400 lines
12 KiB
C++
400 lines
12 KiB
C++
// Project64 - A Nintendo 64 emulator
|
|
// https://www.pj64-emu.com/
|
|
// Copyright(C) 2001-2021 Project64
|
|
// Copyright(C) 2007 Hiroshi Morii
|
|
// Copyright(C) 2003 Rice1964
|
|
// GNU/GPLv2 licensed: https://gnu.org/licenses/gpl-2.0.html
|
|
|
|
#include "TxReSample.h"
|
|
#include "TxDbg.h"
|
|
#include <stdlib.h>
|
|
#include <memory.h>
|
|
|
|
#define _USE_MATH_DEFINES
|
|
#include <math.h>
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
int
|
|
TxReSample::nextPow2(int num)
|
|
{
|
|
num = num - 1;
|
|
num = num | (num >> 1);
|
|
num = num | (num >> 2);
|
|
num = num | (num >> 4);
|
|
num = num | (num >> 8);
|
|
num = num | (num >> 16);
|
|
//num = num | (num >> 32); // For 64-bit architecture
|
|
num = num + 1;
|
|
|
|
return num;
|
|
}
|
|
|
|
bool
|
|
TxReSample::nextPow2(uint8** image, int* width, int* height, int bpp, bool use_3dfx = 0)
|
|
{
|
|
// NOTE: bpp must be one of the following: 8, 16, 24, 32 bits per pixel
|
|
|
|
if (!*image || !*width || !*height || !bpp)
|
|
return 0;
|
|
|
|
int row_bytes = ((*width * bpp) >> 3);
|
|
int o_row_bytes = row_bytes;
|
|
int o_width = *width;
|
|
int n_width = *width;
|
|
int o_height = *height;
|
|
int n_height = *height;
|
|
|
|
/* HACKALERT: I have explicitly subtracted (n) from width/height to
|
|
adjust textures that have (n) pixel larger width/height than
|
|
power of 2 size. This is a dirty hack for textures that have
|
|
munged aspect ratio by (n) pixel to the original.
|
|
*/
|
|
|
|
if (n_width > 64) n_width -= 4;
|
|
else if (n_width > 16) n_width -= 2;
|
|
else if (n_width > 4) n_width -= 1;
|
|
|
|
if (n_height > 64) n_height -= 4;
|
|
else if (n_height > 16) n_height -= 2;
|
|
else if (n_height > 4) n_height -= 1;
|
|
|
|
n_width = nextPow2(n_width);
|
|
n_height = nextPow2(n_height);
|
|
row_bytes = (n_width * bpp) >> 3;
|
|
|
|
// 3DFX Glide3 format, W:H aspect ratio range (8:1 - 1:8)
|
|
if (use_3dfx) {
|
|
if (n_width > n_height) {
|
|
if (n_width > (n_height << 3))
|
|
n_height = n_width >> 3;
|
|
}
|
|
else {
|
|
if (n_height > (n_width << 3)) {
|
|
n_width = n_height >> 3;
|
|
row_bytes = (n_width * bpp) >> 3;
|
|
}
|
|
}
|
|
DBG_INFO(80, "Using 3DFX W:H aspect ratio range (8:1 - 1:8).\n");
|
|
}
|
|
|
|
// Do we really need to do this?
