project64/Source/Project64-video/Util.cpp

2030 lines
77 KiB
C++

/*
* Glide64 - Glide video plugin for Nintendo 64 emulators.
* Copyright (c) 2002 Dave2001
* Copyright (c) 2003-2009 Sergey 'Gonetz' Lipski
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
//****************************************************************
//
// Glide64 - Glide Plugin for Nintendo 64 emulators
// Project started on December 29th, 2001
//
// Authors:
// Dave2001, original author, founded the project in 2001, left it in 2002
// Gugaman, joined the project in 2002, left it in 2002
// Sergey 'Gonetz' Lipski, joined the project in 2002, main author since fall of 2002
// Hiroshi 'KoolSmoky' Morii, joined the project in 2007
//
//****************************************************************
//
// To modify Glide64:
// * Write your name and (optional)email, commented by your work, so I know who did it, and so that you can find which parts you modified when it comes time to send it to me.
// * Do NOT send me the whole project or file that you modified. Take out your modified code sections, and tell me where to put them. If people sent the whole thing, I would have many different versions, but no idea how to combine them all.
//
//****************************************************************
#include <math.h>
#include <string.h>
#include "Gfx_1.3.h"
#include "Util.h"
#include "Combine.h"
#include "3dmath.h"
#include "Debugger.h"
#include "TexCache.h"
#include "DepthBufferRender.h"
#include <Project64-video/trace.h>
#define Vj rdp.vtxbuf2[j]
#define Vi rdp.vtxbuf2[i]
VERTEX *vtx_list1[32]; // vertex indexing
VERTEX *vtx_list2[32];
//
// util_init - initialize data for the functions in this file
//
void util_init()
{
for (int i = 0; i < 32; i++)
{
vtx_list1[i] = &rdp.vtx1[i];
vtx_list2[i] = &rdp.vtx2[i];
}
}
static uint32_t u_cull_mode = 0;
//software backface culling. Gonetz
// mega modifications by Dave2001
int cull_tri(VERTEX **v) // type changed to VERTEX** [Dave2001]
{
int i;
if (v[0]->scr_off & v[1]->scr_off & v[2]->scr_off)
{
WriteTrace(TraceRDP, TraceDebug, " clipped");
return TRUE;
}
// Triangle can't be culled, if it need clipping
int draw = FALSE;
for (i = 0; i < 3; i++)
{
if (!v[i]->screen_translated)
{
v[i]->sx = rdp.view_trans[0] + v[i]->x_w * rdp.view_scale[0] + rdp.offset_x;
v[i]->sy = rdp.view_trans[1] + v[i]->y_w * rdp.view_scale[1] + rdp.offset_y;
v[i]->sz = rdp.view_trans[2] + v[i]->z_w * rdp.view_scale[2];
v[i]->screen_translated = 1;
}
if (v[i]->w < 0.01f) //need clip_z. can't be culled now
draw = 1;
}
u_cull_mode = (rdp.flags & CULLMASK);
if (draw || u_cull_mode == 0 || u_cull_mode == CULLMASK) //no culling set
{
u_cull_mode >>= CULLSHIFT;
return FALSE;
}
#define SW_CULLING
#ifdef SW_CULLING
#if 1 // H.Morii - faster float comparisons with zero area check added
const float x1 = v[0]->sx - v[1]->sx;
const float y1 = v[0]->sy - v[1]->sy;
const float x2 = v[2]->sx - v[1]->sx;
const float y2 = v[2]->sy - v[1]->sy;
const float area = y1*x2 - x1*y2;
const int iarea = *(int*)&area;
const unsigned int mode = (u_cull_mode << 19UL);
u_cull_mode >>= CULLSHIFT;
if ((iarea & 0x7FFFFFFF) == 0)
{
WriteTrace(TraceRDP, TraceDebug, " zero area triangles");
return TRUE;
}
if ((rdp.flags & CULLMASK) && ((int)(iarea ^ mode)) >= 0)
{
WriteTrace(TraceRDP, TraceDebug, " culled");
