project64/Source/Project64-input/DirectInput.cpp

915 lines
26 KiB
C++

#include "DirectInput.h"
#include <Common/StdString.h>
#include <Common/SyncEvent.h>
#include <set>
#include "CProject64Input.h"
CDirectInput::CDirectInput(HINSTANCE hinst) :
m_hDirectInputDLL(nullptr),
m_pDIHandle(nullptr),
m_hinst(hinst),
m_hWnd(nullptr)
{
if (m_hDirectInputDLL == nullptr)
{
m_hDirectInputDLL = LoadLibrary(L"dinput8.dll");
}
if (m_hDirectInputDLL != nullptr)
{
typedef HRESULT(WINAPI *tylpGetDIHandle)(HINSTANCE, DWORD, REFIID, LPVOID*, LPUNKNOWN);
tylpGetDIHandle lpGetDIHandle = (tylpGetDIHandle)GetProcAddress(m_hDirectInputDLL, "DirectInput8Create");
if (lpGetDIHandle != nullptr)
{
HRESULT hr = lpGetDIHandle(m_hinst, DIRECTINPUT_VERSION, IID_IDirectInput8, (LPVOID*)&m_pDIHandle, nullptr);
if (FAILED(hr))
{
return;
}
}
RefreshDeviceList();
}
}
CDirectInput::~CDirectInput()
{
CGuard Guard(m_DeviceCS);
for (DEVICE_MAP::iterator itr = m_Devices.begin(); itr != m_Devices.end(); itr++)
{
if (itr->second.didHandle != nullptr)
{
itr->second.didHandle->Release();
itr->second.didHandle = nullptr;
}
}
}
void CDirectInput::Initiate(CONTROL_INFO * ControlInfo)
{
m_hWnd = (HWND)ControlInfo->hWnd;
}
void CDirectInput::MapControllerDevice(N64CONTROLLER & Controller)
{
BUTTON * Buttons[] =
{
&Controller.U_DPAD,
&Controller.D_DPAD,
&Controller.L_DPAD,
&Controller.R_DPAD,
&Controller.A_BUTTON,
&Controller.B_BUTTON,
&Controller.U_CBUTTON,
&Controller.D_CBUTTON,
&Controller.L_CBUTTON,
&Controller.R_CBUTTON,
&Controller.START_BUTTON,
&Controller.Z_TRIG,
&Controller.R_TRIG,
&Controller.L_TRIG,
&Controller.U_ANALOG,
&Controller.D_ANALOG,
&Controller.L_ANALOG,
&Controller.R_ANALOG,
};
CGuard Guard(m_DeviceCS);
for (size_t i = 0, n = sizeof(Buttons) / sizeof(Buttons[0]); i < n; i++)
{
DEVICE_MAP::iterator itr = m_Devices.find(Buttons[i]->DeviceGuid);
if (itr != m_Devices.end())
{
Buttons[i]->Device = &itr->second;
}
else
{
Buttons[i]->Device = nullptr;
}
}
}
void CDirectInput::MapShortcutDevice(SHORTCUTS& Shortcuts)
{
BUTTON* Buttons[] =
{
&Shortcuts.LOCKMOUSE,
};
CGuard Guard(m_DeviceCS);
for (size_t i = 0, n = sizeof(Buttons) / sizeof(Buttons[0]); i < n; i++)
{
DEVICE_MAP::iterator itr = m_Devices.find(Buttons[i]->DeviceGuid);
if (itr != m_Devices.end())
{
Buttons[i]->Device = &itr->second;
}
else
{
Buttons[i]->Device = nullptr;
}
}
}
BOOL CDirectInput::stEnumMakeDeviceList(LPCDIDEVICEINSTANCE lpddi, LPVOID pvRef)
{
return ((CDirectInput *)pvRef)->EnumMakeDeviceList(lpddi);
}
BOOL CDirectInput::EnumMakeDeviceList(LPCDIDEVICEINSTANCE lpddi)
{
uint32_t DeviceType = GET_DIDEVICE_TYPE(lpddi->dwDevType);
