (tree_iter == tree_.rend()) {
|
|
PHMAP_INTERNAL_CHECK(checker_iter == checker_.rend(),
|
|
"Checker iterator not at rend.");
|
|
} else {
|
|
CheckPairEquals(*tree_iter, *checker_iter);
|
|
}
|
|
return tree_iter;
|
|
}
|
|
void value_check(const value_type &x) {
|
|
typename KeyOfValue<typename TreeType::key_type,
|
|
typename TreeType::value_type>::type key_of_value;
|
|
const key_type &key = key_of_value(x);
|
|
CheckPairEquals(*find(key), x);
|
|
lower_bound(key);
|
|
upper_bound(key);
|
|
equal_range(key);
|
|
contains(key);
|
|
count(key);
|
|
}
|
|
void erase_check(const key_type &key) {
|
|
EXPECT_FALSE(tree_.contains(key));
|
|
EXPECT_EQ(tree_.find(key), const_tree_.end());
|
|
EXPECT_FALSE(const_tree_.contains(key));
|
|
EXPECT_EQ(const_tree_.find(key), tree_.end());
|
|
EXPECT_EQ(tree_.equal_range(key).first,
|
|
const_tree_.equal_range(key).second);
|
|
}
|
|
|
|
iterator lower_bound(const key_type &key) {
|
|
return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
|
|
}
|
|
const_iterator lower_bound(const key_type &key) const {
|
|
return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
|
|
}
|
|
iterator upper_bound(const key_type &key) {
|
|
return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
|
|
}
|
|
const_iterator upper_bound(const key_type &key) const {
|
|
return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
|
|
}
|
|
std::pair<iterator, iterator> equal_range(const key_type &key) {
|
|
std::pair<typename CheckerType::iterator, typename CheckerType::iterator>
|
|
checker_res = checker_.equal_range(key);
|
|
std::pair<iterator, iterator> tree_res = tree_.equal_range(key);
|
|
iter_check(tree_res.first, checker_res.first);
|
|
iter_check(tree_res.second, checker_res.second);
|
|
return tree_res;
|
|
}
|
|
std::pair<const_iterator, const_iterator> equal_range(
|
|
const key_type &key) const {
|
|
std::pair<typename CheckerType::const_iterator,
|
|
typename CheckerType::const_iterator>
|
|
checker_res = checker_.equal_range(key);
|
|
std::pair<const_iterator, const_iterator> tree_res = tree_.equal_range(key);
|
|
iter_check(tree_res.first, checker_res.first);
|
|
iter_check(tree_res.second, checker_res.second);
|
|
return tree_res;
|
|
}
|
|
iterator find(const key_type &key) {
|
|
return iter_check(tree_.find(key), checker_.find(key));
|
|
}
|
|
const_iterator find(const key_type &key) const {
|
|
return iter_check(tree_.find(key), checker_.find(key));
|
|
}
|
|
bool contains(const key_type &key) const {
|
|
return find(key) != end();
|
|
}
|
|
size_type count(const key_type &key) const {
|
|
size_type res = checker_.count(key);
|
|
EXPECT_EQ(res, tree_.count(key));
|
|
return res;
|
|
}
|
|
|
|
base_checker &operator=(const base_checker &x) {
|
|
tree_ = x.tree_;
|
|
checker_ = x.checker_;
|
|
return *this;
|
|
}
|
|
|
|
int erase(const key_type &key) {
|
|
size_t size = tree_.size();
|
|
int res = (int)checker_.erase(key);
|
|
EXPECT_EQ(res, tree_.count(key));
|
|
EXPECT_EQ(res, tree_.erase(key));
|
|
EXPECT_EQ(tree_.count(key), 0);
|
|
EXPECT_EQ(tree_.size(), size - res);
|
|
erase_check(key);
|
|
return res;
|
|
}
|
|
iterator erase(iterator iter) {
|
|
key_type key = iter.key();
|
|
size_t size = tree_.size();
|
|
size_t count = tree_.count(key);
|
|
auto checker_iter = checker_.lower_bound(key);
|
|
for (iterator tmp(tree_.lower_bound(key)); tmp != iter; ++tmp) {
|
|
++checker_iter;
|
|
}
|
|
auto checker_next = checker_iter;
|
|
++checker_next;
|
|
checker_.erase(checker_iter);
|
|
iter = tree_.erase(iter);
|
|
EXPECT_EQ(tree_.size(), (size_t)checker_.size());
|
|
EXPECT_EQ(tree_.size(), size - 1);
|
|
EXPECT_EQ(tree_.count(key), count - 1);
|
|
if (count == 1) {
|
|
erase_check(key);
|
|
}
|
|
return iter_check(iter, checker_next);
|
|
}
|
|
|
|
void erase(iterator begin, iterator end) {
|
|
size_t size = tree_.size();
|
|
int count = std::distance(begin, end);
|
|
auto checker_begin = checker_.lower_bound(begin.key());
|
|
for (iterator tmp(tree_.lower_bound(begin.key())); tmp != begin; ++tmp) {
|
|
++checker_begin;
|
|
}
|
|
auto checker_end =
|
|
end == tree_.end() ? checker_.end() : checker_.lower_bound(end.key());
|
|
if (end != tree_.end()) {
|
|
for (iterator tmp(tree_.lower_bound(end.key())); tmp != end; ++tmp) {
|
|
++checker_end;
|
|
}
|
|
}
|
|
checker_.erase(checker_begin, checker_end);
|
|
tree_.erase(begin, end);
|
|
EXPECT_EQ(tree_.size(), checker_.size());
|
|
EXPECT_EQ(tree_.size(), size - count);
|
|
}
|
|
|
|
void clear() {
|
|
tree_.clear();
|
|
checker_.clear();
|
|
}
|
|
void swap(base_checker &x) {
|
|
tree_.swap(x.tree_);
|
|
checker_.swap(x.checker_);
|
|
}
|
|
|
|
void verify() const {
|
|
tree_.verify();
|
|
EXPECT_EQ(tree_.size(), checker_.size());
|
|
|
|
// Move through the forward iterators using increment.
|
|
auto checker_iter = checker_.begin();
|
|
const_iterator tree_iter(tree_.begin());
|
|
for (; tree_iter != tree_.end(); ++tree_iter, ++checker_iter) {
|
|
CheckPairEquals(*tree_iter, *checker_iter);
|
|
}
|
|
|
|
// Move through the forward iterators using decrement.
|
|
for (int n = (int)tree_.size() - 1; n >= 0; --n) {
|
|
iter_check(tree_iter, checker_iter);
|
|
--tree_iter;
|
|
--checker_iter;
|
|
}
|
|
EXPECT_EQ(tree_iter, tree_.begin());
|
|
EXPECT_EQ(checker_iter, checker_.begin());
|
|
|
|
// Move through the reverse iterators using increment.
|
|
auto checker_riter = checker_.rbegin();
|
|
const_reverse_iterator tree_riter(tree_.rbegin());
|
|
for (; tree_riter != tree_.rend(); ++tree_riter, ++checker_riter) {
|
|
CheckPairEquals(*tree_riter, *checker_riter);
|
|
}
|
|
|
|
// Move through the reverse iterators using decrement.
|
|
for (int n = (int)tree_.size() - 1; n >= 0; --n) {
|
|
riter_check(tree_riter, checker_riter);
|
|
--tree_riter;
|
|
--checker_riter;
|
|
}
|
|
EXPECT_EQ(tree_riter, tree_.rbegin());
|
|
EXPECT_EQ(checker_riter, checker_.rbegin());
|
|
}
|
|
|
|
const TreeType &tree() const { return tree_; }
|
|
|
|
size_type size() const {
|
|
EXPECT_EQ(tree_.size(), checker_.size());
|
|
return tree_.size();
|
|
}
|
|
size_type max_size() const { return tree_.max_size(); }
|
|
bool empty() const {
|
|
EXPECT_EQ(tree_.empty(), checker_.empty());
|
|
return tree_.empty();
|
|
}
|
|
|
|
protected:
|
|
TreeType tree_;
|
|
const TreeType &const_tree_;
|
|
CheckerType checker_;
|
|
};
|
|
|
|
namespace {
|
|
// A checker for unique sorted associative containers. TreeType is expected to
|
|
// be btree_{set,map} and CheckerType is expected to be {set,map}.
|
|
template <typename TreeType, typename CheckerType>
|
|
class unique_checker : public base_checker<TreeType, CheckerType> {
|
|
using super_type = base_checker<TreeType, CheckerType>;
|
|
|
|
public:
|
|
using iterator = typename super_type::iterator;
|
|
using value_type = typename super_type::value_type;
|
|
|
|
public:
|
|
unique_checker() : super_type() {}
|
|
unique_checker(const unique_checker &x) : super_type(x) {}
|
|
template <class InputIterator>
|
|
unique_checker(InputIterator b, InputIterator e) : super_type(b, e) {}
|
|
unique_checker& operator=(const unique_checker&) = default;
|
|
|
|
// Insertion routines.
|
|
std::pair<iterator, bool> insert(const value_type &x) {
|
|
size_t size = this->tree_.size();
|
|
std::pair<typename CheckerType::iterator, bool> checker_res =
|
|
this->checker_.insert(x);
|
|
std::pair<iterator, bool> tree_res = this->tree_.insert(x);
|
|
CheckPairEquals(*tree_res.first, *checker_res.first);
|
|
EXPECT_EQ(tree_res.second, checker_res.second);
|
|
EXPECT_EQ(this->tree_.size(), this->checker_.size());
|
|
EXPECT_EQ(this->tree_.size(), size + tree_res.second);
|
|
return tree_res;
|
|
}
|
|
iterator insert(iterator position, const value_type &x) {
|
|
size_t size = this->tree_.size();
|
|
std::pair<typename CheckerType::iterator, bool> checker_res =
|
|
this->checker_.insert(x);
|
|
iterator tree_res = this->tree_.insert(position, x);
|
|
CheckPairEquals(*tree_res, *checker_res.first);
|
|
EXPECT_EQ(this->tree_.size(), this->checker_.size());
|
|
EXPECT_EQ(this->tree_.size(), size + checker_res.second);
|
|
return tree_res;
|
|
}
|
|
template <typename InputIterator>
|
|
void insert(InputIterator b, InputIterator e) {
|
|
for (; b != e; ++b) {
|
|
insert(*b);
|
|
}
|
|
}
|
|
};
|
|
|
|
// A checker for multiple sorted associative containers. TreeType is expected
|
|
// to be btree_{multiset,multimap} and CheckerType is expected to be
|
|
// {multiset,multimap}.
|
|
template <typename TreeType, typename CheckerType>
|
|
class multi_checker : public base_checker<TreeType, CheckerType> {
|
|
using super_type = base_checker<TreeType, CheckerType>;
|
|
|
|
public:
|
|
using iterator = typename super_type::iterator;
|
|
using value_type = typename super_type::value_type;
|
|
|
|
public:
|
|
multi_checker() : super_type() {}
|
|
multi_checker(const multi_checker &x) : super_type(x) {}
|
|
template <class InputIterator>
|
|
multi_checker(InputIterator b, InputIterator e) : super_type(b, e) {}
|
|
multi_checker& operator=(const multi_checker&) = default;
|
|
|
|
// Insertion routines.
|
|
iterator insert(const value_type &x) {
|
|
size_t size = this->tree_.size();
|
|
auto checker_res = this->checker_.insert(x);
|
|
iterator tree_res = this->tree_.insert(x);
|
|
CheckPairEquals(*tree_res, *checker_res);
|
|
EXPECT_EQ(this->tree_.size(), this->checker_.size());
|
|
EXPECT_EQ(this->tree_.size(), size + 1);
|
|
return tree_res;
|
|
}
|
|
iterator insert(iterator position, const value_type &x) {
|
|
size_t size = this->tree_.size();
|
|
auto checker_res = this->checker_.insert(x);
|
|
iterator tree_res = this->tree_.insert(position, x);
|
|
CheckPairEquals(*tree_res, *checker_res);
|
|
EXPECT_EQ(this->tree_.size(), this->checker_.size());
|
|
EXPECT_EQ(this->tree_.size(), size + 1);
|
|
return tree_res;
|
|
}
|
|
template <typename InputIterator>
|
|
void insert(InputIterator b, InputIterator e) {
|
|
for (; b != e; ++b) {
|
|
insert(*b);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T, typename V>
|
|
void DoTest(const char *name, T *b, const std::vector<V> &values) {
|
|
typename KeyOfValue<typename T::key_type, V>::type key_of_value;
|
|
|
|
T &mutable_b = *b;
|
|
const T &const_b = *b;
|
|
|
|
// Test insert.
|
|
for (int i = 0; i < values.size(); ++i) {
|
|
mutable_b.insert(values[i]);
|
|
mutable_b.value_check(values[i]);
|
|
}
|
|
ASSERT_EQ(mutable_b.size(), values.size());
|
|
|
|
const_b.verify();
|
|
|
|
// Test copy constructor.