return TRUE;
}
#else
float x1 = v[0]->sx - v[1]->sx;
float y1 = v[0]->sy - v[1]->sy;
float x2 = v[2]->sx - v[1]->sx;
float y2 = v[2]->sy - v[1]->sy;
u_cull_mode >>= CULLSHIFT;
switch (u_cull_mode)
{
case 1: // cull front
// if ((x1*y2 - y1*x2) < 0.0f) //counter-clockwise, positive
if ((y1*x2-x1*y2) < 0.0f) //counter-clockwise, positive
{
WriteTrace(TraceRDP, TraceDebug, " culled!");
return TRUE;
}
return FALSE;
case 2: // cull back
// if ((x1*y2 - y1*x2) >= 0.0f) //clockwise, negative
if ((y1*x2-x1*y2) >= 0.0f) //clockwise, negative
{
WriteTrace(TraceRDP, TraceDebug, " culled!");
return TRUE;
}
return FALSE;
}
#endif
#endif
return FALSE;
}
void apply_shade_mods(VERTEX *v)
{
float col[4];
uint32_t mod;
memcpy(col, rdp.col, 16);
if (rdp.cmb_flags)
{
if (v->shade_mod == 0)
v->color_backup = *(uint32_t*)(&(v->b));
else
*(uint32_t*)(&(v->b)) = v->color_backup;
mod = rdp.cmb_flags;
if (mod & CMB_SET)
{
if (col[0] > 1.0f) col[0] = 1.0f;
if (col[1] > 1.0f) col[1] = 1.0f;
if (col[2] > 1.0f) col[2] = 1.0f;
if (col[0] < 0.0f) col[0] = 0.0f;
if (col[1] < 0.0f) col[1] = 0.0f;
if (col[2] < 0.0f) col[2] = 0.0f;
v->r = (uint8_t)(255.0f * col[0]);
v->g = (uint8_t)(255.0f * col[1]);
v->b = (uint8_t)(255.0f * col[2]);
}
if (mod & CMB_A_SET)
{
if (col[3] > 1.0f) col[3] = 1.0f;
if (col[3] < 0.0f) col[3] = 0.0f;
v->a = (uint8_t)(255.0f * col[3]);
}
if (mod & CMB_SETSHADE_SHADEALPHA)
{
v->r = v->g = v->b = v->a;
}
if (mod & CMB_MULT_OWN_ALPHA)
{
float percent = v->a / 255.0f;
v->r = (uint8_t)(v->r * percent);
v->g = (uint8_t)(v->g * percent);
v->b = (uint8_t)(v->b * percent);
}
if (mod & CMB_MULT)
{
if (col[0] > 1.0f) col[0] = 1.0f;
if (col[1] > 1.0f) col[1] = 1.0f;
if (col[2] > 1.0f) col[2] = 1.0f;
if (col[0] < 0.0f) col[0] = 0.0f;
if (col[1] < 0.0f) col[1] = 0.0f;
if (col[2] < 0.0f) col[2] = 0.0f;
v->r = (uint8_t)(v->r * col[0]);
v->g = (uint8_t)(v->g * col[1]);
v->b = (uint8_t)(v->b * col[2]);
}
if (mod & CMB_A_MULT)
{
if (col[3] > 1.0f) col[3] = 1.0f;
if (col[3] < 0.0f) col[3] = 0.0f;
v->a = (uint8_t)(v->a * col[3]);
}
if (mod & CMB_SUB)
{
int r = v->r - (int)(255.0f * rdp.coladd[0]);
int g = v->g - (int)(255.0f * rdp.coladd[1]);
int b = v->b - (int)(255.0f * rdp.coladd[2]);
if (r < 0) r = 0;
if (g < 0) g = 0;
if (b < 0) b = 0;
v->r = (uint8_t)r;
v->g = (uint8_t)g;
v->b = (uint8_t)b;
}
if (mod & CMB_A_SUB)
{
int a = v->a - (int)(255.0f * rdp.coladd[3]);
if (a < 0) a = 0;
v->a = (uint8_t)a;
}
if (mod & CMB_ADD)
{
int r = v->r + (int)(255.0f * rdp.coladd[0]);
int g = v->g + (int)(255.0f * rdp.coladd[1]);
int b = v->b + (int)(255.0f * rdp.coladd[2]);
if (r > 255) r = 255;
if (g > 255) g = 255;
if (b > 255) b = 255;
v->r = (uint8_t)r;
v->g = (uint8_t)g;
v->b = (uint8_t)b;
}
if (mod & CMB_A_ADD)
{
int a = v->a + (int)(255.0f * rdp.coladd[3]);
if (a > 255) a = 255;
v->a = (uint8_t)a;
}
if (mod & CMB_COL_SUB_OWN)
{
int r = (uint8_t)(255.0f * rdp.coladd[0]) - v->r;
int g = (uint8_t)(255.0f * rdp.coladd[1]) - v->g;
int b = (uint8_t)(255.0f * rdp.coladd[2]) - v->b;
if (r < 0) r = 0;
if (g < 0) g = 0;
if (b < 0) b = 0;
v->r = (uint8_t)r;
v->g = (uint8_t)g;
v->b = (uint8_t)b;
}
v->shade_mod = cmb.shade_mod_hash;
}
if (rdp.cmb_flags_2 & CMB_INTER)
{
v->r = (uint8_t)(rdp.col_2[0] * rdp.shade_factor * 255.0f + v->r * (1.0f - rdp.shade_factor));