if (DeviceType == DI8DEVTYPE_DEVICE)
{
// Ignore generic devices
return DIENUM_CONTINUE;
}
{
CGuard Guard(m_DeviceCS);
DEVICE_MAP::iterator itr = m_Devices.find(lpddi->guidInstance);
if (itr != m_Devices.end())
{
return DIENUM_CONTINUE;
}
}
DEVICE Device = { 0 };
Device.didHandle = nullptr;
Device.dwDevType = lpddi->dwDevType;
Device.ProductName = stdstr().FromUTF16(lpddi->tszProductName);
Device.InstanceName = stdstr().FromUTF16(lpddi->tszInstanceName);
HRESULT hResult = m_pDIHandle->CreateDevice(lpddi->guidInstance, &Device.didHandle, nullptr);
if (!SUCCEEDED(hResult))
{
return DIENUM_CONTINUE;
}
LPCDIDATAFORMAT ppDiDataFormat = nullptr;
if (DeviceType == DI8DEVTYPE_KEYBOARD)
{
ppDiDataFormat = &c_dfDIKeyboard;
}
else if (DeviceType == DI8DEVTYPE_MOUSE)
{
ppDiDataFormat = &c_dfDIMouse2;
}
else
{
ppDiDataFormat = &c_dfDIJoystick;
}
hResult = Device.didHandle->SetDataFormat(ppDiDataFormat);
if (!SUCCEEDED(hResult))
{
Device.didHandle->Release();
return DIENUM_CONTINUE;
}
hResult = Device.didHandle->SetCooperativeLevel(m_hWnd, DISCL_NONEXCLUSIVE | DISCL_BACKGROUND);
if (!SUCCEEDED(hResult))
{
Device.didHandle->Release();
return DIENUM_CONTINUE;
}
{
CGuard Guard(m_DeviceCS);
std::pair<DEVICE_MAP::iterator, bool> res = m_Devices.insert(DEVICE_MAP::value_type(lpddi->guidInstance, Device));
if (!res.second)
{
Device.didHandle->Release();
}
}
g_InputPlugin->DeviceAdded();
return DIENUM_CONTINUE;
}
CDirectInput::ScanResult CDirectInput::ScanDevices(BUTTON & Button)
{
ScanResult Result = SCAN_FAILED;
CGuard Guard(m_DeviceCS);
for (DEVICE_MAP::iterator itr = m_Devices.begin(); itr != m_Devices.end(); itr++)
{
DEVICE &device = itr->second;
if (device.didHandle == nullptr)
{
continue;
}
if (FAILED(device.didHandle->Poll()))
{
device.didHandle->Acquire();
}
}
for (DEVICE_MAP::iterator itr = m_Devices.begin(); itr != m_Devices.end(); itr++)
{
DEVICE &device = itr->second;
if (device.didHandle == nullptr)
{
continue;
}
uint8_t DeviceType = LOBYTE(device.dwDevType);
if (DeviceType == DI8DEVTYPE_KEYBOARD)
{
Result = ScanKeyboard(itr->first, device.didHandle, device.State.Keyboard, Button);
}
else if (DeviceType != DI8DEVTYPE_MOUSE)
{
Result = ScanGamePad(itr->first, device.didHandle, device.State.Joy, Button);
}
if (Result != SCAN_FAILED)
{
return Result;
}
}
return Result;
}
std::wstring CDirectInput::ButtonAssignment(BUTTON & Button)
{
static const char * iGamepad[] =
{
"X-axis",
"Y-axis",
"Z-axis",
"X-rotation",
"Y-rotation",
"Z-rotation",
"Slider",
"Slider",
"PoV",
"PoV",
"PoV",
"PoV",
"Button"
};
static const char * AxeID[] =
{
" +",
" -",