|
|
if (o_width == n_width && o_height == n_height)
|
|
return 1; // Nope
|
|
|
|
DBG_INFO(80, "Expand image to next power of 2 dimensions. %d x %d -> %d x %d\n", o_width, o_height, n_width, n_height);
|
|
|
|
if (o_width > n_width)
|
|
o_width = n_width;
|
|
|
|
if (o_height > n_height)
|
|
o_height = n_height;
|
|
|
|
// Allocate memory to read in image
|
|
uint8 *pow2image = (uint8*)malloc(row_bytes * n_height);
|
|
|
|
// Read in image
|
|
if (pow2image) {
|
|
int i, j;
|
|
uint8 *tmpimage = *image, *tmppow2image = pow2image;
|
|
|
|
for (i = 0; i < o_height; i++) {
|
|
// Copy row
|
|
memcpy(tmppow2image, tmpimage, ((o_width * bpp) >> 3));
|
|
|
|
// Expand to pow2 size by replication
|
|
for (j = ((o_width * bpp) >> 3); j < row_bytes; j++)
|
|
tmppow2image[j] = tmppow2image[j - (bpp >> 3)];
|
|
|
|
tmppow2image += row_bytes;
|
|
tmpimage += o_row_bytes;
|
|
}
|
|
// Expand to pow2 size by replication
|
|
for (i = o_height; i < n_height; i++)
|
|
memcpy(&pow2image[row_bytes * i], &pow2image[row_bytes * (i - 1)], row_bytes);
|
|
|
|
free(*image);
|
|
|
|
*image = pow2image;
|
|
*height = n_height;
|
|
*width = n_width;
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Ken Turkowski
|
|
// Filters for Common Resampling Tasks
|
|
// Apple Computer 1990
|
|
|
|
double
|
|
TxReSample::tent(double x)
|
|
{
|
|
if (x < 0.0) x = -x;
|
|
if (x < 1.0) return (1.0 - x);
|
|
return 0.0;
|
|
}
|
|
|
|
double
|
|
TxReSample::gaussian(double x)
|
|
{
|
|
if (x < 0) x = -x;
|
|
if (x < 2.0) return pow(2.0, -2.0 * x * x);
|
|
return 0.0;
|
|
}
|
|
|
|
double
|
|
TxReSample::sinc(double x)
|
|
{
|
|
if (x == 0) return 1.0;
|
|
x *= M_PI;
|
|
return (sin(x) / x);
|
|
}
|
|
|
|
double
|
|
TxReSample::lanczos3(double x)
|
|
{
|
|
if (x < 0) x = -x;
|
|
if (x < 3.0) return (sinc(x) * sinc(x / 3.0));
|
|
return 0.0;
|
|
}
|
|
|
|
// Don P. Mitchell and Arun N. Netravali
|
|
// Reconstruction Filters in Computer Graphics
|
|
// SIGGRAPH '88
|
|
// Proceedings of the 15th annual conference on Computer
|
|
// graphics and interactive techniques, pp221-228, 1988
|
|
|
|
double
|
|
TxReSample::mitchell(double x)
|
|
{
|
|
if (x < 0) x = -x;
|
|
if (x < 2.0) {
|
|
const double B = 1.0 / 3.0;
|
|
const double C = 1.0 / 3.0;
|
|
if (x < 1.0) {
|
|
x = (((12.0 - 9.0 * B - 6.0 * C) * (x * x * x))
|
|
+ ((-18.0 + 12.0 * B + 6.0 * C) * (x * x))
|
|
+ (6.0 - 2.0 * B));
|
|
}
|
|
else {
|
|
x = (((-1.0 * B - 6.0 * C) * (x * x * x))
|
|
+ ((6.0 * B + 30.0 * C) * (x * x))
|
|
+ ((-12.0 * B - 48.0 * C) * x)
|
|
+ (8.0 * B + 24.0 * C));
|
|
}
|
|
return (x / 6.0);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
// J. F. Kaiser and W. A. Reed
|
|
// Data smoothing using low-pass digital filters
|
|
// Rev. Sci. instrum. 48 (11), pp1447-1457, 1977
|
|
|
|
double
|
|
TxReSample::besselI0(double x)
|
|
{
|
|
// Zero-order modified Bessel function of the first kind
|
|
const double eps_coeff = 1E-16; // Small enough
|
|
double xh, sum, pow, ds;
|
|
xh = 0.5 * x;
|
|
sum = 1.0;
|
|
pow = 1.0;
|
|
ds = 1.0;
|
|
int k = 0;
|
|
while (ds > sum * eps_coeff) {
|
|
k++;
|
|
pow *= (xh / k);
|
|
ds = pow * pow;
|
|
sum = sum + ds;
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
double
|
|
TxReSample::kaiser(double x)
|
|
{
|
|
const double alpha = 4.0;
|
|
const double half_window = 5.0;
|
|
const double ratio = x / half_window;
|
|
return sinc(x) * besselI0(alpha * sqrt(1 - ratio * ratio)) / besselI0(alpha);
|
|
}
|
|
|
|
bool
|
|
TxReSample::minify(uint8 **src, int *width, int *height, int ratio)
|
|
{
|
|
// NOTE: Source must be ARGB8888, ratio is the inverse representation
|
|
|
|
#if 0
|
|
if (!*src || ratio < 2) return 0;
|
|
|
|
// Box filtering
|
|
// It would be nice to do Kaiser filtering.