v->g = (uint8_t)(rdp.col_2[1] * rdp.shade_factor * 255.0f + v->g * (1.0f - rdp.shade_factor));
v->b = (uint8_t)(rdp.col_2[2] * rdp.shade_factor * 255.0f + v->b * (1.0f - rdp.shade_factor));
v->shade_mod = cmb.shade_mod_hash;
}
}
static int dzdx = 0;
static int deltaZ = 0;
VERTEX **org_vtx;
void draw_tri(VERTEX **vtx, uint16_t linew)
{
deltaZ = dzdx = 0;
if (linew == 0 && (g_settings->fb_depth_render_enabled() || (rdp.rm & 0xC00) == 0xC00))
{
double X0 = vtx[0]->sx / rdp.scale_x;
double Y0 = vtx[0]->sy / rdp.scale_y;
double X1 = vtx[1]->sx / rdp.scale_x;
double Y1 = vtx[1]->sy / rdp.scale_y;
double X2 = vtx[2]->sx / rdp.scale_x;
double Y2 = vtx[2]->sy / rdp.scale_y;
double diffy_02 = Y0 - Y2;
double diffy_12 = Y1 - Y2;
double diffx_02 = X0 - X2;
double diffx_12 = X1 - X2;
double denom = (diffx_02 * diffy_12 - diffx_12 * diffy_02);
if (denom*denom > 0.0)
{
double diffz_02 = vtx[0]->sz - vtx[2]->sz;
double diffz_12 = vtx[1]->sz - vtx[2]->sz;
double fdzdx = (diffz_02 * diffy_12 - diffz_12 * diffy_02) / denom;
if ((rdp.rm & 0xC00) == 0xC00)
{
// Calculate deltaZ per polygon for Decal z-mode
double fdzdy = (diffz_02 * diffx_12 - diffz_12 * diffx_02) / denom;
double fdz = fabs(fdzdx) + fabs(fdzdy);
if (g_settings->hacks(CSettings::hack_Zelda) && (rdp.rm & 0x800))
{
fdz *= 4.0; // Decal mode in Zelda sometimes needs mutiplied deltaZ to work correct, e.g. roads
}
deltaZ = maxval(8, (int)fdz);
}
dzdx = (int)(fdzdx * 65536.0);
}
}
org_vtx = vtx;
for (int i = 0; i < 3; i++)
{
VERTEX *v = vtx[i];
if (v->uv_calculated != rdp.tex_ctr)
{
WriteTrace(TraceRDP, TraceVerbose, " * CALCULATING VERTEX U/V: %d", v->number);
v->uv_calculated = rdp.tex_ctr;
if (!(rdp.geom_mode & 0x00020000))
{
if (!(rdp.geom_mode & 0x00000200))
{
if (rdp.geom_mode & 0x00000004) // flat shading
{
int flag = minval(2, (rdp.cmd1 >> 24) & 3);
v->a = vtx[flag]->a;
v->b = vtx[flag]->b;
v->g = vtx[flag]->g;
v->r = vtx[flag]->r;
WriteTrace(TraceRDP, TraceVerbose, " * Flat shaded, flag%d - r: %d, g: %d, b: %d, a: %d", flag, v->r, v->g, v->b, v->a);
}
else // prim color
{
WriteTrace(TraceRDP, TraceVerbose, " * Prim shaded %08lx", rdp.prim_color);
v->a = (uint8_t)(rdp.prim_color & 0xFF);
v->b = (uint8_t)((rdp.prim_color >> 8) & 0xFF);
v->g = (uint8_t)((rdp.prim_color >> 16) & 0xFF);
v->r = (uint8_t)((rdp.prim_color >> 24) & 0xFF);
}
}
}
// Fix texture coordinates
if (!v->uv_scaled)
{
v->ou *= rdp.tiles[rdp.cur_tile].s_scale;
v->ov *= rdp.tiles[rdp.cur_tile].t_scale;
v->uv_scaled = 1;
if (!rdp.Persp_en)
{
// v->oow = v->w = 1.0f;
v->ou *= 0.5f;
v->ov *= 0.5f;
}
}
v->u1 = v->u0 = v->ou;
v->v1 = v->v0 = v->ov;
if (rdp.tex >= 1 && rdp.cur_cache[0])
{
if (rdp.aTBuffTex[0])
{
v->u0 += rdp.aTBuffTex[0]->u_shift + rdp.aTBuffTex[0]->tile_uls;
v->v0 += rdp.aTBuffTex[0]->v_shift + rdp.aTBuffTex[0]->tile_ult;
}
if (rdp.tiles[rdp.cur_tile].shift_s)
{
if (rdp.tiles[rdp.cur_tile].shift_s > 10)
v->u0 *= (float)(1 << (16 - rdp.tiles[rdp.cur_tile].shift_s));
else
v->u0 /= (float)(1 << rdp.tiles[rdp.cur_tile].shift_s);
}
if (rdp.tiles[rdp.cur_tile].shift_t)
{
if (rdp.tiles[rdp.cur_tile].shift_t > 10)
v->v0 *= (float)(1 << (16 - rdp.tiles[rdp.cur_tile].shift_t));
else
v->v0 /= (float)(1 << rdp.tiles[rdp.cur_tile].shift_t);
}
if (rdp.aTBuffTex[0])
{
if (rdp.aTBuffTex[0]->tile_uls != (int)rdp.tiles[rdp.cur_tile].f_ul_s)
v->u0 -= rdp.tiles[rdp.cur_tile].f_ul_s;