" /\\",
" >",
" \\/",
" <"
};
static const char* iMouse[] =
{
"X-axis",
"Y-axis",
"Z-axis",
"Button"
};
if (Button.BtnType == BTNTYPE_JOYBUTTON)
{
return stdstr_f("Button %u", Button.Offset).ToUTF16();
}
if (Button.BtnType == BTNTYPE_JOYAXE)
{
stdstr_f Offset("%u", Button.Offset);
if (Button.Offset < (sizeof(iGamepad) / sizeof(iGamepad[0])))
{
Offset = iGamepad[Button.Offset];
}
stdstr_f AxisId(" %u", Button.AxisID);
if (Button.AxisID < (sizeof(AxeID) / sizeof(AxeID[0])))
{
AxisId = AxeID[Button.AxisID];
}
return stdstr_f("%s%s", Offset.c_str(), AxisId.c_str()).ToUTF16();
}
if (Button.BtnType == BTNTYPE_JOYPOV)
{
stdstr_f Offset("%u", Button.Offset);
if (Button.Offset < (sizeof(iGamepad) / sizeof(iGamepad[0])))
{
Offset = iGamepad[Button.Offset];
}
stdstr_f AxisId(" %u", Button.AxisID);
if ((Button.AxisID + 2) < (sizeof(AxeID) / sizeof(AxeID[0])))
{
AxisId = AxeID[Button.AxisID + 2];
}
return stdstr_f("%s%s", Offset.c_str(), AxisId.c_str()).ToUTF16();
}
if (Button.BtnType == BTNTYPE_KEYBUTTON)
{
DEVICE_MAP::iterator itr = m_Devices.find(GUID_SysKeyboard);
if (itr != m_Devices.end())
{
DIDEVICEOBJECTINSTANCE didoi;
didoi.dwSize = sizeof(DIDEVICEOBJECTINSTANCE);
if (itr->second.didHandle->GetObjectInfo(&didoi, Button.Offset, DIPH_BYOFFSET) == DI_OK)
{
return didoi.tszName;
}
return L"Keyboard: ???";
}
}
if (Button.BtnType == BTNTYPE_MOUSEAXE)
{
stdstr_f Offset("%u", Button.Offset);
if (Button.Offset < (sizeof(iMouse) / sizeof(iMouse[0])))
{
Offset = iMouse[Button.Offset];
}
stdstr_f AxisId(" %u", Button.AxisID);
if (Button.AxisID < (sizeof(AxeID) / sizeof(AxeID[0])))
{
AxisId = AxeID[Button.AxisID];
}
return stdstr_f("%s%s", Offset.c_str(), AxisId.c_str()).ToUTF16();
}
if (Button.BtnType == BTNTYPE_MOUSEBUTTON)
{
return stdstr_f("Button %u", Button.Offset).ToUTF16();
}
if (Button.BtnType == BTNTYPE_UNASSIGNED)
{
return L"";
}
return L"Unknown";
}
std::wstring CDirectInput::ControllerDevices(const N64CONTROLLER & Controller)
{
const BUTTON * Buttons[] =
{
&Controller.U_DPAD,
&Controller.D_DPAD,
&Controller.L_DPAD,
&Controller.R_DPAD,
&Controller.A_BUTTON,
&Controller.B_BUTTON,
&Controller.U_CBUTTON,
&Controller.D_CBUTTON,
&Controller.L_CBUTTON,
&Controller.R_CBUTTON,
&Controller.START_BUTTON,
&Controller.Z_TRIG,
&Controller.R_TRIG,
&Controller.L_TRIG,
&Controller.U_ANALOG,
&Controller.D_ANALOG,
&Controller.L_ANALOG,
&Controller.R_ANALOG,
};
typedef std::set<GUID, GUIDComparer> GUID_LIST;
GUID_LIST DeviceGuids;
GUID EmptyGuid = { 0 };
for (size_t i = 0, n = sizeof(Buttons) / sizeof(Buttons[0]); i < n; i++)
{
GUID_LIST::iterator itr = DeviceGuids.find(Buttons[i]->DeviceGuid);