|
|
T b_copy(const_b);
|
|
EXPECT_EQ(b_copy.size(), const_b.size());
|
|
for (int i = 0; i < values.size(); ++i) {
|
|
CheckPairEquals(*b_copy.find(key_of_value(values[i])), values[i]);
|
|
}
|
|
|
|
// Test range constructor.
|
|
T b_range(const_b.begin(), const_b.end());
|
|
EXPECT_EQ(b_range.size(), const_b.size());
|
|
for (int i = 0; i < values.size(); ++i) {
|
|
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
|
|
}
|
|
|
|
// Test range insertion for values that already exist.
|
|
b_range.insert(b_copy.begin(), b_copy.end());
|
|
b_range.verify();
|
|
|
|
// Test range insertion for new values.
|
|
b_range.clear();
|
|
b_range.insert(b_copy.begin(), b_copy.end());
|
|
EXPECT_EQ(b_range.size(), b_copy.size());
|
|
for (int i = 0; i < values.size(); ++i) {
|
|
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
|
|
}
|
|
|
|
// Test assignment to self. Nothing should change.
|
|
b_range.operator=(b_range);
|
|
EXPECT_EQ(b_range.size(), b_copy.size());
|
|
|
|
// Test assignment of new values.
|
|
b_range.clear();
|
|
b_range = b_copy;
|
|
EXPECT_EQ(b_range.size(), b_copy.size());
|
|
|
|
// Test swap.
|
|
b_range.clear();
|
|
b_range.swap(b_copy);
|
|
EXPECT_EQ(b_copy.size(), 0);
|
|
EXPECT_EQ(b_range.size(), const_b.size());
|
|
for (int i = 0; i < values.size(); ++i) {
|
|
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
|
|
}
|
|
b_range.swap(b_copy);
|
|
|
|
// Test non-member function swap.
|
|
swap(b_range, b_copy);
|
|
EXPECT_EQ(b_copy.size(), 0);
|
|
EXPECT_EQ(b_range.size(), const_b.size());
|
|
for (int i = 0; i < values.size(); ++i) {
|
|
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
|
|
}
|
|
swap(b_range, b_copy);
|
|
|
|
// Test erase via values.
|
|
for (int i = 0; i < values.size(); ++i) {
|
|
mutable_b.erase(key_of_value(values[i]));
|
|
// Erasing a non-existent key should have no effect.
|
|
ASSERT_EQ(mutable_b.erase(key_of_value(values[i])), 0);
|
|
}
|
|
|
|
const_b.verify();
|
|
EXPECT_EQ(const_b.size(), 0);
|
|
|
|
// Test erase via iterators.
|
|
mutable_b = b_copy;
|
|
for (int i = 0; i < values.size(); ++i) {
|
|
mutable_b.erase(mutable_b.find(key_of_value(values[i])));
|
|
}
|
|
|
|
const_b.verify();
|
|
EXPECT_EQ(const_b.size(), 0);
|
|
|
|
// Test insert with hint.
|
|
for (int i = 0; i < values.size(); i++) {
|
|
mutable_b.insert(mutable_b.upper_bound(key_of_value(values[i])), values[i]);
|
|
}
|
|
|
|
const_b.verify();
|
|
|
|
// Test range erase.
|
|
mutable_b.erase(mutable_b.begin(), mutable_b.end());
|
|
EXPECT_EQ(mutable_b.size(), 0);
|
|
const_b.verify();
|
|
|
|
// First half.
|
|
mutable_b = b_copy;
|
|
typename T::iterator mutable_iter_end = mutable_b.begin();
|
|
for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_end;
|
|
mutable_b.erase(mutable_b.begin(), mutable_iter_end);
|
|
EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 2);
|
|
const_b.verify();
|
|
|
|
// Second half.
|
|
mutable_b = b_copy;
|
|
typename T::iterator mutable_iter_begin = mutable_b.begin();
|
|
for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_begin;
|
|
mutable_b.erase(mutable_iter_begin, mutable_b.end());
|
|
EXPECT_EQ(mutable_b.size(), values.size() / 2);
|
|
const_b.verify();
|
|
|
|
// Second quarter.
|
|
mutable_b = b_copy;
|
|
mutable_iter_begin = mutable_b.begin();
|
|
for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_begin;
|
|
mutable_iter_end = mutable_iter_begin;
|
|
for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_end;
|
|
mutable_b.erase(mutable_iter_begin, mutable_iter_end);
|
|
EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 4);
|
|
const_b.verify();
|
|
|
|
mutable_b.clear();
|
|
}
|
|
|
|
template <typename T>
|
|
void ConstTest() {
|
|
using value_type = typename T::value_type;
|
|
typename KeyOfValue<typename T::key_type, value_type>::type key_of_value;
|
|
|
|
T mutable_b;
|
|
const T &const_b = mutable_b;
|
|
|
|
// Insert a single value into the container and test looking it up.
|
|
value_type value = Generator<value_type>(2)(2);
|
|
mutable_b.insert(value);
|
|
EXPECT_TRUE(mutable_b.contains(key_of_value(value)));
|
|
EXPECT_NE(mutable_b.find(key_of_value(value)), const_b.end());
|
|
EXPECT_TRUE(const_b.contains(key_of_value(value)));
|
|
EXPECT_NE(const_b.find(key_of_value(value)), mutable_b.end());
|
|
EXPECT_EQ(*const_b.lower_bound(key_of_value(value)), value);
|
|
EXPECT_EQ(const_b.upper_bound(key_of_value(value)), const_b.end());
|
|
EXPECT_EQ(*const_b.equal_range(key_of_value(value)).first, value);
|
|
|
|
// We can only create a non-const iterator from a non-const container.
|
|
typename T::iterator mutable_iter(mutable_b.begin());
|
|
EXPECT_EQ(mutable_iter, const_b.begin());
|
|
EXPECT_NE(mutable_iter, const_b.end());
|
|
EXPECT_EQ(const_b.begin(), mutable_iter);
|
|
EXPECT_NE(const_b.end(), mutable_iter);
|
|
typename T::reverse_iterator mutable_riter(mutable_b.rbegin());
|
|
EXPECT_EQ(mutable_riter, const_b.rbegin());
|
|
EXPECT_NE(mutable_riter, const_b.rend());
|
|
EXPECT_EQ(const_b.rbegin(), mutable_riter);
|
|
EXPECT_NE(const_b.rend(), mutable_riter);
|
|
|
|
// We can create a const iterator from a non-const iterator.
|
|
typename T::const_iterator const_iter(mutable_iter);
|
|
EXPECT_EQ(const_iter, mutable_b.begin());
|
|
EXPECT_NE(const_iter, mutable_b.end());
|
|
EXPECT_EQ(mutable_b.begin(), const_iter);
|
|
EXPECT_NE(mutable_b.end(), const_iter);
|
|
typename T::const_reverse_iterator const_riter(mutable_riter);
|
|
EXPECT_EQ(const_riter, mutable_b.rbegin());
|
|
EXPECT_NE(const_riter, mutable_b.rend());
|
|
EXPECT_EQ(mutable_b.rbegin(), const_riter);
|
|
EXPECT_NE(mutable_b.rend(), const_riter);
|
|
|
|
// Make sure various methods can be invoked on a const container.
|
|
const_b.verify();
|
|
ASSERT_TRUE(!const_b.empty());
|
|
EXPECT_EQ(const_b.size(), 1);
|
|
EXPECT_GT(const_b.max_size(), 0);
|
|
EXPECT_TRUE(const_b.contains(key_of_value(value)));
|
|
EXPECT_EQ(const_b.count(key_of_value(value)), 1);
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
void BtreeTest() {
|
|
ConstTest<T>();
|
|
|
|
using V = typename remove_pair_const<typename T::value_type>::type;
|
|
const std::vector<V> random_values = GenerateValuesWithSeed<V>(
|
|
test_values, 4 * test_values,
|
|
testing::GTEST_FLAG(random_seed));
|
|
|
|
unique_checker<T, C> container;
|
|
|
|
// Test key insertion/deletion in sorted order.
|
|
std::vector<V> sorted_values(random_values);
|
|
std::sort(sorted_values.begin(), sorted_values.end());
|
|
DoTest("sorted: ", &container, sorted_values);
|
|
|
|
// Test key insertion/deletion in reverse sorted order.
|
|
std::reverse(sorted_values.begin(), sorted_values.end());
|
|
DoTest("rsorted: ", &container, sorted_values);
|
|
|
|
// Test key insertion/deletion in random order.
|
|
DoTest("random: ", &container, random_values);
|
|
}
|
|
|
|
template <typename T, typename C>
|
|
void BtreeMultiTest() {
|
|
ConstTest<T>();
|
|
|
|
using V = typename remove_pair_const<typename T::value_type>::type;
|
|
const std::vector<V> random_values = GenerateValuesWithSeed<V>(
|
|
test_values, 4 * test_values,
|
|
testing::GTEST_FLAG(random_seed));
|
|
|
|
multi_checker<T, C> container;
|
|
|
|
// Test keys in sorted order.
|
|
std::vector<V> sorted_values(random_values);
|
|
std::sort(sorted_values.begin(), sorted_values.end());
|
|
DoTest("sorted: ", &container, sorted_values);
|
|
|
|
// Test keys in reverse sorted order.
|
|
std::reverse(sorted_values.begin(), sorted_values.end());
|
|
DoTest("rsorted: ", &container, sorted_values);
|
|
|
|
// Test keys in random order.
|
|
DoTest("random: ", &container, random_values);
|
|
|
|
// Test keys in random order w/ duplicates.
|
|
std::vector<V> duplicate_values(random_values);
|
|
duplicate_values.insert(duplicate_values.end(), random_values.begin(),
|
|
random_values.end());
|
|
DoTest("duplicates:", &container, duplicate_values);
|
|
|
|
// Test all identical keys.
|
|
std::vector<V> identical_values(100);
|
|
std::fill(identical_values.begin(), identical_values.end(),
|
|
Generator<V>(2)(2));
|
|
DoTest("identical: ", &container, identical_values);
|
|
}
|
|
|
|
template <typename T>
|
|
struct PropagatingCountingAlloc : public CountingAllocator<T> {
|
|
using propagate_on_container_copy_assignment = std::true_type;
|
|
using propagate_on_container_move_assignment = std::true_type;
|
|
using propagate_on_container_swap = std::true_type;
|
|
|
|
using Base = CountingAllocator<T>;
|
|
using Base::Base;
|
|
|
|
template <typename U>
|
|
explicit PropagatingCountingAlloc(const PropagatingCountingAlloc<U> &other)
|
|
: Base(other.bytes_used_) {}
|
|
|
|
template <typename U>
|
|
struct rebind {
|
|
using other = PropagatingCountingAlloc<U>;
|
|
};
|
|
};
|
|
|
|
template <typename T>
|
|
void BtreeAllocatorTest() {
|
|
using value_type = typename T::value_type;
|
|
|
|
int64_t bytes1 = 0, bytes2 = 0;
|
|
PropagatingCountingAlloc<T> allocator1(&bytes1);
|
|
PropagatingCountingAlloc<T> allocator2(&bytes2);
|
|
Generator<value_type> generator(1000);
|
|
|
|
// Test that we allocate properly aligned memory. If we don't, then Layout
|
|
// will assert fail.
|
|
auto unused1 = allocator1.allocate(1);
|
|
auto unused2 = allocator2.allocate(1);
|
|
|
|
// Test copy assignment
|
|
{
|
|
T b1(typename T::key_compare(), allocator1);
|
|
T b2(typename T::key_compare(), allocator2);
|
|
|
|
int64_t original_bytes1 = bytes1;
|
|
b1.insert(generator(0));
|
|
EXPECT_GT(bytes1, original_bytes1);
|
|
|
|
// This should propagate the allocator.
|
|
b1 = b2;
|
|
EXPECT_EQ(b1.size(), 0);
|
|
EXPECT_EQ(b2.size(), 0);
|
|
EXPECT_EQ(bytes1, original_bytes1);
|
|
|
|
for (int i = 1; i < 1000; i++) {
|
|
b1.insert(generator(i));
|
|
}
|
|
|
|
// We should have allocated out of allocator2.
|
|
EXPECT_GT(bytes2, bytes1);
|
|
}
|
|
|
|
// Test move assignment
|
|
{
|
|
T b1(typename T::key_compare(), allocator1);
|
|
T b2(typename T::key_compare(), allocator2);
|
|
|
|
int64_t original_bytes1 = bytes1;
|
|
b1.insert(generator(0));
|
|
EXPECT_GT(bytes1, original_bytes1);
|
|
|
|
// This should propagate the allocator.