if (rdp.aTBuffTex[0]->tile_ult != (int)rdp.tiles[rdp.cur_tile].f_ul_t || g_settings->hacks(CSettings::hack_Megaman))
v->v0 -= rdp.tiles[rdp.cur_tile].f_ul_t; //required for megaman (boss special attack)
v->u0 *= rdp.aTBuffTex[0]->u_scale;
v->v0 *= rdp.aTBuffTex[0]->v_scale;
WriteTrace(TraceRDP, TraceVerbose, "tbuff_tex t0: (%f, %f)->(%f, %f)", v->ou, v->ov, v->u0, v->v0);
}
else
{
v->u0 -= rdp.tiles[rdp.cur_tile].f_ul_s;
v->v0 -= rdp.tiles[rdp.cur_tile].f_ul_t;
v->u0 = rdp.cur_cache[0]->c_off + rdp.cur_cache[0]->c_scl_x * v->u0;
v->v0 = rdp.cur_cache[0]->c_off + rdp.cur_cache[0]->c_scl_y * v->v0;
}
v->u0_w = v->u0 / v->w;
v->v0_w = v->v0 / v->w;
}
if (rdp.tex >= 2 && rdp.cur_cache[1])
{
if (rdp.aTBuffTex[1])
{
v->u1 += rdp.aTBuffTex[1]->u_shift + rdp.aTBuffTex[1]->tile_uls;
v->v1 += rdp.aTBuffTex[1]->v_shift + rdp.aTBuffTex[1]->tile_ult;
}
if (rdp.tiles[rdp.cur_tile + 1].shift_s)
{
if (rdp.tiles[rdp.cur_tile + 1].shift_s > 10)
v->u1 *= (float)(1 << (16 - rdp.tiles[rdp.cur_tile + 1].shift_s));
else
v->u1 /= (float)(1 << rdp.tiles[rdp.cur_tile + 1].shift_s);
}
if (rdp.tiles[rdp.cur_tile + 1].shift_t)
{
if (rdp.tiles[rdp.cur_tile + 1].shift_t > 10)
v->v1 *= (float)(1 << (16 - rdp.tiles[rdp.cur_tile + 1].shift_t));
else
v->v1 /= (float)(1 << rdp.tiles[rdp.cur_tile + 1].shift_t);
}
if (rdp.aTBuffTex[1])
{
if (rdp.aTBuffTex[1]->tile_uls != (int)rdp.tiles[rdp.cur_tile].f_ul_s)
v->u1 -= rdp.tiles[rdp.cur_tile].f_ul_s;
v->u1 *= rdp.aTBuffTex[1]->u_scale;
v->v1 *= rdp.aTBuffTex[1]->v_scale;
WriteTrace(TraceRDP, TraceVerbose, "tbuff_tex t1: (%f, %f)->(%f, %f)", v->ou, v->ov, v->u1, v->v1);
}
else
{
v->u1 -= rdp.tiles[rdp.cur_tile + 1].f_ul_s;
v->v1 -= rdp.tiles[rdp.cur_tile + 1].f_ul_t;
v->u1 = rdp.cur_cache[1]->c_off + rdp.cur_cache[1]->c_scl_x * v->u1;
v->v1 = rdp.cur_cache[1]->c_off + rdp.cur_cache[1]->c_scl_y * v->v1;
}
v->u1_w = v->u1 / v->w;
v->v1_w = v->v1 / v->w;
}
// WriteTrace(TraceRDP, TraceDebug, " * CALCULATING VERTEX U/V: %d u0: %f, v0: %f, u1: %f, v1: %f", v->number, v->u0, v->v0, v->u1, v->v1);
}
WriteTrace(TraceRDP, TraceVerbose, "draw_tri. v[%d] ou=%f, ov = %f", i, v->ou, v->ov);
if (v->shade_mod != cmb.shade_mod_hash)
apply_shade_mods(v);
} //for
rdp.clip = 0;
if ((vtx[0]->scr_off & 16) ||
(vtx[1]->scr_off & 16) ||
(vtx[2]->scr_off & 16))
rdp.clip |= CLIP_WMIN;
vtx[0]->not_zclipped = vtx[1]->not_zclipped = vtx[2]->not_zclipped = 1;
if (rdp.cur_cache[0] && (rdp.tex & 1) && (rdp.cur_cache[0]->splits > 1) && !rdp.aTBuffTex[0] && !rdp.clip)
{
int index, i, j, min_256, max_256, cur_256, left_256, right_256;
float percent;
min_256 = minval((int)vtx[0]->u0, (int)vtx[1]->u0); // bah, don't put two mins on one line
min_256 = minval(min_256, (int)vtx[2]->u0) >> 8; // or it will be calculated twice
max_256 = maxval((int)vtx[0]->u0, (int)vtx[1]->u0); // not like it makes much difference
max_256 = maxval(max_256, (int)vtx[2]->u0) >> 8; // anyway :P
for (cur_256 = min_256; cur_256 <= max_256; cur_256++)
{
left_256 = cur_256 << 8;
right_256 = (cur_256 + 1) << 8;
// Set vertex buffers
rdp.vtxbuf = rdp.vtx1; // copy from v to rdp.vtx1
rdp.vtxbuf2 = rdp.vtx2;
rdp.vtx_buffer = 0;
rdp.n_global = 3;
index = 0;
// ** Left plane **
for (i = 0; i < 3; i++)
{
j = i + 1;
if (j == 3) j = 0;
VERTEX *v1 = vtx[i];
VERTEX *v2 = vtx[j];
if (v1->u0 >= left_256)
{