if (itr != DeviceGuids.end())
{
continue;
}
if (memcmp(&Buttons[i]->DeviceGuid, &EmptyGuid, sizeof(EmptyGuid)) == 0)
{
continue;
}
DeviceGuids.insert(Buttons[i]->DeviceGuid);
}
std::wstring DeviceList;
CGuard Guard(m_DeviceCS);
bool UnknownDevice = false;
for (GUID_LIST::iterator itr = DeviceGuids.begin(); itr != DeviceGuids.end(); itr++)
{
DEVICE_MAP::iterator DeviceItr = m_Devices.find(*itr);
if (DeviceItr == m_Devices.end())
{
UnknownDevice = true;
continue;
}
if (!DeviceList.empty()) { DeviceList += L", "; }
DeviceList += stdstr(DeviceItr->second.ProductName).ToUTF16();
}
if (UnknownDevice)
{
if (!DeviceList.empty()) { DeviceList += L", "; }
DeviceList += L"Unknown Device";
}
return DeviceList;
}
bool CDirectInput::IsButtonPressed(BUTTON & Button)
{
if (Button.Device == nullptr)
{
return false;
}
DEVICE & Device = *(DEVICE *)Button.Device;
switch (Button.BtnType)
{
case BTNTYPE_KEYBUTTON:
return (Device.State.Keyboard[Button.Offset] & 0x80) != 0;
case BTNTYPE_JOYBUTTON:
return (Device.State.Joy.rgbButtons[Button.Offset] & 0x80) != 0;
case BTNTYPE_MOUSEBUTTON:
return (Device.State.Mouse.rgbButtons[Button.Offset] & 0x80) != 0;
case BTNTYPE_JOYPOV:
return JoyPadPovPressed((AI_POV)Button.AxisID, ((uint32_t *)&Device.State.Joy)[Button.Offset]);
case BTNTYPE_JOYSLIDER:
case BTNTYPE_JOYAXE:
return Button.AxisID ? ((uint32_t*)&Device.State.Joy)[Button.Offset] > AXIS_BOTTOM_VALUE : ((uint32_t *)&Device.State.Joy)[Button.Offset] < AXIS_TOP_VALUE;
case BTNTYPE_MOUSEAXE:
return Button.AxisID ? ((uint32_t*)&Device.State.Mouse)[Button.Offset] > AXIS_BOTTOM_VALUE : ((uint32_t*)&Device.State.Mouse)[Button.Offset] < AXIS_TOP_VALUE;
}
return false;
}
void CDirectInput::GetAxis(N64CONTROLLER & Controller, BUTTONS * Keys)
{
enum
{
N64DIVIDER = 258,
};
Keys->X_AXIS = 0;
Keys->Y_AXIS = 0;
bool b_Value;
long l_Value = 0;
long lAxisValueX = 0;
long lAxisValueY = 0;
uint8_t bPadDeadZone = Controller.DeadZone;
long lDeadZoneValue = bPadDeadZone * RANGE_RELATIVE / 100;
float fDeadZoneRelation = (float)RANGE_RELATIVE / (float)(RANGE_RELATIVE - lDeadZoneValue);
struct
{
BUTTON & Button;
bool Negative;
}
Buttons[] =
{
{ Controller.R_ANALOG, false },
{ Controller.L_ANALOG, true },
{ Controller.D_ANALOG, true },
{ Controller.U_ANALOG, false },
};
for (size_t i = 0, n = sizeof(Buttons) / sizeof(Buttons[0]); i < n; i++)
{
bool fNegInput = Buttons[i].Negative;
BUTTON & Button = Buttons[i].Button;
if (Button.Device == nullptr)
{
continue;
}
DEVICE & Device = *(DEVICE *)Button.Device;
LPLONG plRawState = (LPLONG)&Device.State.Joy;
LPLONG plRawStateMouse = (LPLONG)&Device.State.Mouse;