|
|
b1 = std::move(b2);
|
|
EXPECT_EQ(b1.size(), 0);
|
|
EXPECT_EQ(bytes1, original_bytes1);
|
|
|
|
for (int i = 1; i < 1000; i++) {
|
|
b1.insert(generator(i));
|
|
}
|
|
|
|
// We should have allocated out of allocator2.
|
|
EXPECT_GT(bytes2, bytes1);
|
|
}
|
|
|
|
// Test swap
|
|
{
|
|
T b1(typename T::key_compare(), allocator1);
|
|
T b2(typename T::key_compare(), allocator2);
|
|
|
|
int64_t original_bytes1 = bytes1;
|
|
b1.insert(generator(0));
|
|
EXPECT_GT(bytes1, original_bytes1);
|
|
|
|
// This should swap the allocators.
|
|
swap(b1, b2);
|
|
EXPECT_EQ(b1.size(), 0);
|
|
EXPECT_EQ(b2.size(), 1);
|
|
EXPECT_GT(bytes1, original_bytes1);
|
|
|
|
for (int i = 1; i < 1000; i++) {
|
|
b1.insert(generator(i));
|
|
}
|
|
|
|
// We should have allocated out of allocator2.
|
|
EXPECT_GT(bytes2, bytes1);
|
|
}
|
|
|
|
allocator1.deallocate(unused1, 1);
|
|
allocator2.deallocate(unused2, 1);
|
|
}
|
|
|
|
template <typename T>
|
|
void BtreeMapTest() {
|
|
using value_type = typename T::value_type;
|
|
using mapped_type = typename T::mapped_type;
|
|
|
|
mapped_type m = Generator<mapped_type>(0)(0);
|
|
(void)m;
|
|
|
|
T b;
|
|
|
|
// Verify we can insert using operator[].
|
|
for (int i = 0; i < 1000; i++) {
|
|
value_type v = Generator<value_type>(1000)(i);
|
|
b[v.first] = v.second;
|
|
}
|
|
EXPECT_EQ(b.size(), 1000);
|
|
|
|
// Test whether we can use the "->" operator on iterators and
|
|
// reverse_iterators. This stresses the btree_map_params::pair_pointer
|
|
// mechanism.
|
|
EXPECT_EQ(b.begin()->first, Generator<value_type>(1000)(0).first);
|
|
EXPECT_EQ(b.begin()->second, Generator<value_type>(1000)(0).second);
|
|
EXPECT_EQ(b.rbegin()->first, Generator<value_type>(1000)(999).first);
|
|
EXPECT_EQ(b.rbegin()->second, Generator<value_type>(1000)(999).second);
|
|
}
|
|
|
|
template <typename T>
|
|
void BtreeMultiMapTest() {
|
|
using mapped_type = typename T::mapped_type;
|
|
mapped_type m = Generator<mapped_type>(0)(0);
|
|
(void)m;
|
|
}
|
|
|
|
template <typename K, int N = 256>
|
|
void SetTest() {
|
|
EXPECT_EQ(
|
|
sizeof(phmap::btree_set<K>),
|
|
2 * sizeof(void *) + sizeof(typename phmap::btree_set<K>::size_type));
|
|
using BtreeSet = phmap::btree_set<K>;
|
|
using CountingBtreeSet =
|
|
phmap::btree_set<K, std::less<K>, PropagatingCountingAlloc<K>>;
|
|
BtreeTest<BtreeSet, std::set<K>>();
|
|
BtreeAllocatorTest<CountingBtreeSet>();
|
|
}
|
|
|
|
template <typename K, int N = 256>
|
|
void MapTest() {
|
|
EXPECT_EQ(
|
|
sizeof(phmap::btree_map<K, K>),
|
|
2 * sizeof(void *) + sizeof(typename phmap::btree_map<K, K>::size_type));
|
|
using BtreeMap = phmap::btree_map<K, K>;
|
|
using CountingBtreeMap =
|
|
phmap::btree_map<K, K, std::less<K>,
|
|
PropagatingCountingAlloc<std::pair<const K, K>>>;
|
|
BtreeTest<BtreeMap, std::map<K, K>>();
|
|
BtreeAllocatorTest<CountingBtreeMap>();
|
|
BtreeMapTest<BtreeMap>();
|
|
}
|
|
|
|
TEST(Btree, set_int32) { SetTest<int32_t>(); }
|
|
TEST(Btree, set_int64) { SetTest<int64_t>(); }
|
|
TEST(Btree, set_string) { SetTest<std::string>(); }
|
|
TEST(Btree, set_pair) { SetTest<std::pair<int, int>>(); }
|
|
TEST(Btree, map_int32) { MapTest<int32_t>(); }
|
|
TEST(Btree, map_int64) { MapTest<int64_t>(); }
|
|
TEST(Btree, map_string) { MapTest<std::string>(); }
|
|
TEST(Btree, map_pair) { MapTest<std::pair<int, int>>(); }
|
|
|
|
template <typename K, int N = 256>
|
|
void MultiSetTest() {
|
|
EXPECT_EQ(
|
|
sizeof(phmap::btree_multiset<K>),
|
|
2 * sizeof(void *) + sizeof(typename phmap::btree_multiset<K>::size_type));
|
|
using BtreeMSet = phmap::btree_multiset<K>;
|
|
using CountingBtreeMSet =
|
|
phmap::btree_multiset<K, std::less<K>, PropagatingCountingAlloc<K>>;
|
|
BtreeMultiTest<BtreeMSet, std::multiset<K>>();
|
|
BtreeAllocatorTest<CountingBtreeMSet>();
|
|
}
|
|
|
|
template <typename K, int N = 256>
|
|
void MultiMapTest() {
|
|
EXPECT_EQ(sizeof(phmap::btree_multimap<K, K>),
|
|
2 * sizeof(void *) +
|
|
sizeof(typename phmap::btree_multimap<K, K>::size_type));
|
|
using BtreeMMap = phmap::btree_multimap<K, K>;
|
|
using CountingBtreeMMap =
|
|
phmap::btree_multimap<K, K, std::less<K>,
|
|
PropagatingCountingAlloc<std::pair<const K, K>>>;
|
|
BtreeMultiTest<BtreeMMap, std::multimap<K, K>>();
|
|
BtreeMultiMapTest<BtreeMMap>();
|
|
BtreeAllocatorTest<CountingBtreeMMap>();
|
|
}
|
|
|
|
TEST(Btree, multiset_int32) { MultiSetTest<int32_t>(); }
|
|
TEST(Btree, multiset_int64) { MultiSetTest<int64_t>(); }
|
|
TEST(Btree, multiset_string) { MultiSetTest<std::string>(); }
|
|
TEST(Btree, multiset_pair) { MultiSetTest<std::pair<int, int>>(); }
|
|
TEST(Btree, multimap_int32) { MultiMapTest<int32_t>(); }
|
|
TEST(Btree, multimap_int64) { MultiMapTest<int64_t>(); }
|
|
TEST(Btree, multimap_string) { MultiMapTest<std::string>(); }
|
|
TEST(Btree, multimap_pair) { MultiMapTest<std::pair<int, int>>(); }
|
|
|
|
struct CompareIntToString {
|
|
bool operator()(const std::string &a, const std::string &b) const {
|
|
return a < b;
|
|
}
|
|
bool operator()(const std::string &a, int b) const {
|
|
return a < std::to_string(b);
|
|
}
|
|
bool operator()(int a, const std::string &b) const {
|
|
return std::to_string(a) < b;
|
|
}
|
|
using is_transparent = void;
|
|
};
|
|
|
|
struct NonTransparentCompare {
|
|
template <typename T, typename U>
|
|
bool operator()(const T& t, const U& u) const {
|
|
// Treating all comparators as transparent can cause inefficiencies (see
|
|
// N3657 C++ proposal). Test that for comparators without 'is_transparent'
|
|
// alias (like this one), we do not attempt heterogeneous lookup.
|
|
EXPECT_TRUE((std::is_same<T, U>()));
|
|
return t < u;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
bool CanEraseWithEmptyBrace(T t, decltype(t.erase({})) *) {
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
bool CanEraseWithEmptyBrace(T, ...) {
|
|
return false;
|
|
}
|
|
|
|
template <typename T>
|
|
void TestHeterogeneous(T table) {
|
|
auto lb = table.lower_bound("3");
|
|
EXPECT_EQ(lb, table.lower_bound(3));
|
|
EXPECT_NE(lb, table.lower_bound(4));
|
|
EXPECT_EQ(lb, table.lower_bound({"3"}));
|
|
EXPECT_NE(lb, table.lower_bound({}));
|
|
|
|
auto ub = table.upper_bound("3");
|
|
EXPECT_EQ(ub, table.upper_bound(3));
|
|
EXPECT_NE(ub, table.upper_bound(5));
|
|
EXPECT_EQ(ub, table.upper_bound({"3"}));
|
|
EXPECT_NE(ub, table.upper_bound({}));
|
|
|
|
auto er = table.equal_range("3");
|
|
EXPECT_EQ(er, table.equal_range(3));
|
|
EXPECT_NE(er, table.equal_range(4));
|
|
EXPECT_EQ(er, table.equal_range({"3"}));
|
|
EXPECT_NE(er, table.equal_range({}));
|
|
|
|
auto it = table.find("3");
|
|
EXPECT_EQ(it, table.find(3));
|
|
EXPECT_NE(it, table.find(4));
|
|
EXPECT_EQ(it, table.find({"3"}));
|
|
EXPECT_NE(it, table.find({}));
|
|
|
|
EXPECT_TRUE(table.contains(3));
|
|
EXPECT_FALSE(table.contains(4));
|
|
EXPECT_TRUE(table.count({"3"}));
|
|
EXPECT_FALSE(table.contains({}));
|
|
|
|
EXPECT_EQ(1, table.count(3));
|
|
EXPECT_EQ(0, table.count(4));
|
|
EXPECT_EQ(1, table.count({"3"}));
|
|
EXPECT_EQ(0, table.count({}));
|
|
|
|
auto copy = table;
|
|
copy.erase(3);
|
|
EXPECT_EQ(table.size() - 1, copy.size());
|
|
copy.erase(4);
|
|
EXPECT_EQ(table.size() - 1, copy.size());
|
|
copy.erase({"5"});
|
|
EXPECT_EQ(table.size() - 2, copy.size());
|
|
EXPECT_FALSE(CanEraseWithEmptyBrace(table, nullptr));
|
|
|
|
// Also run it with const T&.
|
|
if (std::is_class<T>()) TestHeterogeneous<const T &>(table);
|
|
}
|
|
|
|
TEST(Btree, HeterogeneousLookup) {
|
|
TestHeterogeneous(btree_set<std::string, CompareIntToString>{"1", "3", "5"});
|
|
TestHeterogeneous(btree_map<std::string, int, CompareIntToString>{
|
|
{"1", 1}, {"3", 3}, {"5", 5}});
|
|
TestHeterogeneous(
|
|
btree_multiset<std::string, CompareIntToString>{"1", "3", "5"});
|
|
TestHeterogeneous(btree_multimap<std::string, int, CompareIntToString>{
|
|
{"1", 1}, {"3", 3}, {"5", 5}});
|
|
|
|
// Only maps have .at()
|
|
btree_map<std::string, int, CompareIntToString> map{
|
|
{"", -1}, {"1", 1}, {"3", 3}, {"5", 5}};
|
|
EXPECT_EQ(1, map.at(1));
|
|
EXPECT_EQ(3, map.at({"3"}));
|
|
EXPECT_EQ(-1, map.at({}));
|
|
const auto &cmap = map;
|
|
EXPECT_EQ(1, cmap.at(1));
|
|
EXPECT_EQ(3, cmap.at({"3"}));
|
|
EXPECT_EQ(-1, cmap.at({}));
|
|
}
|
|
|
|
TEST(Btree, NoHeterogeneousLookupWithoutAlias) {
|
|
using StringSet = phmap::btree_set<std::string, NonTransparentCompare>;
|
|
StringSet s;
|
|
ASSERT_TRUE(s.insert("hello").second);
|
|
ASSERT_TRUE(s.insert("world").second);
|
|
EXPECT_TRUE(s.end() == s.find("blah"));
|
|
EXPECT_TRUE(s.begin() == s.lower_bound("hello"));
|
|
EXPECT_EQ(1, s.count("world"));
|
|
EXPECT_TRUE(s.contains("hello"));
|
|
EXPECT_TRUE(s.contains("world"));
|
|
EXPECT_FALSE(s.contains("blah"));
|
|
|
|
using StringMultiSet =
|
|
phmap::btree_multiset<std::string, NonTransparentCompare>;
|
|
StringMultiSet ms;
|
|
ms.insert("hello");
|
|
ms.insert("world");
|
|
ms.insert("world");
|
|
EXPECT_TRUE(ms.end() == ms.find("blah"));
|
|
EXPECT_TRUE(ms.begin() == ms.lower_bound("hello"));
|
|
EXPECT_EQ(2, ms.count("world"));
|
|
EXPECT_TRUE(ms.contains("hello"));
|
|
EXPECT_TRUE(ms.contains("world"));
|
|
EXPECT_FALSE(ms.contains("blah"));
|
|
}
|
|
|
|
TEST(Btree, DefaultTransparent) {
|
|
{
|
|
// `int` does not have a default transparent comparator.