if (v2->u0 >= left_256) // Both are in, save the last one
{
rdp.vtxbuf[index] = *v2;
rdp.vtxbuf[index].u0 -= left_256;
rdp.vtxbuf[index++].v0 += cur_256 * rdp.cur_cache[0]->splitheight;
}
else // First is in, second is out, save intersection
{
percent = (left_256 - v1->u0) / (v2->u0 - v1->u0);
rdp.vtxbuf[index].x = v1->x + (v2->x - v1->x) * percent;
rdp.vtxbuf[index].y = v1->y + (v2->y - v1->y) * percent;
rdp.vtxbuf[index].z = v1->z + (v2->z - v1->z) * percent;
rdp.vtxbuf[index].w = v1->w + (v2->w - v1->w) * percent;
rdp.vtxbuf[index].f = v1->f + (v2->f - v1->f) * percent;
rdp.vtxbuf[index].u0 = 0.5f;
rdp.vtxbuf[index].v0 = v1->v0 + (v2->v0 - v1->v0) * percent +
cur_256 * rdp.cur_cache[0]->splitheight;
rdp.vtxbuf[index].u1 = v1->u1 + (v2->u1 - v1->u1) * percent;
rdp.vtxbuf[index].v1 = v1->v1 + (v2->v1 - v1->v1) * percent;
rdp.vtxbuf[index].b = (uint8_t)(v1->b + (v2->b - v1->b) * percent);
rdp.vtxbuf[index].g = (uint8_t)(v1->g + (v2->g - v1->g) * percent);
rdp.vtxbuf[index].r = (uint8_t)(v1->r + (v2->r - v1->r) * percent);
rdp.vtxbuf[index++].a = (uint8_t)(v1->a + (v2->a - v1->a) * percent);
}
}
else
{
//if (v2->u0 < left_256) // Both are out, save nothing
if (v2->u0 >= left_256) // First is out, second is in, save intersection & in point
{
percent = (left_256 - v2->u0) / (v1->u0 - v2->u0);
rdp.vtxbuf[index].x = v2->x + (v1->x - v2->x) * percent;
rdp.vtxbuf[index].y = v2->y + (v1->y - v2->y) * percent;
rdp.vtxbuf[index].z = v2->z + (v1->z - v2->z) * percent;
rdp.vtxbuf[index].w = v2->w + (v1->w - v2->w) * percent;
rdp.vtxbuf[index].f = v2->f + (v1->f - v2->f) * percent;
rdp.vtxbuf[index].u0 = 0.5f;
rdp.vtxbuf[index].v0 = v2->v0 + (v1->v0 - v2->v0) * percent +
cur_256 * rdp.cur_cache[0]->splitheight;
rdp.vtxbuf[index].u1 = v2->u1 + (v1->u1 - v2->u1) * percent;
rdp.vtxbuf[index].v1 = v2->v1 + (v1->v1 - v2->v1) * percent;
rdp.vtxbuf[index].b = (uint8_t)(v2->b + (v1->b - v2->b) * percent);
rdp.vtxbuf[index].g = (uint8_t)(v2->g + (v1->g - v2->g) * percent);
rdp.vtxbuf[index].r = (uint8_t)(v2->r + (v1->r - v2->r) * percent);
rdp.vtxbuf[index++].a = (uint8_t)(v2->a + (v1->a - v2->a) * percent);
// Save the in point
rdp.vtxbuf[index] = *v2;
rdp.vtxbuf[index].u0 -= left_256;
rdp.vtxbuf[index++].v0 += cur_256 * rdp.cur_cache[0]->splitheight;
}
}
}
rdp.n_global = index;
rdp.vtxbuf = rdp.vtx2; // now vtx1 holds the value, & vtx2 is the destination
rdp.vtxbuf2 = rdp.vtx1;
rdp.vtx_buffer ^= 1;
index = 0;
for (i = 0; i < rdp.n_global; i++)
{
j = i + 1;
if (j == rdp.n_global) j = 0;
VERTEX *v1 = &rdp.vtxbuf2[i];
VERTEX *v2 = &rdp.vtxbuf2[j];
// ** Right plane **
if (v1->u0 <= right_256)
{
if (v2->u0 <= right_256) // Both are in, save the last one
{
rdp.vtxbuf[index] = *v2;
rdp.vtxbuf[index++].not_zclipped = 0;
}
else // First is in, second is out, save intersection
{
percent = (right_256 - v1->u0) / (v2->u0 - v1->u0);
rdp.vtxbuf[index].x = v1->x + (v2->x - v1->x) * percent;
rdp.vtxbuf[index].y = v1->y + (v2->y - v1->y) * percent;
rdp.vtxbuf[index].z = v1->z + (v2->z - v1->z) * percent;
rdp.vtxbuf[index].w = v1->w + (v2->w - v1->w) * percent;
rdp.vtxbuf[index].f = v1->f + (v2->f - v1->f) * percent;
rdp.vtxbuf[index].u0 = 255.5f;
rdp.vtxbuf[index].v0 = v1->v0 + (v2->v0 - v1->v0) * percent;
rdp.vtxbuf[index].u1 = v1->u1 + (v2->u1 - v1->u1) * percent;
rdp.vtxbuf[index].v1 = v1->v1 + (v2->v1 - v1->v1) * percent;