switch (Button.BtnType)
{
case BTNTYPE_JOYSLIDER:
case BTNTYPE_JOYAXE:
l_Value = (plRawState[Button.Offset] - MAX_AXIS_VALUE) * -1;
if (Button.AxisID == AI_AXE_NEGATIVE)
{
fNegInput = !fNegInput;
b_Value = (l_Value < 0);
}
else
{
b_Value = (l_Value > 0);
}
break;
case BTNTYPE_MOUSEAXE:
l_Value = (plRawStateMouse[Button.Offset]) * -1;
l_Value *= Controller.Sensitivity * MOUSESCALEVALUE;
if (Button.AxisID == AI_AXE_NEGATIVE)
{
fNegInput = !fNegInput;
b_Value = (l_Value < 0);
}
else
{
b_Value = (l_Value > 0);
}
break;
case BTNTYPE_KEYBUTTON:
b_Value = (Device.State.Keyboard[Button.Offset] & 0x80) != 0;
if (b_Value)
{
l_Value = MAX_AXIS_VALUE;
}
break;
case BTNTYPE_JOYBUTTON:
b_Value = (Device.State.Joy.rgbButtons[Button.Offset] & 0x80) != 0;
if (b_Value)
{
l_Value = MAX_AXIS_VALUE;
}
break;
case BTNTYPE_MOUSEBUTTON:
b_Value = (Device.State.Mouse.rgbButtons[Button.Offset] & 0x80) != 0;
if (b_Value)
{
l_Value = MAX_AXIS_VALUE;
}
break;
case BTNTYPE_JOYPOV:
b_Value = JoyPadPovPressed((AI_POV)Button.AxisID, ((uint32_t *)&Device.State.Joy)[Button.Offset]);
if (b_Value)
{
l_Value = MAX_AXIS_VALUE;
}
break;
default:
b_Value = false;
}
if (b_Value)
{
l_Value = fNegInput ? -l_Value : l_Value;
if (i < 2)
{
lAxisValueX += l_Value;
}
else
{
lAxisValueY += l_Value;
}
}
}
long lAbsoluteX = (lAxisValueX > 0) ? lAxisValueX : -lAxisValueX;
long lAbsoluteY = (lAxisValueY > 0) ? lAxisValueY : -lAxisValueY;
if (lAbsoluteX * lAbsoluteX + lAbsoluteY * lAbsoluteY > lDeadZoneValue * lDeadZoneValue)
{
double dMagnitudeDiagonal = sqrt((double)lAbsoluteX * lAbsoluteX + (double)lAbsoluteY * lAbsoluteY);
double dRel = ((dMagnitudeDiagonal - lDeadZoneValue) / dMagnitudeDiagonal * fDeadZoneRelation);
lAxisValueX = (long)(lAxisValueX * dRel);
lAxisValueY = (long)(lAxisValueY * dRel);
}
else
{
lAxisValueX = lAxisValueY = 0;
}
if (Controller.RealN64Range && (lAxisValueX || lAxisValueY))
{
long lRangeX = lAbsoluteX > lAbsoluteY ? MAX_AXIS_VALUE : MAX_AXIS_VALUE * lAbsoluteX / lAbsoluteY;
long lRangeY = lAbsoluteX > lAbsoluteY ? MAX_AXIS_VALUE * lAbsoluteY / lAbsoluteX : MAX_AXIS_VALUE;
double dRangeDiagonal = sqrt((double)(lRangeX * lRangeX + lRangeY * lRangeY));
double dRel = MAX_AXIS_VALUE / dRangeDiagonal;
lAxisValueX = (long)(lAxisValueX * dRel);
lAxisValueY = (long)(lAxisValueY * dRel);
}
if (lAxisValueX > MAX_AXIS_VALUE) { lAxisValueX = MAX_AXIS_VALUE; }
if (lAxisValueX < MIN_AXIS_VALUE) { lAxisValueX = MIN_AXIS_VALUE; }
if (lAxisValueY > MAX_AXIS_VALUE) { lAxisValueY = MAX_AXIS_VALUE; }
if (lAxisValueY < MIN_AXIS_VALUE) { lAxisValueY = MIN_AXIS_VALUE; }