|
|
// The input value is converted to key_type.
|
|
btree_set<int> s = {1};
|
|
double d = 1.1;
|
|
EXPECT_EQ(s.begin(), s.find(d));
|
|
EXPECT_TRUE(s.contains(d));
|
|
}
|
|
|
|
{
|
|
// `std::string` has heterogeneous support.
|
|
btree_set<std::string> s = {"A"};
|
|
#if PHMAP_HAVE_STD_STRING_VIEW
|
|
EXPECT_EQ(s.begin(), s.find(std::string_view("A")));
|
|
EXPECT_TRUE(s.contains(std::string_view("A")));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
class StringLike {
|
|
public:
|
|
StringLike() = default;
|
|
|
|
StringLike(const char* s) : s_(s) { // NOLINT
|
|
++constructor_calls_;
|
|
}
|
|
|
|
bool operator<(const StringLike& a) const {
|
|
return s_ < a.s_;
|
|
}
|
|
|
|
static void clear_constructor_call_count() {
|
|
constructor_calls_ = 0;
|
|
}
|
|
|
|
static int constructor_calls() {
|
|
return constructor_calls_;
|
|
}
|
|
|
|
private:
|
|
static int constructor_calls_;
|
|
std::string s_;
|
|
};
|
|
|
|
int StringLike::constructor_calls_ = 0;
|
|
|
|
TEST(Btree, HeterogeneousLookupDoesntDegradePerformance) {
|
|
using StringSet = phmap::btree_set<StringLike>;
|
|
StringSet s;
|
|
for (int i = 0; i < 100; ++i) {
|
|
ASSERT_TRUE(s.insert(std::to_string(i).c_str()).second);
|
|
}
|
|
StringLike::clear_constructor_call_count();
|
|
s.find("50");
|
|
ASSERT_EQ(1, StringLike::constructor_calls());
|
|
|
|
StringLike::clear_constructor_call_count();
|
|
s.contains("50");
|
|
ASSERT_EQ(1, StringLike::constructor_calls());
|
|
|
|
StringLike::clear_constructor_call_count();
|
|
s.count("50");
|
|
ASSERT_EQ(1, StringLike::constructor_calls());
|
|
|
|
StringLike::clear_constructor_call_count();
|
|
s.lower_bound("50");
|
|
ASSERT_EQ(1, StringLike::constructor_calls());
|
|
|
|
StringLike::clear_constructor_call_count();
|
|
s.upper_bound("50");
|
|
ASSERT_EQ(1, StringLike::constructor_calls());
|
|
|
|
StringLike::clear_constructor_call_count();
|
|
s.equal_range("50");
|
|
ASSERT_EQ(1, StringLike::constructor_calls());
|
|
|
|
StringLike::clear_constructor_call_count();
|
|
s.erase("50");
|
|
ASSERT_EQ(1, StringLike::constructor_calls());
|
|
}
|
|
|
|
// Verify that swapping btrees swaps the key comparison functors and that we can
|
|
// use non-default constructible comparators.
|
|
struct SubstringLess {
|
|
SubstringLess() = delete;
|
|
explicit SubstringLess(int length) : n(length) {}
|
|
bool operator()(const std::string &a, const std::string &b) const {
|
|
#if PHMAP_HAVE_STD_STRING_VIEW
|
|
return std::string_view(a).substr(0, n) <
|
|
std::string_view(b).substr(0, n);
|
|
#else
|
|
return a.substr(0, n) < b.substr(0, n);
|
|
#endif
|
|
}
|
|
int n;
|
|
};
|
|
|
|
TEST(Btree, SwapKeyCompare) {
|
|
using SubstringSet = phmap::btree_set<std::string, SubstringLess>;
|
|
SubstringSet s1(SubstringLess(1), SubstringSet::allocator_type());
|
|
SubstringSet s2(SubstringLess(2), SubstringSet::allocator_type());
|
|
|
|
ASSERT_TRUE(s1.insert("a").second);
|
|
ASSERT_FALSE(s1.insert("aa").second);
|
|
|
|
ASSERT_TRUE(s2.insert("a").second);
|
|
ASSERT_TRUE(s2.insert("aa").second);
|
|
ASSERT_FALSE(s2.insert("aaa").second);
|
|
|
|
swap(s1, s2);
|
|
|
|
ASSERT_TRUE(s1.insert("b").second);
|
|
ASSERT_TRUE(s1.insert("bb").second);
|
|
ASSERT_FALSE(s1.insert("bbb").second);
|
|
|
|
ASSERT_TRUE(s2.insert("b").second);
|
|
ASSERT_FALSE(s2.insert("bb").second);
|
|
}
|
|
|
|
TEST(Btree, UpperBoundRegression) {
|
|
// Regress a bug where upper_bound would default-construct a new key_compare
|
|
// instead of copying the existing one.
|
|
using SubstringSet = phmap::btree_set<std::string, SubstringLess>;
|
|
SubstringSet my_set(SubstringLess(3));
|
|
my_set.insert("aab");
|
|
my_set.insert("abb");
|
|
// We call upper_bound("aaa"). If this correctly uses the length 3
|
|
// comparator, aaa < aab < abb, so we should get aab as the result.
|
|
// If it instead uses the default-constructed length 2 comparator,
|
|
// aa == aa < ab, so we'll get abb as our result.
|
|
SubstringSet::iterator it = my_set.upper_bound("aaa");
|
|
ASSERT_TRUE(it != my_set.end());
|
|
EXPECT_EQ("aab", *it);
|
|
}
|
|
|
|
TEST(Btree, Comparison) {
|
|
const int kSetSize = 1201;
|
|
phmap::btree_set<int64_t> my_set;
|
|
for (int i = 0; i < kSetSize; ++i) {
|
|
my_set.insert(i);
|
|
}
|
|
phmap::btree_set<int64_t> my_set_copy(my_set);
|
|
EXPECT_TRUE(my_set_copy == my_set);
|
|
EXPECT_TRUE(my_set == my_set_copy);
|
|
EXPECT_FALSE(my_set_copy != my_set);
|
|
EXPECT_FALSE(my_set != my_set_copy);
|
|
|
|
my_set.insert(kSetSize);
|
|
EXPECT_FALSE(my_set_copy == my_set);
|
|
EXPECT_FALSE(my_set == my_set_copy);
|
|
EXPECT_TRUE(my_set_copy != my_set);
|
|
EXPECT_TRUE(my_set != my_set_copy);
|
|
|
|
my_set.erase(kSetSize - 1);
|
|
EXPECT_FALSE(my_set_copy == my_set);
|
|
EXPECT_FALSE(my_set == my_set_copy);
|
|
EXPECT_TRUE(my_set_copy != my_set);
|
|
EXPECT_TRUE(my_set != my_set_copy);
|
|
|
|
phmap::btree_map<std::string, int64_t> my_map;
|
|
for (int i = 0; i < kSetSize; ++i) {
|
|
my_map[std::string(i, 'a')] = i;
|
|
}
|
|
phmap::btree_map<std::string, int64_t> my_map_copy(my_map);
|
|
EXPECT_TRUE(my_map_copy == my_map);
|
|
EXPECT_TRUE(my_map == my_map_copy);
|
|
EXPECT_FALSE(my_map_copy != my_map);
|
|
EXPECT_FALSE(my_map != my_map_copy);
|
|
|
|
++my_map_copy[std::string(7, 'a')];
|
|
EXPECT_FALSE(my_map_copy == my_map);
|
|
EXPECT_FALSE(my_map == my_map_copy);
|
|
EXPECT_TRUE(my_map_copy != my_map);
|
|
EXPECT_TRUE(my_map != my_map_copy);
|
|
|
|
my_map_copy = my_map;
|
|
my_map["hello"] = kSetSize;
|
|
EXPECT_FALSE(my_map_copy == my_map);
|
|
EXPECT_FALSE(my_map == my_map_copy);
|
|
EXPECT_TRUE(my_map_copy != my_map);
|
|
EXPECT_TRUE(my_map != my_map_copy);
|
|
|
|
my_map.erase(std::string(kSetSize - 1, 'a'));
|
|
EXPECT_FALSE(my_map_copy == my_map);
|
|
EXPECT_FALSE(my_map == my_map_copy);
|
|
EXPECT_TRUE(my_map_copy != my_map);
|
|
EXPECT_TRUE(my_map != my_map_copy);
|
|
}
|
|
|
|
TEST(Btree, RangeCtorSanity) {
|
|
std::vector<int> ivec;
|
|
ivec.push_back(1);
|
|
std::map<int, int> imap;
|
|
imap.insert(std::make_pair(1, 2));
|
|
phmap::btree_multiset<int> tmset(ivec.begin(), ivec.end());
|
|
phmap::btree_multimap<int, int> tmmap(imap.begin(), imap.end());
|
|
phmap::btree_set<int> tset(ivec.begin(), ivec.end());
|
|
phmap::btree_map<int, int> tmap(imap.begin(), imap.end());
|
|
EXPECT_EQ(1, tmset.size());
|
|
EXPECT_EQ(1, tmmap.size());
|
|
EXPECT_EQ(1, tset.size());
|
|
EXPECT_EQ(1, tmap.size());
|
|
}
|
|
|
|
TEST(Btree, BtreeMapCanHoldMoveOnlyTypes) {
|
|
phmap::btree_map<std::string, std::unique_ptr<std::string>> m;
|
|
|
|
std::unique_ptr<std::string> &v = m["A"];
|
|
EXPECT_TRUE(v == nullptr);
|
|
v.reset(new std::string("X"));
|
|
|
|
auto iter = m.find("A");
|
|
EXPECT_EQ("X", *iter->second);
|
|
}
|
|
|
|
TEST(Btree, InitializerListConstructor) {
|
|
phmap::btree_set<std::string> set({"a", "b"});
|
|
EXPECT_EQ(set.count("a"), 1);
|
|
EXPECT_EQ(set.count("b"), 1);
|
|
|
|
phmap::btree_multiset<int> mset({1, 1, 4});
|
|
EXPECT_EQ(mset.count(1), 2);
|
|
EXPECT_EQ(mset.count(4), 1);
|
|
|
|
phmap::btree_map<int, int> map({{1, 5}, {2, 10}});
|
|
EXPECT_EQ(map[1], 5);
|
|
EXPECT_EQ(map[2], 10);
|
|
|
|
phmap::btree_multimap<int, int> mmap({{1, 5}, {1, 10}});
|
|
auto range = mmap.equal_range(1);
|
|
auto it = range.first;
|
|
ASSERT_NE(it, range.second);
|
|
EXPECT_EQ(it->second, 5);
|
|
ASSERT_NE(++it, range.second);
|
|
EXPECT_EQ(it->second, 10);
|
|
EXPECT_EQ(++it, range.second);
|
|
}
|
|
|
|
TEST(Btree, InitializerListInsert) {
|
|
phmap::btree_set<std::string> set;
|
|
set.insert({"a", "b"});
|
|
EXPECT_EQ(set.count("a"), 1);
|
|
EXPECT_EQ(set.count("b"), 1);
|
|
|
|
phmap::btree_multiset<int> mset;
|
|
mset.insert({1, 1, 4});
|
|
EXPECT_EQ(mset.count(1), 2);
|
|
EXPECT_EQ(mset.count(4), 1);
|
|
|
|
phmap::btree_map<int, int> map;
|
|
map.insert({{1, 5}, {2, 10}});
|
|
// Test that inserting one element using an initializer list also works.