rdp.vtxbuf[index].b = (uint8_t)(v1->b + (v2->b - v1->b) * percent);
rdp.vtxbuf[index].g = (uint8_t)(v1->g + (v2->g - v1->g) * percent);
rdp.vtxbuf[index].r = (uint8_t)(v1->r + (v2->r - v1->r) * percent);
rdp.vtxbuf[index].a = (uint8_t)(v1->a + (v2->a - v1->a) * percent);
rdp.vtxbuf[index++].not_zclipped = 0;
}
}
else
{
//if (v2->u0 > 256.0f) // Both are out, save nothing
if (v2->u0 <= right_256) // First is out, second is in, save intersection & in point
{
percent = (right_256 - v2->u0) / (v1->u0 - v2->u0);
rdp.vtxbuf[index].x = v2->x + (v1->x - v2->x) * percent;
rdp.vtxbuf[index].y = v2->y + (v1->y - v2->y) * percent;
rdp.vtxbuf[index].z = v2->z + (v1->z - v2->z) * percent;
rdp.vtxbuf[index].w = v2->w + (v1->w - v2->w) * percent;
rdp.vtxbuf[index].f = v2->f + (v1->f - v2->f) * percent;
rdp.vtxbuf[index].u0 = 255.5f;
rdp.vtxbuf[index].v0 = v2->v0 + (v1->v0 - v2->v0) * percent;
rdp.vtxbuf[index].u1 = v2->u1 + (v1->u1 - v2->u1) * percent;
rdp.vtxbuf[index].v1 = v2->v1 + (v1->v1 - v2->v1) * percent;
rdp.vtxbuf[index].b = (uint8_t)(v2->b + (v1->b - v2->b) * percent);
rdp.vtxbuf[index].g = (uint8_t)(v2->g + (v1->g - v2->g) * percent);
rdp.vtxbuf[index].r = (uint8_t)(v2->r + (v1->r - v2->r) * percent);
rdp.vtxbuf[index].a = (uint8_t)(v2->a + (v1->a - v2->a) * percent);
rdp.vtxbuf[index++].not_zclipped = 0;
// Save the in point
rdp.vtxbuf[index] = *v2;
rdp.vtxbuf[index++].not_zclipped = 0;
}
}
}
rdp.n_global = index;
do_triangle_stuff(linew, TRUE);
}
}
else
{
// Set vertex buffers
rdp.vtxbuf = rdp.vtx1; // copy from v to rdp.vtx1
rdp.vtxbuf2 = rdp.vtx2;
rdp.vtx_buffer = 0;
rdp.n_global = 3;
rdp.vtxbuf[0] = *vtx[0];
rdp.vtxbuf[0].number = 1;
rdp.vtxbuf[1] = *vtx[1];
rdp.vtxbuf[1].number = 2;
rdp.vtxbuf[2] = *vtx[2];
rdp.vtxbuf[2].number = 4;
do_triangle_stuff(linew, FALSE);
}
}
#define interp2p(a, b, r) (a + (b - a) * r)
//*
static void InterpolateColors(VERTEX & va, VERTEX & vb, VERTEX & res, float percent)
{
res.b = (uint8_t)interp2p(va.b, vb.b, percent);
res.g = (uint8_t)interp2p(va.g, vb.g, percent);;
res.r = (uint8_t)interp2p(va.r, vb.r, percent);;
res.a = (uint8_t)interp2p(va.a, vb.a, percent);;
res.f = interp2p(va.f, vb.f, percent);;
}
//*/
//
// clip_w - clips aint the z-axis
//
static void clip_w(int interpolate_colors)
{
int i, j, index, n = rdp.n_global;
float percent;
// Swap vertex buffers
VERTEX *tmp = rdp.vtxbuf2;
rdp.vtxbuf2 = rdp.vtxbuf;
rdp.vtxbuf = tmp;
rdp.vtx_buffer ^= 1;
index = 0;
// Check the vertices for clipping
for (i = 0; i < n; i++)
{
j = i + 1;
if (j == 3) j = 0;
if (Vi.w >= 0.01f)
{
if (Vj.w >= 0.01f) // Both are in, save the last one
{
rdp.vtxbuf[index] = Vj;
rdp.vtxbuf[index++].not_zclipped = 1;
}
else // First is in, second is out, save intersection
{
percent = (-Vi.w) / (Vj.w - Vi.w);
rdp.vtxbuf[index].not_zclipped = 0;
rdp.vtxbuf[index].x = Vi.x + (Vj.x - Vi.x) * percent;
rdp.vtxbuf[index].y = Vi.y + (Vj.y - Vi.y) * percent;
rdp.vtxbuf[index].z = Vi.z + (Vj.z - Vi.z) * percent;
rdp.vtxbuf[index].w = 0.01f;
rdp.vtxbuf[index].u0 = Vi.u0 + (Vj.u0 - Vi.u0) * percent;
rdp.vtxbuf[index].v0 = Vi.v0 + (Vj.v0 - Vi.v0) * percent;
rdp.vtxbuf[index].u1 = Vi.u1 + (Vj.u1 - Vi.u1) * percent;
rdp.vtxbuf[index].v1 = Vi.v1 + (Vj.v1 - Vi.v1) * percent;
if (interpolate_colors)
InterpolateColors(Vi, Vj, rdp.vtxbuf[index++], percent);