Keys->X_AXIS = lAxisValueX / N64DIVIDER;
Keys->Y_AXIS = lAxisValueY / N64DIVIDER;
}
void CDirectInput::UpdateDeviceData(void)
{
CGuard Guard(m_DeviceCS);
for (DEVICE_MAP::iterator itr = m_Devices.begin(); itr != m_Devices.end(); itr++)
{
DEVICE & device = itr->second;
LPDIRECTINPUTDEVICE8 & didHandle = device.didHandle;
if (didHandle == nullptr)
{
continue;
}
if (FAILED(didHandle->Poll()) && !AcquireDevice(didHandle))
{
continue;
}
switch (LOBYTE(device.dwDevType))
{
case DI8DEVTYPE_KEYBOARD:
didHandle->GetDeviceState(sizeof(device.State.Keyboard), &device.State.Keyboard);
break;
case DI8DEVTYPE_MOUSE:
didHandle->GetDeviceState(sizeof(device.State.Mouse), &device.State.Mouse);
break;
default:
didHandle->GetDeviceState(sizeof(device.State.Joy), &device.State.Joy);
}
}
}
void CDirectInput::DevicesChanged(void)
{
RefreshDeviceList();
}
void CDirectInput::RefreshDeviceList(void)
{
if (m_pDIHandle != nullptr)
{
m_pDIHandle->EnumDevices(DI8DEVCLASS_ALL, stEnumMakeDeviceList, this, DIEDFL_ATTACHEDONLY);
}
}
CDirectInput::ScanResult CDirectInput::ScanKeyboard(const GUID & DeviceGuid, LPDIRECTINPUTDEVICE8 didHandle, uint8_t * KeyboardState, BUTTON & pButton)
{
if (didHandle == nullptr)
{
return SCAN_FAILED;
}
uint8_t cKeys[256];
HRESULT hr = didHandle->GetDeviceState(sizeof(cKeys), cKeys);
if (FAILED(hr))
{
didHandle->Acquire();
return SCAN_FAILED;
}
for (size_t i = 0, n = sizeof(cKeys) / sizeof(cKeys[0]); i < n; i++)
{
if (KeyboardState[i] == cKeys[i])
{
continue;
}
KeyboardState[i] = cKeys[i];
if ((cKeys[i] & 0x80) == 0)
{
continue;
}
if (i == DIK_ESCAPE)
{
return SCAN_ESCAPE;
}
pButton.Offset = (uint8_t)i;
pButton.AxisID = 0;
pButton.BtnType = BTNTYPE_KEYBUTTON;
pButton.DeviceGuid = DeviceGuid;
pButton.Device = nullptr;
return SCAN_SUCCEED;
}
return SCAN_FAILED;
}
CDirectInput::ScanResult CDirectInput::ScanGamePad(const GUID & DeviceGuid, LPDIRECTINPUTDEVICE8 didHandle, DIJOYSTATE & BaseState, BUTTON & pButton)
{
DIJOYSTATE JoyState = { 0 };
HRESULT hr = didHandle->GetDeviceState(sizeof(DIJOYSTATE), &JoyState);
if (FAILED(hr))
{
didHandle->Acquire();
return SCAN_FAILED;
}
uint32_t JoyPad[][2] =
{
{ FIELD_OFFSET(DIJOYSTATE, lX) / sizeof(uint32_t), BTNTYPE_JOYAXE },
{ FIELD_OFFSET(DIJOYSTATE, lY) / sizeof(uint32_t), BTNTYPE_JOYAXE },
{ FIELD_OFFSET(DIJOYSTATE, lZ) / sizeof(uint32_t), BTNTYPE_JOYAXE },
{ FIELD_OFFSET(DIJOYSTATE, lRx) / sizeof(uint32_t), BTNTYPE_JOYAXE },
{ FIELD_OFFSET(DIJOYSTATE, lRy) / sizeof(uint32_t), BTNTYPE_JOYAXE },
{ FIELD_OFFSET(DIJOYSTATE, lRz) / sizeof(uint32_t), BTNTYPE_JOYAXE },
{ FIELD_OFFSET(DIJOYSTATE, rglSlider[0]) / sizeof(uint32_t), BTNTYPE_JOYSLIDER },