|
|
map.insert({3, 15});
|
|
EXPECT_EQ(map[1], 5);
|
|
EXPECT_EQ(map[2], 10);
|
|
EXPECT_EQ(map[3], 15);
|
|
|
|
phmap::btree_multimap<int, int> mmap;
|
|
mmap.insert({{1, 5}, {1, 10}});
|
|
auto range = mmap.equal_range(1);
|
|
auto it = range.first;
|
|
ASSERT_NE(it, range.second);
|
|
EXPECT_EQ(it->second, 5);
|
|
ASSERT_NE(++it, range.second);
|
|
EXPECT_EQ(it->second, 10);
|
|
EXPECT_EQ(++it, range.second);
|
|
}
|
|
|
|
template <typename Compare, typename K>
|
|
void AssertKeyCompareToAdapted() {
|
|
using Adapted = typename key_compare_to_adapter<Compare>::type;
|
|
static_assert(!std::is_same<Adapted, Compare>::value,
|
|
"key_compare_to_adapter should have adapted this comparator.");
|
|
static_assert(
|
|
std::is_same<phmap::weak_ordering,
|
|
phmap::invoke_result_t<Adapted, const K &, const K &>>::value,
|
|
"Adapted comparator should be a key-compare-to comparator.");
|
|
}
|
|
template <typename Compare, typename K>
|
|
void AssertKeyCompareToNotAdapted() {
|
|
using Unadapted = typename key_compare_to_adapter<Compare>::type;
|
|
static_assert(
|
|
std::is_same<Unadapted, Compare>::value,
|
|
"key_compare_to_adapter shouldn't have adapted this comparator.");
|
|
static_assert(
|
|
std::is_same<bool,
|
|
phmap::invoke_result_t<Unadapted, const K &, const K &>>::value,
|
|
"Un-adapted comparator should return bool.");
|
|
}
|
|
|
|
TEST(Btree, KeyCompareToAdapter) {
|
|
AssertKeyCompareToAdapted<std::less<std::string>, std::string>();
|
|
AssertKeyCompareToAdapted<std::greater<std::string>, std::string>();
|
|
#if PHMAP_HAVE_STD_STRING_VIEW
|
|
AssertKeyCompareToAdapted<std::less<std::string_view>, std::string_view>();
|
|
AssertKeyCompareToAdapted<std::greater<std::string_view>,
|
|
std::string_view>();
|
|
#endif
|
|
AssertKeyCompareToNotAdapted<std::less<int>, int>();
|
|
AssertKeyCompareToNotAdapted<std::greater<int>, int>();
|
|
}
|
|
|
|
TEST(Btree, RValueInsert) {
|
|
InstanceTracker tracker;
|
|
|
|
phmap::btree_set<MovableOnlyInstance> set;
|
|
set.insert(MovableOnlyInstance(1));
|
|
set.insert(MovableOnlyInstance(3));
|
|
MovableOnlyInstance two(2);
|
|
set.insert(set.find(MovableOnlyInstance(3)), std::move(two));
|
|
auto it = set.find(MovableOnlyInstance(2));
|
|
ASSERT_NE(it, set.end());
|
|
ASSERT_NE(++it, set.end());
|
|
EXPECT_EQ(it->value(), 3);
|
|
|
|
phmap::btree_multiset<MovableOnlyInstance> mset;
|
|
MovableOnlyInstance zero(0);
|
|
MovableOnlyInstance zero2(0);
|
|
mset.insert(std::move(zero));
|
|
mset.insert(mset.find(MovableOnlyInstance(0)), std::move(zero2));
|
|
EXPECT_EQ(mset.count(MovableOnlyInstance(0)), 2);
|
|
|
|
phmap::btree_map<int, MovableOnlyInstance> map;
|
|
std::pair<const int, MovableOnlyInstance> p1 = {1, MovableOnlyInstance(5)};
|
|
std::pair<const int, MovableOnlyInstance> p2 = {2, MovableOnlyInstance(10)};
|
|
std::pair<const int, MovableOnlyInstance> p3 = {3, MovableOnlyInstance(15)};
|
|
map.insert(std::move(p1));
|
|
map.insert(std::move(p3));
|
|
map.insert(map.find(3), std::move(p2));
|
|
ASSERT_NE(map.find(2), map.end());
|
|
EXPECT_EQ(map.find(2)->second.value(), 10);
|
|
|
|
phmap::btree_multimap<int, MovableOnlyInstance> mmap;
|
|
std::pair<const int, MovableOnlyInstance> p4 = {1, MovableOnlyInstance(5)};
|
|
std::pair<const int, MovableOnlyInstance> p5 = {1, MovableOnlyInstance(10)};
|
|
mmap.insert(std::move(p4));
|
|
mmap.insert(mmap.find(1), std::move(p5));
|
|
auto range = mmap.equal_range(1);
|
|
auto it1 = range.first;
|
|
ASSERT_NE(it1, range.second);
|
|
EXPECT_EQ(it1->second.value(), 10);
|
|
ASSERT_NE(++it1, range.second);
|
|
EXPECT_EQ(it1->second.value(), 5);
|
|
EXPECT_EQ(++it1, range.second);
|
|
|
|
EXPECT_EQ(tracker.copies(), 0);
|
|
EXPECT_EQ(tracker.swaps(), 0);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
class BtreeNodePeer {
|
|
public:
|
|
// Yields the size of a leaf node with a specific number of values.
|
|
template <typename ValueType>
|
|
constexpr static size_t GetTargetNodeSize(size_t target_values_per_node) {
|
|
return btree_node<
|
|
set_params<ValueType, std::less<ValueType>, std::allocator<ValueType>,
|
|
/*TargetNodeSize=*/256, // This parameter isn't used here.
|
|
/*Multi=*/false>>::SizeWithNValues(target_values_per_node);
|
|
}
|
|
|
|
// Yields the number of values in a (non-root) leaf node for this set.
|
|
template <typename Set>
|
|
constexpr static size_t GetNumValuesPerNode() {
|
|
return btree_node<typename Set::params_type>::kNodeValues;
|
|
}
|
|
};
|
|
|
|
namespace {
|
|
|
|
// A btree set with a specific number of values per node.
|
|
template <typename Key, int TargetValuesPerNode, typename Cmp = std::less<Key>>
|
|
class SizedBtreeSet
|
|
: public btree_set_container<btree<
|
|
set_params<Key, Cmp, std::allocator<Key>,
|
|
BtreeNodePeer::GetTargetNodeSize<Key>(TargetValuesPerNode),
|
|
/*Multi=*/false>>> {
|
|
using Base = typename SizedBtreeSet::btree_set_container;
|
|
|
|
public:
|
|
SizedBtreeSet() {}
|
|
using Base::Base;
|
|
};
|
|
|
|
template <typename Set>
|
|
void ExpectOperationCounts(const int expected_moves,
|
|
const int expected_comparisons,
|
|
const std::vector<int> &values,
|
|
InstanceTracker *tracker, Set *set) {
|
|
for (const int v : values) set->insert(MovableOnlyInstance(v));
|
|
set->clear();
|
|
EXPECT_EQ(tracker->moves(), expected_moves);
|
|
EXPECT_EQ(tracker->comparisons(), expected_comparisons);
|
|
EXPECT_EQ(tracker->copies(), 0);
|
|
EXPECT_EQ(tracker->swaps(), 0);
|
|
tracker->ResetCopiesMovesSwaps();
|
|
}
|
|
|
|
// Note: when the values in this test change, it is expected to have an impact
|
|
// on performance.
|
|
TEST(Btree, MovesComparisonsCopiesSwapsTracking) {
|
|
InstanceTracker tracker;
|
|
// Note: this is minimum number of values per node.
|
|
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/3> set3;
|
|
// Note: this is the default number of values per node for a set of int32s
|
|
// (with 64-bit pointers).
|
|
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61> set61;
|
|
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100> set100;
|
|
|
|
// Don't depend on flags for random values because then the expectations will
|
|
// fail if the flags change.
|
|
std::vector<int> values =
|
|
GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23);
|
|
|
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set3)>(), 3);
|
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>(), 61);
|
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set100)>(), 100);
|
|
PHMAP_IF_CONSTEXPR (sizeof(void *) == 8) {
|
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<phmap::btree_set<int32_t>>(),
|
|
BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>());
|
|
}
|
|
|
|
// Test key insertion/deletion in random order.
|
|
ExpectOperationCounts(45281, 132551, values, &tracker, &set3);
|
|
ExpectOperationCounts(386718, 129807, values, &tracker, &set61);
|
|
ExpectOperationCounts(586761, 130310, values, &tracker, &set100);
|
|
|
|
// Test key insertion/deletion in sorted order.
|
|
std::sort(values.begin(), values.end());
|
|
ExpectOperationCounts(26638, 92134, values, &tracker, &set3);
|
|
ExpectOperationCounts(20208, 87757, values, &tracker, &set61);
|
|
ExpectOperationCounts(20124, 96583, values, &tracker, &set100);
|
|
|
|
// Test key insertion/deletion in reverse sorted order.
|
|
std::reverse(values.begin(), values.end());
|
|
ExpectOperationCounts(49951, 119325, values, &tracker, &set3);
|
|
ExpectOperationCounts(338813, 118266, values, &tracker, &set61);
|
|
ExpectOperationCounts(534529, 125279, values, &tracker, &set100);
|
|
}
|
|
|
|
struct MovableOnlyInstanceThreeWayCompare {
|
|
phmap::weak_ordering operator()(const MovableOnlyInstance &a,
|
|
const MovableOnlyInstance &b) const {
|
|
return a.compare(b);
|
|
}
|
|
};
|
|
|
|
// Note: when the values in this test change, it is expected to have an impact
|
|
// on performance.
|
|
TEST(Btree, MovesComparisonsCopiesSwapsTrackingThreeWayCompare) {
|
|
InstanceTracker tracker;
|
|
// Note: this is minimum number of values per node.
|
|
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/3,
|
|
MovableOnlyInstanceThreeWayCompare>
|
|
set3;
|
|
// Note: this is the default number of values per node for a set of int32s
|
|
// (with 64-bit pointers).
|
|
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61,
|
|
MovableOnlyInstanceThreeWayCompare>
|
|
set61;
|
|
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100,
|
|
MovableOnlyInstanceThreeWayCompare>
|
|
set100;
|
|
|
|
// Don't depend on flags for random values because then the expectations will
|
|
// fail if the flags change.
|
|
std::vector<int> values =
|
|
GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23);
|
|
|
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set3)>(), 3);
|
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>(), 61);
|
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set100)>(), 100);
|
|
PHMAP_IF_CONSTEXPR (sizeof(void *) == 8) {
|
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<phmap::btree_set<int32_t>>(),
|
|
BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>());
|
|
}
|
|
|
|
// Test key insertion/deletion in random order.
|
|
ExpectOperationCounts(45281, 122560, values, &tracker, &set3);
|
|
ExpectOperationCounts(386718, 119816, values, &tracker, &set61);
|
|
ExpectOperationCounts(586761, 120319, values, &tracker, &set100);
|
|
|
|
// Test key insertion/deletion in sorted order.
|
|
std::sort(values.begin(), values.end());
|
|
ExpectOperationCounts(26638, 92134, values, &tracker, &set3);
|
|
ExpectOperationCounts(20208, 87757, values, &tracker, &set61);
|
|
ExpectOperationCounts(20124, 96583, values, &tracker, &set100);
|
|
|
|
// Test key insertion/deletion in reverse sorted order.