else
rdp.vtxbuf[index++].number = Vi.number | Vj.number;
}
}
else
{
//if (Vj.w < 0.01f) // Both are out, save nothing
if (Vj.w >= 0.01f) // First is out, second is in, save intersection & in point
{
percent = (-Vj.w) / (Vi.w - Vj.w);
rdp.vtxbuf[index].not_zclipped = 0;
rdp.vtxbuf[index].x = Vj.x + (Vi.x - Vj.x) * percent;
rdp.vtxbuf[index].y = Vj.y + (Vi.y - Vj.y) * percent;
rdp.vtxbuf[index].z = Vj.z + (Vi.z - Vj.z) * percent;
rdp.vtxbuf[index].w = 0.01f;
rdp.vtxbuf[index].u0 = Vj.u0 + (Vi.u0 - Vj.u0) * percent;
rdp.vtxbuf[index].v0 = Vj.v0 + (Vi.v0 - Vj.v0) * percent;
rdp.vtxbuf[index].u1 = Vj.u1 + (Vi.u1 - Vj.u1) * percent;
rdp.vtxbuf[index].v1 = Vj.v1 + (Vi.v1 - Vj.v1) * percent;
if (interpolate_colors)
InterpolateColors(Vj, Vi, rdp.vtxbuf[index++], percent);
else
rdp.vtxbuf[index++].number = Vi.number | Vj.number;
// Save the in point
rdp.vtxbuf[index] = Vj;
rdp.vtxbuf[index++].not_zclipped = 1;
}
}
}
rdp.n_global = index;
}
static void render_tri(uint16_t linew, int old_interpolate);
void do_triangle_stuff(uint16_t linew, int old_interpolate) // what else?? do the triangle stuff :P (to keep from writing code twice)
{
int i;
if (rdp.clip & CLIP_WMIN)
clip_w(old_interpolate);
float maxZ = (rdp.zsrc != 1) ? rdp.view_trans[2] + rdp.view_scale[2] : rdp.prim_depth;
uint8_t no_clip = 2;
for (i = 0; i < rdp.n_global; i++)
{
if (rdp.vtxbuf[i].not_zclipped)// && rdp.zsrc != 1)
{
WriteTrace(TraceRDP, TraceVerbose, " * NOT ZCLIPPPED: %d", rdp.vtxbuf[i].number);
rdp.vtxbuf[i].x = rdp.vtxbuf[i].sx;
rdp.vtxbuf[i].y = rdp.vtxbuf[i].sy;
rdp.vtxbuf[i].z = rdp.vtxbuf[i].sz;
rdp.vtxbuf[i].q = rdp.vtxbuf[i].oow;
rdp.vtxbuf[i].u0 = rdp.vtxbuf[i].u0_w;
rdp.vtxbuf[i].v0 = rdp.vtxbuf[i].v0_w;
rdp.vtxbuf[i].u1 = rdp.vtxbuf[i].u1_w;
rdp.vtxbuf[i].v1 = rdp.vtxbuf[i].v1_w;
}
else
{
WriteTrace(TraceRDP, TraceVerbose, " * ZCLIPPED: %d", rdp.vtxbuf[i].number);
rdp.vtxbuf[i].q = 1.0f / rdp.vtxbuf[i].w;
rdp.vtxbuf[i].x = rdp.view_trans[0] + rdp.vtxbuf[i].x * rdp.vtxbuf[i].q * rdp.view_scale[0] + rdp.offset_x;
rdp.vtxbuf[i].y = rdp.view_trans[1] + rdp.vtxbuf[i].y * rdp.vtxbuf[i].q * rdp.view_scale[1] + rdp.offset_y;
rdp.vtxbuf[i].z = rdp.view_trans[2] + rdp.vtxbuf[i].z * rdp.vtxbuf[i].q * rdp.view_scale[2];
if (rdp.tex >= 1)
{
rdp.vtxbuf[i].u0 *= rdp.vtxbuf[i].q;
rdp.vtxbuf[i].v0 *= rdp.vtxbuf[i].q;
}
if (rdp.tex >= 2)
{
rdp.vtxbuf[i].u1 *= rdp.vtxbuf[i].q;
rdp.vtxbuf[i].v1 *= rdp.vtxbuf[i].q;
}
}
if (rdp.zsrc == 1)
rdp.vtxbuf[i].z = rdp.prim_depth;
// Don't remove clipping, or it will freeze
if (rdp.vtxbuf[i].x > rdp.clip_max_x) rdp.clip |= CLIP_XMAX;
if (rdp.vtxbuf[i].x < rdp.clip_min_x) rdp.clip |= CLIP_XMIN;
if (rdp.vtxbuf[i].y > rdp.clip_max_y) rdp.clip |= CLIP_YMAX;
if (rdp.vtxbuf[i].y < rdp.clip_min_y) rdp.clip |= CLIP_YMIN;
if (rdp.vtxbuf[i].z > maxZ) rdp.clip |= CLIP_ZMAX;
if (rdp.vtxbuf[i].z < 0.0f) rdp.clip |= CLIP_ZMIN;
no_clip &= rdp.vtxbuf[i].screen_translated;
}
if (no_clip)
rdp.clip = 0;
else
{
if (!g_settings->clip_zmin())
{
rdp.clip &= ~CLIP_ZMIN;
}
if (!g_settings->clip_zmax())
{
rdp.clip &= ~CLIP_ZMAX;
}
}
render_tri(linew, old_interpolate);
}
void do_triangle_stuff_2(uint16_t linew)
{
rdp.clip = 0;
for (int i = 0; i < rdp.n_global; i++)
{
// Don't remove clipping, or it will freeze
if (rdp.vtxbuf[i].x > rdp.clip_max_x) rdp.clip |= CLIP_XMAX;