{ FIELD_OFFSET(DIJOYSTATE, rglSlider[1]) / sizeof(uint32_t), BTNTYPE_JOYSLIDER },
{ FIELD_OFFSET(DIJOYSTATE, rgdwPOV[0]) / sizeof(uint32_t), BTNTYPE_JOYPOV },
{ FIELD_OFFSET(DIJOYSTATE, rgdwPOV[1]) / sizeof(uint32_t), BTNTYPE_JOYPOV },
{ FIELD_OFFSET(DIJOYSTATE, rgdwPOV[2]) / sizeof(uint32_t), BTNTYPE_JOYPOV },
{ FIELD_OFFSET(DIJOYSTATE, rgdwPOV[3]) / sizeof(uint32_t), BTNTYPE_JOYPOV }
};
uint8_t bAxeDirection = 0;
int32_t foundJoyPad = -1;
for (int32_t i = 0, n = sizeof(JoyPad) / sizeof(JoyPad[0]); i < n; i++)
{
uint32_t lValue = ((int32_t*)&JoyState)[JoyPad[i][0]];
uint32_t BaseValue = ((int32_t*)&BaseState)[JoyPad[i][0]];
if ((JoyPad[i][1] == BTNTYPE_JOYAXE) || (JoyPad[i][1] == BTNTYPE_JOYSLIDER))
{
if ((lValue < AXIS_TOP_VALUE && BaseValue < AXIS_TOP_VALUE) || (lValue > AXIS_BOTTOM_VALUE && BaseValue > AXIS_BOTTOM_VALUE))
{
continue;
}
((int32_t*)&(BaseState))[JoyPad[i][0]] = lValue;
if (lValue < AXIS_TOP_VALUE)
{
bAxeDirection = AI_AXE_POSITIVE;
foundJoyPad = i;
break;
}
else if (lValue > AXIS_BOTTOM_VALUE)
{
bAxeDirection = AI_AXE_NEGATIVE;
foundJoyPad = i;
break;
}
}
else
{
if (lValue == BaseValue)
{
continue;
}
((int32_t*)&(BaseState))[JoyPad[i][0]] = lValue;
}
if (JoyPad[i][1] == BTNTYPE_JOYPOV)
{
AI_POV pov[] =
{
AI_POV_UP,
AI_POV_DOWN,
AI_POV_LEFT,
AI_POV_RIGHT,
};
for (size_t p = 0; p < (sizeof(pov) / sizeof(pov[0])); p++)
{
if (JoyPadPovPressed(pov[p], lValue) && !JoyPadPovPressed(pov[p], BaseValue))
{
bAxeDirection = (uint8_t)pov[p];
foundJoyPad = i;
break;
}
}
if (foundJoyPad >= 0)
{
break;
}
}
}
if (foundJoyPad >= 0)
{
pButton.Offset = (uint8_t)JoyPad[foundJoyPad][0];
pButton.AxisID = (uint8_t)bAxeDirection;
pButton.BtnType = (BtnType)JoyPad[foundJoyPad][1];
pButton.DeviceGuid = DeviceGuid;
pButton.Device = nullptr;
return SCAN_SUCCEED;
}
for (uint8_t i = 0, n = sizeof(JoyState.rgbButtons) / sizeof(JoyState.rgbButtons[0]); i < n; i++)
{
if (BaseState.rgbButtons[i] == JoyState.rgbButtons[i])
{
continue;
}
BaseState.rgbButtons[i] = JoyState.rgbButtons[i];
if ((JoyState.rgbButtons[i] & 0x80) == 0)
{
continue;
}
pButton.Offset = i;
pButton.AxisID = 0;
pButton.BtnType = BTNTYPE_JOYBUTTON;
pButton.DeviceGuid = DeviceGuid;
pButton.Device = nullptr;
return SCAN_SUCCEED;
}
return SCAN_FAILED;
}
CDirectInput::ScanResult CDirectInput::ScanMouse(const GUID& DeviceGuid, LPDIRECTINPUTDEVICE8 didHandle, DIMOUSESTATE2& BaseState, BUTTON& pButton)
{
DIJOYSTATE MouseState = { 0 };
HRESULT hr = didHandle->GetDeviceState(sizeof(DIMOUSESTATE2), &MouseState);
if (FAILED(hr))
{
didHandle->Acquire();
return SCAN_FAILED;
}