|
|
std::reverse(values.begin(), values.end());
|
|
ExpectOperationCounts(49951, 109326, values, &tracker, &set3);
|
|
ExpectOperationCounts(338813, 108267, values, &tracker, &set61);
|
|
ExpectOperationCounts(534529, 115280, values, &tracker, &set100);
|
|
}
|
|
|
|
struct NoDefaultCtor {
|
|
int num;
|
|
explicit NoDefaultCtor(int i) : num(i) {}
|
|
|
|
friend bool operator<(const NoDefaultCtor& a, const NoDefaultCtor& b) {
|
|
return a.num < b.num;
|
|
}
|
|
};
|
|
|
|
TEST(Btree, BtreeMapCanHoldNoDefaultCtorTypes) {
|
|
phmap::btree_map<NoDefaultCtor, NoDefaultCtor> m;
|
|
|
|
for (int i = 1; i <= 99; ++i) {
|
|
SCOPED_TRACE(i);
|
|
EXPECT_TRUE(m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i)).second);
|
|
}
|
|
EXPECT_FALSE(m.emplace(NoDefaultCtor(78), NoDefaultCtor(0)).second);
|
|
|
|
auto iter99 = m.find(NoDefaultCtor(99));
|
|
ASSERT_NE(iter99, m.end());
|
|
EXPECT_EQ(iter99->second.num, 1);
|
|
|
|
auto iter1 = m.find(NoDefaultCtor(1));
|
|
ASSERT_NE(iter1, m.end());
|
|
EXPECT_EQ(iter1->second.num, 99);
|
|
|
|
auto iter50 = m.find(NoDefaultCtor(50));
|
|
ASSERT_NE(iter50, m.end());
|
|
EXPECT_EQ(iter50->second.num, 50);
|
|
|
|
auto iter25 = m.find(NoDefaultCtor(25));
|
|
ASSERT_NE(iter25, m.end());
|
|
EXPECT_EQ(iter25->second.num, 75);
|
|
}
|
|
|
|
TEST(Btree, BtreeMultimapCanHoldNoDefaultCtorTypes) {
|
|
phmap::btree_multimap<NoDefaultCtor, NoDefaultCtor> m;
|
|
|
|
for (int i = 1; i <= 99; ++i) {
|
|
SCOPED_TRACE(i);
|
|
m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i));
|
|
}
|
|
|
|
auto iter99 = m.find(NoDefaultCtor(99));
|
|
ASSERT_NE(iter99, m.end());
|
|
EXPECT_EQ(iter99->second.num, 1);
|
|
|
|
auto iter1 = m.find(NoDefaultCtor(1));
|
|
ASSERT_NE(iter1, m.end());
|
|
EXPECT_EQ(iter1->second.num, 99);
|
|
|
|
auto iter50 = m.find(NoDefaultCtor(50));
|
|
ASSERT_NE(iter50, m.end());
|
|
EXPECT_EQ(iter50->second.num, 50);
|
|
|
|
auto iter25 = m.find(NoDefaultCtor(25));
|
|
ASSERT_NE(iter25, m.end());
|
|
EXPECT_EQ(iter25->second.num, 75);
|
|
}
|
|
|
|
TEST(Btree, MapAt) {
|
|
phmap::btree_map<int, int> map = {{1, 2}, {2, 4}};
|
|
EXPECT_EQ(map.at(1), 2);
|
|
EXPECT_EQ(map.at(2), 4);
|
|
map.at(2) = 8;
|
|
const phmap::btree_map<int, int> &const_map = map;
|
|
EXPECT_EQ(const_map.at(1), 2);
|
|
EXPECT_EQ(const_map.at(2), 8);
|
|
#ifdef PHMAP_HAVE_EXCEPTIONS
|
|
EXPECT_THROW(map.at(3), std::out_of_range);
|
|
#else
|
|
EXPECT_DEATH(map.at(3), "phmap::btree_map::at");
|
|
#endif
|
|
}
|
|
|
|
TEST(Btree, BtreeMultisetEmplace) {
|
|
const int value_to_insert = 123456;
|
|
phmap::btree_multiset<int> s;
|
|
auto iter = s.emplace(value_to_insert);
|
|
ASSERT_NE(iter, s.end());
|
|
EXPECT_EQ(*iter, value_to_insert);
|
|
auto iter2 = s.emplace(value_to_insert);
|
|
EXPECT_NE(iter2, iter);
|
|
ASSERT_NE(iter2, s.end());
|
|
EXPECT_EQ(*iter2, value_to_insert);
|
|
auto result = s.equal_range(value_to_insert);
|
|
EXPECT_EQ(std::distance(result.first, result.second), 2);
|
|
}
|
|
|
|
TEST(Btree, BtreeMultisetEmplaceHint) {
|
|
const int value_to_insert = 123456;
|
|
phmap::btree_multiset<int> s;
|
|
auto iter = s.emplace(value_to_insert);
|
|
ASSERT_NE(iter, s.end());
|
|
EXPECT_EQ(*iter, value_to_insert);
|
|
auto emplace_iter = s.emplace_hint(iter, value_to_insert);
|
|
EXPECT_NE(emplace_iter, iter);
|
|
ASSERT_NE(emplace_iter, s.end());
|
|
EXPECT_EQ(*emplace_iter, value_to_insert);
|
|
}
|
|
|
|
TEST(Btree, BtreeMultimapEmplace) {
|
|
const int key_to_insert = 123456;
|
|
const char value0[] = "a";
|
|
phmap::btree_multimap<int, std::string> s;
|
|
auto iter = s.emplace(key_to_insert, value0);
|
|
ASSERT_NE(iter, s.end());
|
|
EXPECT_EQ(iter->first, key_to_insert);
|
|
EXPECT_EQ(iter->second, value0);
|
|
const char value1[] = "b";
|
|
auto iter2 = s.emplace(key_to_insert, value1);
|
|
EXPECT_NE(iter2, iter);
|
|
ASSERT_NE(iter2, s.end());
|
|
EXPECT_EQ(iter2->first, key_to_insert);
|
|
EXPECT_EQ(iter2->second, value1);
|
|
auto result = s.equal_range(key_to_insert);
|
|
EXPECT_EQ(std::distance(result.first, result.second), 2);
|
|
}
|
|
|
|
TEST(Btree, BtreeMultimapEmplaceHint) {
|
|
const int key_to_insert = 123456;
|
|
const char value0[] = "a";
|
|
phmap::btree_multimap<int, std::string> s;
|
|
auto iter = s.emplace(key_to_insert, value0);
|
|
ASSERT_NE(iter, s.end());
|
|
EXPECT_EQ(iter->first, key_to_insert);
|
|
EXPECT_EQ(iter->second, value0);
|
|
const char value1[] = "b";
|
|
auto emplace_iter = s.emplace_hint(iter, key_to_insert, value1);
|
|
EXPECT_NE(emplace_iter, iter);
|
|
ASSERT_NE(emplace_iter, s.end());
|
|
EXPECT_EQ(emplace_iter->first, key_to_insert);
|
|
EXPECT_EQ(emplace_iter->second, value1);
|
|
}
|
|
|
|
TEST(Btree, ConstIteratorAccessors) {
|
|
phmap::btree_set<int> set;
|
|
for (int i = 0; i < 100; ++i) {
|
|
set.insert(i);
|
|
}
|
|
|
|
auto it = set.cbegin();
|
|
auto r_it = set.crbegin();
|
|
for (int i = 0; i < 100; ++i, ++it, ++r_it) {
|
|
ASSERT_EQ(*it, i);
|
|
ASSERT_EQ(*r_it, 99 - i);
|
|
}
|
|
EXPECT_EQ(it, set.cend());
|
|
EXPECT_EQ(r_it, set.crend());
|
|
}
|
|
|
|
#if 0
|
|
TEST(Btree, StrSplitCompatible) {
|
|
const phmap::btree_set<std::string> split_set = phmap::StrSplit("a,b,c", ',');
|
|
const phmap::btree_set<std::string> expected_set = {"a", "b", "c"};
|
|
|
|
EXPECT_EQ(split_set, expected_set);
|
|
}
|
|
#endif
|
|
|
|
// We can't use EXPECT_EQ/etc. to compare phmap::weak_ordering because they
|
|
// convert literal 0 to int and phmap::weak_ordering can only be compared with
|
|
// literal 0. Defining this function allows for avoiding ClangTidy warnings.
|
|
bool Identity(const bool b) { return b; }
|
|
|
|
TEST(Btree, ValueComp) {
|
|
phmap::btree_set<int> s;
|
|
EXPECT_TRUE(s.value_comp()(1, 2));
|
|
EXPECT_FALSE(s.value_comp()(2, 2));
|
|
EXPECT_FALSE(s.value_comp()(2, 1));
|
|
|
|
phmap::btree_map<int, int> m1;
|
|
EXPECT_TRUE(m1.value_comp()(std::make_pair(1, 0), std::make_pair(2, 0)));
|
|
EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(2, 0)));
|
|
EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(1, 0)));
|
|
|
|
phmap::btree_map<std::string, int> m2;
|
|
EXPECT_TRUE(Identity(
|
|
m2.value_comp()(std::make_pair("a", 0), std::make_pair("b", 0)) < 0));
|
|
EXPECT_TRUE(Identity(
|
|
m2.value_comp()(std::make_pair("b", 0), std::make_pair("b", 0)) == 0));
|
|
EXPECT_TRUE(Identity(
|
|
m2.value_comp()(std::make_pair("b", 0), std::make_pair("a", 0)) > 0));
|
|
}
|
|
|
|
TEST(Btree, DefaultConstruction) {
|
|
phmap::btree_set<int> s;
|
|
phmap::btree_map<int, int> m;
|
|
phmap::btree_multiset<int> ms;
|
|
phmap::btree_multimap<int, int> mm;
|
|
|
|
EXPECT_TRUE(s.empty());
|
|
EXPECT_TRUE(m.empty());
|
|
EXPECT_TRUE(ms.empty());
|
|
EXPECT_TRUE(mm.empty());
|
|
}
|
|
|
|
#if 0
|
|
TEST(Btree, SwissTableHashable) {
|
|
static constexpr int kValues = 10000;
|
|
std::vector<int> values(kValues);
|
|
std::iota(values.begin(), values.end(), 0);
|
|
std::vector<std::pair<int, int>> map_values;
|
|
for (int v : values) map_values.emplace_back(v, -v);
|
|
|
|
using set = phmap::btree_set<int>;
|
|
EXPECT_TRUE(phmap::VerifyTypeImplementsPhmapHashCorrectly({
|
|
set{},
|
|
set{1},
|
|
set{2},
|
|
set{1, 2},
|
|
set{2, 1},
|
|
set(values.begin(), values.end()),
|
|
set(values.rbegin(), values.rend()),
|
|
}));
|
|
|
|
using mset = phmap::btree_multiset<int>;
|
|
EXPECT_TRUE(phmap::VerifyTypeImplementsPhmapHashCorrectly({
|
|
mset{},
|
|
mset{1},
|
|
mset{1, 1},
|
|
mset{2},
|
|
mset{2, 2},
|
|
mset{1, 2},
|
|
mset{1, 1, 2},
|
|
mset{1, 2, 2},
|
|
mset{1, 1, 2, 2},
|
|
mset(values.begin(), values.end()),
|
|
mset(values.rbegin(), values.rend()),
|
|
}));
|
|
|
|
using map = phmap::btree_map<int, int>;
|
|
EXPECT_TRUE(phmap::VerifyTypeImplementsPhmapHashCorrectly({
|
|
map{},
|
|
map{{1, 0}},
|
|
map{{1, 1}},
|
|
map{{2, 0}},
|
|
map{{2, 2}},
|
|
map{{1, 0}, {2, 1}},
|
|
map(map_values.begin(), map_values.end()),
|
|
map(map_values.rbegin(), map_values.rend()),
|
|
}));
|
|
|
|
using mmap = phmap::btree_multimap<int, int>;
|
|
EXPECT_TRUE(phmap::VerifyTypeImplementsPhmapHashCorrectly({
|
|
mmap{},
|
|
mmap{{1, 0}},
|
|
mmap{{1, 1}},
|
|
mmap{{1, 0}, {1, 1}},
|
|
mmap{{1, 1}, {1, 0}},
|
|
mmap{{2, 0}},
|
|
mmap{{2, 2}},
|
|
mmap{{1, 0}, {2, 1}},
|
|
mmap(map_values.begin(), map_values.end()),
|
|
mmap(map_values.rbegin(), map_values.rend()),
|
|
}));
|
|
}
|
|
#endif
|
|
|
|
TEST(Btree, ComparableSet) {
|
|
phmap::btree_set<int> s1 = {1, 2};
|
|
phmap::btree_set<int> s2 = {2, 3};
|
|
EXPECT_LT(s1, s2);
|
|
EXPECT_LE(s1, s2);
|
|
EXPECT_LE(s1, s1);
|
|
EXPECT_GT(s2, s1);
|
|
EXPECT_GE(s2, s1);
|
|
EXPECT_GE(s1, s1);
|
|
}
|
|
|
|
TEST(Btree, ComparableSetsDifferentLength) {
|
|
phmap::btree_set<int> s1 = {1, 2};
|
|
phmap::btree_set<int> s2 = {1, 2, 3};
|
|
EXPECT_LT(s1, s2);
|
|
EXPECT_LE(s1, s2);
|
|
EXPECT_GT(s2, s1);
|
|
EXPECT_GE(s2, s1);
|
|
}
|
|
|
|
TEST(Btree, ComparableMultiset) {
|
|
phmap::btree_multiset<int> s1 = {1, 2};
|
|
phmap::btree_multiset<int> s2 = {2, 3};
|
|
EXPECT_LT(s1, s2);
|
|
EXPECT_LE(s1, s2);
|
|
EXPECT_LE(s1, s1);
|
|
EXPECT_GT(s2, s1);
|
|
EXPECT_GE(s2, s1);
|
|
EXPECT_GE(s1, s1);
|
|
}
|
|
|
|
TEST(Btree, ComparableMap) {
|
|
phmap::btree_map<int, int> s1 = {{1, 2}};
|
|
phmap::btree_map<int, int> s2 = {{2, 3}};
|
|
EXPECT_LT(s1, s2);
|
|
EXPECT_LE(s1, s2);
|
|
EXPECT_LE(s1, s1);
|
|
EXPECT_GT(s2, s1);
|
|
EXPECT_GE(s2, s1);
|
|
EXPECT_GE(s1, s1);
|
|
}
|
|
|
|
TEST(Btree, ComparableMultimap) {
|
|
phmap::btree_multimap<int, int> s1 = {{1, 2}};
|
|
phmap::btree_multimap<int, int> s2 = {{2, 3}};
|
|
EXPECT_LT(s1, s2);
|
|
EXPECT_LE(s1, s2);
|
|
EXPECT_LE(s1, s1);
|
|
EXPECT_GT(s2, s1);
|
|
EXPECT_GE(s2, s1);
|
|
EXPECT_GE(s1, s1);
|
|
}
|
|
|
|
TEST(Btree, ComparableSetWithCustomComparator) {
|
|
// As specified by
|
|
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf section
|
|
// [container.requirements.general].12, ordering associative containers always
|
|
// uses default '<' operator
|
|
// - even if otherwise the container uses custom functor.