|
|
// N64 uses narrow strip textures which makes it hard to filter effectively.
|
|
|
|
int x, y, x2, y2, offset, numtexel;
|
|
uint32 A, R, G, B, texel;
|
|
|
|
int tmpwidth = *width / ratio;
|
|
int tmpheight = *height / ratio;
|
|
|
|
uint8 *tmptex = (uint8*)malloc((tmpwidth * tmpheight) << 2);
|
|
|
|
if (tmptex) {
|
|
numtexel = ratio * ratio;
|
|
for (y = 0; y < tmpheight; y++) {
|
|
offset = ratio * y * *width;
|
|
for (x = 0; x < tmpwidth; x++) {
|
|
A = R = G = B = 0;
|
|
for (y2 = 0; y2 < ratio; y2++) {
|
|
for (x2 = 0; x2 < ratio; x2++) {
|
|
texel = ((uint32*)*src)[offset + *width * y2 + x2];
|
|
A += (texel >> 24);
|
|
R += ((texel >> 16) & 0x000000ff);
|
|
G += ((texel >> 8) & 0x000000ff);
|
|
B += (texel & 0x000000ff);
|
|
}
|
|
}
|
|
A = (A + ratio) / numtexel;
|
|
R = (R + ratio) / numtexel;
|
|
G = (G + ratio) / numtexel;
|
|
B = (B + ratio) / numtexel;
|
|
((uint32*)tmptex)[y * tmpwidth + x] = ((A << 24) | (R << 16) | (G << 8) | B);
|
|
offset += ratio;
|
|
}
|
|
}
|
|
free(*src);
|
|
*src = tmptex;
|
|
*width = tmpwidth;
|
|
*height = tmpheight;
|
|
|
|
DBG_INFO(80, L"minification ratio:%d -> %d x %d\n", ratio, *width, *height);
|
|
|
|
return 1;
|
|
}
|
|
|
|
DBG_INFO(80, L"Error: failed minification!\n");
|
|
|
|
return 0;
|
|
|
|
#else
|
|
|
|
if (!*src || ratio < 2) return 0;
|
|
|
|
// Image resampling
|
|
// Half width of filter window.
|
|
// NOTE: Must be 1.0 or larger.
|
|
// Kaiser-Bessel 5, lanczos3 3, Mitchell 2, gaussian 1.5, tent 1
|
|
|
|
double half_window = 5.0;
|
|
|
|
int x, y, x2, y2, z;
|
|
double A, R, G, B;
|
|
uint32 texel;
|
|
|
|
int tmpwidth = *width / ratio;
|
|
int tmpheight = *height / ratio;
|
|
|
|
// Resampled destination
|
|
uint8 *tmptex = (uint8*)malloc((tmpwidth * tmpheight) << 2);
|
|
if (!tmptex) return 0;
|
|
|
|
// Work buffer, single row
|
|
uint8 *workbuf = (uint8*)malloc(*width << 2);
|
|
if (!workbuf) {
|
|
free(tmptex);
|
|
return 0;
|
|
}
|
|
|
|
// Prepare filter lookup table, only half width required for symmetric filters
|
|
double *weight = (double*)malloc((int)((half_window * ratio) * sizeof(double)));
|
|
if (!weight) {
|
|
free(tmptex);
|
|
free(workbuf);
|
|
return 0;
|
|
}
|
|
for (x = 0; x < half_window * ratio; x++) {
|
|
//weight[x] = tent((double)x / ratio) / ratio;
|
|
//weight[x] = gaussian((double)x / ratio) / ratio;
|
|
//weight[x] = lanczos3((double)x / ratio) / ratio;
|
|
//weight[x] = mitchell((double)x / ratio) / ratio;
|
|
weight[x] = kaiser((double)x / ratio) / ratio;
|
|
}
|
|
|
|
// Linear convolution
|
|
for (y = 0; y < tmpheight; y++) {
|
|
for (x = 0; x < *width; x++) {
|
|
texel = ((uint32*)*src)[y * ratio * *width + x];