uint32_t Mouse[][2] =
{
{ DIMOFS_X / sizeof(uint32_t), BTNTYPE_MOUSEAXE },
{ DIMOFS_Y / sizeof(uint32_t), BTNTYPE_MOUSEAXE },
{ DIMOFS_Z / sizeof(uint32_t), BTNTYPE_MOUSEAXE }
};
uint8_t bAxeDirection = 0;
int32_t foundJoyPad = -1;
for (int32_t i = 0, n = sizeof(Mouse) / sizeof(Mouse[0]); i < n; i++)
{
uint32_t lValue = ((int32_t*)&MouseState)[Mouse[i][0]];
uint32_t BaseValue = ((int32_t*)&BaseState)[Mouse[i][0]];
if (Mouse[i][1] == BTNTYPE_MOUSEAXE)
{
if ((lValue < AXIS_TOP_VALUE && BaseValue < AXIS_TOP_VALUE) || (lValue > AXIS_BOTTOM_VALUE && BaseValue > AXIS_BOTTOM_VALUE))
{
continue;
}
((int32_t*)&(BaseState))[Mouse[i][0]] = lValue;
if (lValue < AXIS_TOP_VALUE)
{
bAxeDirection = AI_AXE_POSITIVE;
foundJoyPad = i;
break;
}
else if (lValue > AXIS_BOTTOM_VALUE)
{
bAxeDirection = AI_AXE_NEGATIVE;
foundJoyPad = i;
break;
}
}
else
{
if (lValue == BaseValue)
{
continue;
}
((int32_t*)&(BaseState))[Mouse[i][0]] = lValue;
}
}
if (foundJoyPad >= 0)
{
pButton.Offset = (uint8_t)Mouse[foundJoyPad][0];
pButton.AxisID = (uint8_t)bAxeDirection;
pButton.BtnType = (BtnType)Mouse[foundJoyPad][1];
pButton.DeviceGuid = DeviceGuid;
pButton.Device = nullptr;
return SCAN_SUCCEED;
}
for (uint8_t i = 0, n = sizeof(MouseState.rgbButtons) / sizeof(MouseState.rgbButtons[0]); i < n; i++)
{
if (BaseState.rgbButtons[i] == MouseState.rgbButtons[i])
{
continue;
}
BaseState.rgbButtons[i] = MouseState.rgbButtons[i];
if ((MouseState.rgbButtons[i] & 0x80) == 0)
{
continue;
}
pButton.Offset = i;
pButton.AxisID = 0;
pButton.BtnType = BTNTYPE_MOUSEBUTTON;
pButton.DeviceGuid = DeviceGuid;
pButton.Device = nullptr;
return SCAN_SUCCEED;
}
return SCAN_FAILED;
}
bool CDirectInput::AcquireDevice(LPDIRECTINPUTDEVICE8 lpDirectInputDevice)
{
HRESULT hResult = lpDirectInputDevice->Acquire();
if (hResult == DIERR_INPUTLOST)
{
for (uint32_t i = 0; i < 10; i++)
{
hResult = lpDirectInputDevice->Acquire();
if (hResult != DIERR_INPUTLOST)
{
break;
}
}
}
if (SUCCEEDED(hResult))
{
lpDirectInputDevice->Poll();
return true;
}
return false;
}
bool CDirectInput::JoyPadPovPressed(AI_POV Pov, int32_t Angle)
{
enum
{
POV_ANGLE_THRESH = 5675
};
if (LOWORD(Angle) == 0xFFFF)
{
return false;
}
switch (Pov)
{
case AI_POV_UP:
return ((Angle >= 36000 - POV_ANGLE_THRESH) || (Angle <= 0 + POV_ANGLE_THRESH));
case AI_POV_RIGHT:
return ((Angle >= 9000 - POV_ANGLE_THRESH) && (Angle <= 9000 + POV_ANGLE_THRESH));
case AI_POV_DOWN:
return ((Angle >= 18000 - POV_ANGLE_THRESH) && (Angle <= 18000 + POV_ANGLE_THRESH));
case AI_POV_LEFT:
return ((Angle >= 27000 - POV_ANGLE_THRESH) && (Angle <= 27000 + POV_ANGLE_THRESH));
}
return false;
}