|
|
phmap::btree_set<int, std::greater<int>> s1 = {1, 2};
|
|
phmap::btree_set<int, std::greater<int>> s2 = {2, 3};
|
|
EXPECT_LT(s1, s2);
|
|
EXPECT_LE(s1, s2);
|
|
EXPECT_LE(s1, s1);
|
|
EXPECT_GT(s2, s1);
|
|
EXPECT_GE(s2, s1);
|
|
EXPECT_GE(s1, s1);
|
|
}
|
|
|
|
TEST(Btree, EraseReturnsIterator) {
|
|
phmap::btree_set<int> set = {1, 2, 3, 4, 5};
|
|
auto result_it = set.erase(set.begin(), set.find(3));
|
|
EXPECT_EQ(result_it, set.find(3));
|
|
result_it = set.erase(set.find(5));
|
|
EXPECT_EQ(result_it, set.end());
|
|
}
|
|
|
|
TEST(Btree, ExtractAndInsertNodeHandleSet) {
|
|
phmap::btree_set<int> src1 = {1, 2, 3, 4, 5};
|
|
auto nh = src1.extract(src1.find(3));
|
|
EXPECT_THAT(src1, ElementsAre(1, 2, 4, 5));
|
|
phmap::btree_set<int> other;
|
|
phmap::btree_set<int>::insert_return_type res = other.insert(std::move(nh));
|
|
EXPECT_THAT(other, ElementsAre(3));
|
|
EXPECT_EQ(res.position, other.find(3));
|
|
EXPECT_TRUE(res.inserted);
|
|
EXPECT_TRUE(res.node.empty());
|
|
|
|
phmap::btree_set<int> src2 = {3, 4};
|
|
nh = src2.extract(src2.find(3));
|
|
EXPECT_THAT(src2, ElementsAre(4));
|
|
res = other.insert(std::move(nh));
|
|
EXPECT_THAT(other, ElementsAre(3));
|
|
EXPECT_EQ(res.position, other.find(3));
|
|
EXPECT_FALSE(res.inserted);
|
|
ASSERT_FALSE(res.node.empty());
|
|
EXPECT_EQ(res.node.value(), 3);
|
|
}
|
|
|
|
template <typename Set>
|
|
void TestExtractWithTrackingForSet() {
|
|
InstanceTracker tracker;
|
|
{
|
|
Set s;
|
|
// Add enough elements to make sure we test internal nodes too.
|
|
const size_t kSize = 1000;
|
|
while (s.size() < kSize) {
|
|
s.insert(MovableOnlyInstance(s.size()));
|
|
}
|
|
for (int i = 0; i < kSize; ++i) {
|
|
// Extract with key
|
|
auto nh = s.extract(MovableOnlyInstance(i));
|
|
EXPECT_EQ(s.size(), kSize - 1);
|
|
EXPECT_EQ(nh.value().value(), i);
|
|
// Insert with node
|
|
s.insert(std::move(nh));
|
|
EXPECT_EQ(s.size(), kSize);
|
|
|
|
// Extract with iterator
|
|
auto it = s.find(MovableOnlyInstance(i));
|
|
nh = s.extract(it);
|
|
EXPECT_EQ(s.size(), kSize - 1);
|
|
EXPECT_EQ(nh.value().value(), i);
|
|
// Insert with node and hint
|
|
s.insert(s.begin(), std::move(nh));
|
|
EXPECT_EQ(s.size(), kSize);
|
|
}
|
|
}
|
|
EXPECT_EQ(0, tracker.instances());
|
|
}
|
|
|
|
template <typename Map>
|
|
void TestExtractWithTrackingForMap() {
|
|
InstanceTracker tracker;
|
|
{
|
|
Map m;
|
|
// Add enough elements to make sure we test internal nodes too.
|
|
const size_t kSize = 1000;
|
|
while (m.size() < kSize) {
|
|
m.insert(
|
|
{CopyableMovableInstance(m.size()), MovableOnlyInstance(m.size())});
|
|
}
|
|
for (int i = 0; i < kSize; ++i) {
|
|
// Extract with key
|
|
auto nh = m.extract(CopyableMovableInstance(i));
|
|
EXPECT_EQ(m.size(), kSize - 1);
|
|
EXPECT_EQ(nh.key().value(), i);
|
|
EXPECT_EQ(nh.mapped().value(), i);
|
|
// Insert with node
|
|
m.insert(std::move(nh));
|
|
EXPECT_EQ(m.size(), kSize);
|
|
|
|
// Extract with iterator
|
|
auto it = m.find(CopyableMovableInstance(i));
|
|
nh = m.extract(it);
|
|
EXPECT_EQ(m.size(), kSize - 1);
|
|
EXPECT_EQ(nh.key().value(), i);
|
|
EXPECT_EQ(nh.mapped().value(), i);
|
|
// Insert with node and hint
|
|
m.insert(m.begin(), std::move(nh));
|
|
EXPECT_EQ(m.size(), kSize);
|
|
}
|
|
}
|
|
EXPECT_EQ(0, tracker.instances());
|
|
}
|
|
|
|
TEST(Btree, ExtractTracking) {
|
|
TestExtractWithTrackingForSet<phmap::btree_set<MovableOnlyInstance>>();
|
|
TestExtractWithTrackingForSet<phmap::btree_multiset<MovableOnlyInstance>>();
|
|
TestExtractWithTrackingForMap<
|
|
phmap::btree_map<CopyableMovableInstance, MovableOnlyInstance>>();
|
|
TestExtractWithTrackingForMap<
|
|
phmap::btree_multimap<CopyableMovableInstance, MovableOnlyInstance>>();
|
|
}
|
|
|
|
TEST(Btree, ExtractAndInsertNodeHandleMultiSet) {
|
|
phmap::btree_multiset<int> src1 = {1, 2, 3, 3, 4, 5};
|
|
auto nh = src1.extract(src1.find(3));
|
|
EXPECT_THAT(src1, ElementsAre(1, 2, 3, 4, 5));
|
|
phmap::btree_multiset<int> other;
|
|
auto res = other.insert(std::move(nh));
|
|
EXPECT_THAT(other, ElementsAre(3));
|
|
EXPECT_EQ(res, other.find(3));
|
|
|
|
phmap::btree_multiset<int> src2 = {3, 4};
|
|
nh = src2.extract(src2.find(3));
|
|
EXPECT_THAT(src2, ElementsAre(4));
|
|
res = other.insert(std::move(nh));
|
|
EXPECT_THAT(other, ElementsAre(3, 3));
|
|
EXPECT_EQ(res, ++other.find(3));
|
|
}
|
|
|
|
TEST(Btree, ExtractAndInsertNodeHandleMap) {
|
|
phmap::btree_map<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}};
|
|
auto nh = src1.extract(src1.find(3));
|
|
EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6)));
|
|
phmap::btree_map<int, int> other;
|
|
phmap::btree_map<int, int>::insert_return_type res =
|
|
other.insert(std::move(nh));
|
|
EXPECT_THAT(other, ElementsAre(Pair(3, 4)));
|
|
EXPECT_EQ(res.position, other.find(3));
|
|
EXPECT_TRUE(res.inserted);
|
|
EXPECT_TRUE(res.node.empty());
|
|
|
|
phmap::btree_map<int, int> src2 = {{3, 6}};
|
|
nh = src2.extract(src2.find(3));
|
|
EXPECT_TRUE(src2.empty());
|
|
res = other.insert(std::move(nh));
|
|
EXPECT_THAT(other, ElementsAre(Pair(3, 4)));
|
|
EXPECT_EQ(res.position, other.find(3));
|
|
EXPECT_FALSE(res.inserted);
|
|
ASSERT_FALSE(res.node.empty());
|
|
EXPECT_EQ(res.node.key(), 3);
|
|
EXPECT_EQ(res.node.mapped(), 6);
|
|
}
|
|
|
|
TEST(Btree, ExtractAndInsertNodeHandleMultiMap) {
|
|
phmap::btree_multimap<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}};
|
|
auto nh = src1.extract(src1.find(3));
|
|
EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6)));
|
|
phmap::btree_multimap<int, int> other;
|
|
auto res = other.insert(std::move(nh));
|
|
EXPECT_THAT(other, ElementsAre(Pair(3, 4)));
|
|
EXPECT_EQ(res, other.find(3));
|
|
|
|
phmap::btree_multimap<int, int> src2 = {{3, 6}};
|
|
nh = src2.extract(src2.find(3));
|
|
EXPECT_TRUE(src2.empty());
|
|
res = other.insert(std::move(nh));
|
|
EXPECT_THAT(other, ElementsAre(Pair(3, 4), Pair(3, 6)));
|
|
EXPECT_EQ(res, ++other.begin());
|
|
}
|
|
|
|
// For multisets, insert with hint also affects correctness because we need to
|
|
// insert immediately before the hint if possible.
|
|
struct InsertMultiHintData {
|
|
int key;
|
|
int not_key;
|
|
bool operator==(const InsertMultiHintData other) const {
|
|
return key == other.key && not_key == other.not_key;
|
|
}
|
|
};
|
|
|
|
struct InsertMultiHintDataKeyCompare {
|
|
using is_transparent = void;
|
|
bool operator()(const InsertMultiHintData a,
|
|
const InsertMultiHintData b) const {
|
|
return a.key < b.key;
|
|
}
|
|
bool operator()(const int a, const InsertMultiHintData b) const {
|
|
return a < b.key;
|
|
}
|
|
bool operator()(const InsertMultiHintData a, const int b) const {
|
|
return a.key < b;
|
|
}
|
|
};
|
|
|
|
TEST(Btree, InsertHintNodeHandle) {
|
|
// For unique sets, insert with hint is just a performance optimization.
|
|
// Test that insert works correctly when the hint is right or wrong.
|
|
{
|
|
phmap::btree_set<int> src = {1, 2, 3, 4, 5};
|
|
auto nh = src.extract(src.find(3));
|
|
EXPECT_THAT(src, ElementsAre(1, 2, 4, 5));
|
|
phmap::btree_set<int> other = {0, 100};
|
|
// Test a correct hint.
|
|
auto it = other.insert(other.lower_bound(3), std::move(nh));
|
|
EXPECT_THAT(other, ElementsAre(0, 3, 100));
|
|
EXPECT_EQ(it, other.find(3));
|
|
|
|
nh = src.extract(src.find(5));
|
|
// Test an incorrect hint.