|
|
A = (double)(texel >> 24) * weight[0];
|
|
R = (double)((texel >> 16) & 0xff) * weight[0];
|
|
G = (double)((texel >> 8) & 0xff) * weight[0];
|
|
B = (double)((texel) & 0xff) * weight[0];
|
|
for (y2 = 1; y2 < half_window * ratio; y2++) {
|
|
z = y * ratio + y2;
|
|
if (z >= *height) z = *height - 1;
|
|
texel = ((uint32*)*src)[z * *width + x];
|
|
A += (double)(texel >> 24) * weight[y2];
|
|
R += (double)((texel >> 16) & 0xff) * weight[y2];
|
|
G += (double)((texel >> 8) & 0xff) * weight[y2];
|
|
B += (double)((texel) & 0xff) * weight[y2];
|
|
z = y * ratio - y2;
|
|
if (z < 0) z = 0;
|
|
texel = ((uint32*)*src)[z * *width + x];
|
|
A += (double)(texel >> 24) * weight[y2];
|
|
R += (double)((texel >> 16) & 0xff) * weight[y2];
|
|
G += (double)((texel >> 8) & 0xff) * weight[y2];
|
|
B += (double)((texel) & 0xff) * weight[y2];
|
|
}
|
|
if (A < 0) A = 0; else if (A > 255) A = 255;
|
|
if (R < 0) R = 0; else if (R > 255) R = 255;
|
|
if (G < 0) G = 0; else if (G > 255) G = 255;
|
|
if (B < 0) B = 0; else if (B > 255) B = 255;
|
|
((uint32*)workbuf)[x] = (((uint32)A << 24) | ((uint32)R << 16) | ((uint32)G << 8) | (uint32)B);
|
|
}
|
|
for (x = 0; x < tmpwidth; x++) {
|
|
texel = ((uint32*)workbuf)[x * ratio];
|
|
A = (double)(texel >> 24) * weight[0];
|
|
R = (double)((texel >> 16) & 0xff) * weight[0];
|
|
G = (double)((texel >> 8) & 0xff) * weight[0];
|
|
B = (double)((texel) & 0xff) * weight[0];
|
|
for (x2 = 1; x2 < half_window * ratio; x2++) {
|
|
z = x * ratio + x2;
|
|
if (z >= *width) z = *width - 1;
|
|
texel = ((uint32*)workbuf)[z];
|
|
A += (double)(texel >> 24) * weight[x2];
|
|
R += (double)((texel >> 16) & 0xff) * weight[x2];
|
|
G += (double)((texel >> 8) & 0xff) * weight[x2];
|
|
B += (double)((texel) & 0xff) * weight[x2];
|
|
z = x * ratio - x2;
|
|
if (z < 0) z = 0;
|
|
texel = ((uint32*)workbuf)[z];
|
|
A += (double)(texel >> 24) * weight[x2];
|
|
R += (double)((texel >> 16) & 0xff) * weight[x2];
|
|
G += (double)((texel >> 8) & 0xff) * weight[x2];
|
|
B += (double)((texel) & 0xff) * weight[x2];
|
|
}
|
|
if (A < 0) A = 0; else if (A > 255) A = 255;
|
|
if (R < 0) R = 0; else if (R > 255) R = 255;
|
|
if (G < 0) G = 0; else if (G > 255) G = 255;
|
|
if (B < 0) B = 0; else if (B > 255) B = 255;
|
|
((uint32*)tmptex)[y * tmpwidth + x] = (((uint32)A << 24) | ((uint32)R << 16) | ((uint32)G << 8) | (uint32)B);
|
|
}
|
|
}
|
|
|
|
free(*src);
|
|
*src = tmptex;
|
|
free(weight);
|
|
free(workbuf);
|
|
*width = tmpwidth;
|
|
*height = tmpheight;
|
|
|
|
DBG_INFO(80, "Minification ratio:%d -> %d x %d\n", ratio, *width, *height);
|
|
|
|
return 1;
|
|
#endif
|
|
} |