|
|
it = other.insert(other.end(), std::move(nh));
|
|
EXPECT_THAT(other, ElementsAre(0, 3, 5, 100));
|
|
EXPECT_EQ(it, other.find(5));
|
|
}
|
|
|
|
phmap::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare> src =
|
|
{{1, 2}, {3, 4}, {3, 5}};
|
|
auto nh = src.extract(src.lower_bound(3));
|
|
EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 4}));
|
|
phmap::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare>
|
|
other = {{3, 1}, {3, 2}, {3, 3}};
|
|
auto it = other.insert(--other.end(), std::move(nh));
|
|
EXPECT_THAT(
|
|
other, ElementsAre(InsertMultiHintData{3, 1}, InsertMultiHintData{3, 2},
|
|
InsertMultiHintData{3, 4}, InsertMultiHintData{3, 3}));
|
|
EXPECT_EQ(it, --(--other.end()));
|
|
|
|
nh = src.extract(src.find(3));
|
|
EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 5}));
|
|
it = other.insert(other.begin(), std::move(nh));
|
|
EXPECT_THAT(other,
|
|
ElementsAre(InsertMultiHintData{3, 5}, InsertMultiHintData{3, 1},
|
|
InsertMultiHintData{3, 2}, InsertMultiHintData{3, 4},
|
|
InsertMultiHintData{3, 3}));
|
|
EXPECT_EQ(it, other.begin());
|
|
}
|
|
|
|
struct IntCompareToCmp {
|
|
phmap::weak_ordering operator()(int a, int b) const {
|
|
if (a < b) return phmap::weak_ordering::less;
|
|
if (a > b) return phmap::weak_ordering::greater;
|
|
return phmap::weak_ordering::equivalent;
|
|
}
|
|
};
|
|
|
|
TEST(Btree, MergeIntoUniqueContainers) {
|
|
phmap::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
|
|
phmap::btree_multiset<int> src2 = {3, 4, 4, 5};
|
|
phmap::btree_set<int> dst;
|
|
|
|
dst.merge(src1);
|
|
EXPECT_TRUE(src1.empty());
|
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3));
|
|
dst.merge(src2);
|
|
EXPECT_THAT(src2, ElementsAre(3, 4));
|
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5));
|
|
}
|
|
|
|
TEST(Btree, MergeIntoUniqueContainersWithCompareTo) {
|
|
phmap::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
|
|
phmap::btree_multiset<int> src2 = {3, 4, 4, 5};
|
|
phmap::btree_set<int, IntCompareToCmp> dst;
|
|
|
|
dst.merge(src1);
|
|
EXPECT_TRUE(src1.empty());
|
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3));
|
|
dst.merge(src2);
|
|
EXPECT_THAT(src2, ElementsAre(3, 4));
|
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5));
|
|
}
|
|
|
|
TEST(Btree, MergeIntoMultiContainers) {
|
|
phmap::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
|
|
phmap::btree_multiset<int> src2 = {3, 4, 4, 5};
|
|
phmap::btree_multiset<int> dst;
|
|
|
|
dst.merge(src1);
|
|
EXPECT_TRUE(src1.empty());
|
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3));
|
|
dst.merge(src2);
|
|
EXPECT_TRUE(src2.empty());
|
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5));
|
|
}
|
|
|
|
TEST(Btree, MergeIntoMultiContainersWithCompareTo) {
|
|
phmap::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
|
|
phmap::btree_multiset<int> src2 = {3, 4, 4, 5};
|
|
phmap::btree_multiset<int, IntCompareToCmp> dst;
|
|
|
|
dst.merge(src1);
|
|
EXPECT_TRUE(src1.empty());
|
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3));
|
|
dst.merge(src2);
|
|
EXPECT_TRUE(src2.empty());
|
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5));
|
|
}
|
|
|
|
TEST(Btree, MergeIntoMultiMapsWithDifferentComparators) {
|
|
phmap::btree_map<int, int, IntCompareToCmp> src1 = {{1, 1}, {2, 2}, {3, 3}};
|
|
phmap::btree_multimap<int, int, std::greater<int>> src2 = {
|
|
{5, 5}, {4, 1}, {4, 4}, {3, 2}};
|
|
phmap::btree_multimap<int, int> dst;
|
|
|
|
dst.merge(src1);
|
|
EXPECT_TRUE(src1.empty());
|
|
EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3)));
|
|
dst.merge(src2);
|
|
EXPECT_TRUE(src2.empty());
|
|
EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), Pair(3, 2),
|
|
Pair(4, 1), Pair(4, 4), Pair(5, 5)));
|
|
}
|
|
|
|
struct KeyCompareToWeakOrdering {
|
|
template <typename T>
|
|
phmap::weak_ordering operator()(const T &a, const T &b) const {
|
|
return a < b ? phmap::weak_ordering::less
|
|
: a == b ? phmap::weak_ordering::equivalent
|
|
: phmap::weak_ordering::greater;
|
|
}
|
|
};
|
|
|
|
struct KeyCompareToStrongOrdering {
|
|
template <typename T>
|
|
phmap::strong_ordering operator()(const T &a, const T &b) const {
|
|
return a < b ? phmap::strong_ordering::less
|
|
: a == b ? phmap::strong_ordering::equal
|
|
: phmap::strong_ordering::greater;
|
|
}
|
|
};
|
|
|
|
TEST(Btree, UserProvidedKeyCompareToComparators) {
|
|
phmap::btree_set<int, KeyCompareToWeakOrdering> weak_set = {1, 2, 3};
|
|
EXPECT_TRUE(weak_set.contains(2));
|
|
EXPECT_FALSE(weak_set.contains(4));
|
|
|
|
phmap::btree_set<int, KeyCompareToStrongOrdering> strong_set = {1, 2, 3};
|
|
EXPECT_TRUE(strong_set.contains(2));
|
|
EXPECT_FALSE(strong_set.contains(4));
|
|
}
|
|
|
|
TEST(Btree, TryEmplaceBasicTest) {
|
|
phmap::btree_map<int, std::string> m;
|
|
|
|
// Should construct a std::string from the literal.
|
|
m.try_emplace(1, "one");
|
|
EXPECT_EQ(1, m.size());
|
|
|
|
// Try other std::string constructors and const lvalue key.
|
|
const int key(42);
|
|
m.try_emplace(key, 3, 'a');
|
|
m.try_emplace(2, std::string("two"));
|
|
|
|
EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
|
|
EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, std::string>>{
|
|
{1, "one"}, {2, "two"}, {42, "aaa"}}));
|
|
}
|
|
|
|
TEST(Btree, TryEmplaceWithHintWorks) {
|
|
// Use a counting comparator here to verify that hint is used.
|
|
int calls = 0;
|
|
auto cmp = [&calls](int x, int y) {
|
|
++calls;
|
|
return x < y;
|
|
};
|
|
using Cmp = decltype(cmp);
|
|
|
|
phmap::btree_map<int, int, Cmp> m(cmp);
|
|
for (int i = 0; i < 128; ++i) {
|
|
m.emplace(i, i);
|
|
}
|
|
|
|
// Sanity check for the comparator
|
|
calls = 0;
|
|
m.emplace(127, 127);
|
|
EXPECT_GE(calls, 4);
|
|
|
|
// Try with begin hint:
|
|
calls = 0;
|
|
auto it = m.try_emplace(m.begin(), -1, -1);
|
|
EXPECT_EQ(129, m.size());
|
|
EXPECT_EQ(it, m.begin());
|
|
EXPECT_LE(calls, 2);
|
|
|
|
// Try with end hint:
|
|
calls = 0;
|
|
std::pair<int, int> pair1024 = {1024, 1024};
|
|
it = m.try_emplace(m.end(), pair1024.first, pair1024.second);
|
|
EXPECT_EQ(130, m.size());
|
|
EXPECT_EQ(it, --m.end());
|
|
EXPECT_LE(calls, 2);
|
|
|
|
// Try value already present, bad hint; ensure no duplicate added:
|
|
calls = 0;
|
|
it = m.try_emplace(m.end(), 16, 17);
|
|
EXPECT_EQ(130, m.size());
|
|
EXPECT_GE(calls, 4);
|
|
EXPECT_EQ(it, m.find(16));
|
|
|
|
// Try value already present, hint points directly to it:
|
|
calls = 0;
|
|
it = m.try_emplace(it, 16, 17);
|
|
EXPECT_EQ(130, m.size());
|
|
EXPECT_LE(calls, 2);
|
|
EXPECT_EQ(it, m.find(16));
|
|
|
|
m.erase(2);
|
|
EXPECT_EQ(129, m.size());
|
|
auto hint = m.find(3);
|
|
// Try emplace in the middle of two other elements.
|
|
calls = 0;
|
|
m.try_emplace(hint, 2, 2);
|
|
EXPECT_EQ(130, m.size());
|
|
EXPECT_LE(calls, 2);
|
|
|
|
EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
|
|
}
|
|
|
|
TEST(Btree, TryEmplaceWithBadHint) {
|
|
phmap::btree_map<int, int> m = {{1, 1}, {9, 9}};
|
|
|
|
// Bad hint (too small), should still emplace:
|
|
auto it = m.try_emplace(m.begin(), 2, 2);
|
|
EXPECT_EQ(it, ++m.begin());
|
|
EXPECT_THAT(m, ElementsAreArray(
|
|
std::vector<std::pair<int, int>>{{1, 1}, {2, 2}, {9, 9}}));
|
|
|
|
// Bad hint, too large this time:
|
|
it = m.try_emplace(++(++m.begin()), 0, 0);
|
|
EXPECT_EQ(it, m.begin());
|
|
EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, int>>{
|
|
{0, 0}, {1, 1}, {2, 2}, {9, 9}}));
|
|
}
|
|
|
|
TEST(Btree, TryEmplaceMaintainsSortedOrder) {
|
|
phmap::btree_map<int, std::string> m;
|
|
std::pair<int, std::string> pair5 = {5, "five"};
|
|
|
|
// Test both lvalue & rvalue emplace.
|
|
m.try_emplace(10, "ten");
|
|
m.try_emplace(pair5.first, pair5.second);
|
|
EXPECT_EQ(2, m.size());
|
|
EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
|
|
|
|
int int100{100};
|
|
m.try_emplace(int100, "hundred");
|
|
m.try_emplace(1, "one");
|
|
EXPECT_EQ(4, m.size());
|
|
EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
|
|
}
|
|
|
|
TEST(Btree, TryEmplaceWithHintAndNoValueArgsWorks) {
|
|
phmap::btree_map<int, int> m;
|
|
m.try_emplace(m.end(), 1);
|
|
EXPECT_EQ(0, m[1]);
|
|
}
|
|
|
|
TEST(Btree, TryEmplaceWithHintAndMultipleValueArgsWorks) {
|
|
phmap::btree_map<int, std::string> m;
|
|
m.try_emplace(m.end(), 1, 10, 'a');
|
|
EXPECT_EQ(std::string(10, 'a'), m[1]);
|
|
}
|
|
|
|
TEST(Btree, MoveAssignmentAllocatorPropagation) {
|
|
InstanceTracker tracker;
|
|
|
|
int64_t bytes1 = 0, bytes2 = 0;
|
|
PropagatingCountingAlloc<MovableOnlyInstance> allocator1(&bytes1);
|
|
PropagatingCountingAlloc<MovableOnlyInstance> allocator2(&bytes2);
|
|
std::less<MovableOnlyInstance> cmp;
|
|
|
|
// Test propagating allocator_type.
|
|
{
|
|
phmap::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>,
|
|
PropagatingCountingAlloc<MovableOnlyInstance>>
|
|
set1(cmp, allocator1), set2(cmp, allocator2);
|
|
|
|
for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i));
|
|
|
|
tracker.ResetCopiesMovesSwaps();
|
|
set2 = std::move(set1);
|
|
EXPECT_EQ(tracker.moves(), 0);
|
|
}
|
|
// Test non-propagating allocator_type with equal allocators.
|
|
{
|
|
phmap::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>,
|
|
CountingAllocator<MovableOnlyInstance>>
|
|
set1(cmp, allocator1), set2(cmp, allocator1);
|
|
|
|
for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i));
|
|
|
|
tracker.ResetCopiesMovesSwaps();
|
|
set2 = std::move(set1);
|
|
EXPECT_EQ(tracker.moves(), 0);
|
|
}
|
|
// Test non-propagating allocator_type with different allocators.
|
|
{
|
|
phmap::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>,
|
|
CountingAllocator<MovableOnlyInstance>>
|
|
set1(cmp, allocator1), set2(cmp, allocator2);
|
|
|
|
for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i));
|
|
|
|
tracker.ResetCopiesMovesSwaps();
|
|
set2 = std::move(set1);
|
|
EXPECT_GE(tracker.moves(), 100);
|
|
}
|
|
}
|
|
|
|
TEST(Btree, EmptyTree) {
|
|
phmap::btree_set<int> s;
|
|
EXPECT_TRUE(s.empty());
|
|
EXPECT_EQ(s.size(), 0);
|
|
EXPECT_GT(s.max_size(), 0);
|
|
}
|
|
|
|
bool IsEven(int k) { return k % 2 == 0; }
|
|
|
|
TEST(Btree, EraseIf) {
|
|
// Test that erase_if works with all the container types and supports lambdas.
|
|
{
|
|
phmap::btree_set<int> s = {1, 3, 5, 6, 100};
|
|
erase_if(s, [](int k) { return k > 3; });
|
|
EXPECT_THAT(s, ElementsAre(1, 3));
|
|
}
|
|
{
|
|
phmap::btree_multiset<int> s = {1, 3, 3, 5, 6, 6, 100};
|
|
erase_if(s, [](int k) { return k <= 3; });
|
|
EXPECT_THAT(s, ElementsAre(5, 6, 6, 100));
|
|
}
|
|
{
|
|
phmap::btree_map<int, int> m = {{1, 1}, {3, 3}, {6, 6}, {100, 100}};
|
|
erase_if(m, [](std::pair<const int, int> kv) { return kv.first > 3; });
|
|
EXPECT_THAT(m, ElementsAre(Pair(1, 1), Pair(3, 3)));
|
|
}
|
|
{
|
|
phmap::btree_multimap<int, int> m = {{1, 1}, {3, 3}, {3, 6},
|
|
{6, 6}, {6, 7}, {100, 6}};
|
|
erase_if(m, [](std::pair<const int, int> kv) { return kv.second == 6; });
|
|
EXPECT_THAT(m, ElementsAre(Pair(1, 1), Pair(3, 3), Pair(6, 7)));
|
|
}
|
|
// Test that erasing all elements from a large set works and test support for
|
|
// function pointers.
|
|
{
|
|
phmap::btree_set<int> s;
|
|
for (int i = 0; i < 1000; ++i) s.insert(2 * i);
|
|
erase_if(s, IsEven);
|
|
EXPECT_THAT(s, IsEmpty());
|
|
}
|
|
// Test that erase_if supports other format of function pointers.
|
|
{
|
|
phmap::btree_set<int> s = {1, 3, 5, 6, 100};
|
|
erase_if(s, &IsEven);
|
|
EXPECT_THAT(s, ElementsAre(1, 3, 5));
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace priv
|
|
} // namespace phmap
|