if (rdp.vtxbuf[i].x < rdp.clip_min_x) rdp.clip |= CLIP_XMIN;
if (rdp.vtxbuf[i].y > rdp.clip_max_y) rdp.clip |= CLIP_YMAX;
if (rdp.vtxbuf[i].y < rdp.clip_min_y) rdp.clip |= CLIP_YMIN;
}
render_tri(linew, TRUE);
}
__inline uint8_t real_to_char(double x)
{
return (uint8_t)(((int)floor(x + 0.5)) & 0xFF);
}
//*
static void InterpolateColors2(VERTEX & va, VERTEX & vb, VERTEX & res, float percent)
{
float w = 1.0f / (va.oow + (vb.oow - va.oow) * percent);
// res.oow = va.oow + (vb.oow-va.oow) * percent;
// res.q = res.oow;
float ba = va.b * va.oow;
float bb = vb.b * vb.oow;
res.b = real_to_char(interp2p(ba, bb, percent) * w);
float ga = va.g * va.oow;
float gb = vb.g * vb.oow;
res.g = real_to_char(interp2p(ga, gb, percent) * w);
float ra = va.r * va.oow;
float rb = vb.r * vb.oow;
res.r = real_to_char(interp2p(ra, rb, percent) * w);
float aa = va.a * va.oow;
float ab = vb.a * vb.oow;
res.a = real_to_char(interp2p(aa, ab, percent) * w);
float fa = va.f * va.oow;
float fb = vb.f * vb.oow;
res.f = interp2p(fa, fb, percent) * w;
/*
float u0a = va.u0_w * va.oow;
float u0b = vb.u0_w * vb.oow;
res.u0 = (u0a + (u0b - u0a) * percent) * w;
float v0a = va.v0_w * va.oow;
float v0b = vb.v0_w * vb.oow;
res.v0 = (v0a + (v0b - v0a) * percent) * w;
float u1a = va.u1_w * va.oow;
float u1b = vb.u1_w * vb.oow;
res.u1 = (u1a + (u1b - u1a) * percent) * w;
float v1a = va.v1_w * va.oow;
float v1b = vb.v1_w * vb.oow;
res.v1 = (v1a + (v1b - v1a) * percent) * w;
*/
}
//*/
typedef struct {
double d;
double x;
double y;
} LineEuqationType;
static double EvaLine(LineEuqationType &li, double x, double y)
{
return li.x*x + li.y*y + li.d;
}
static void Create1LineEq(LineEuqationType &l, VERTEX &v1, VERTEX &v2, VERTEX &v3)
{
// Line between (x1,y1) to (x2,y2)
l.x = v2.sy - v1.sy;
l.y = v1.sx - v2.sx;
l.d = -(l.x*v2.sx + (l.y)*v2.sy);
if (EvaLine(l, v3.sx, v3.sy)*v3.oow < 0)
{
l.x = -l.x;
l.y = -l.y;
l.d = -l.d;
}
}
__inline double interp3p(float a, float b, float c, double r1, double r2)
{
return (a)+(((b)+((c)-(b))*(r2)) - (a))*(r1);
}
/*
#define interp3p(a, b, c, r1, r2) \
(a+(((b)+((c)-(b))*(r2))-(a))*(r1))
*/
static void InterpolateColors3(VERTEX &v1, VERTEX &v2, VERTEX &v3, VERTEX &out)
{
LineEuqationType line;
Create1LineEq(line, v2, v3, v1);
double aDot = (out.x*line.x + out.y*line.y);
double bDot = (v1.sx*line.x + v1.sy*line.y);
double scale1 = (-line.d - aDot) / (bDot - aDot);
double tx = out.x + scale1 * (v1.sx - out.x);
double ty = out.y + scale1 * (v1.sy - out.y);
double s1 = 101.0, s2 = 101.0;
double den = tx - v1.sx;
if (fabs(den) > 1.0)
s1 = (out.x - v1.sx) / den;
if (s1 > 100.0f)
s1 = (out.y - v1.sy) / (ty - v1.sy);
den = v3.sx - v2.sx;
if (fabs(den) > 1.0)
s2 = (tx - v2.sx) / den;
if (s2 > 100.0f)
s2 = (ty - v2.sy) / (v3.sy - v2.sy);
double w = 1.0 / interp3p(v1.oow, v2.oow, v3.oow, s1, s2);
out.r = real_to_char(interp3p(v1.r*v1.oow, v2.r*v2.oow, v3.r*v3.oow, s1, s2)*w);
out.g = real_to_char(interp3p(v1.g*v1.oow, v2.g*v2.oow, v3.g*v3.oow, s1, s2)*w);
out.b = real_to_char(interp3p(v1.b*v1.oow, v2.b*v2.oow, v3.b*v3.oow, s1, s2)*w);
out.a = real_to_char(interp3p(v1.a*v1.oow, v2.a*v2.oow, v3.a*v3.oow, s1, s2)*w);
out.f = (float)(interp3p(v1.f*v1.oow, v2.f*v2.oow, v3.f*v3.oow, s1, s2)*w);
/*
out.u0 = interp3p(v1.u0_w*v1.oow,v2.u0_w*v2.oow,v3.u0_w*v3.oow,s1,s2)/oow;
out.v0 = interp3p(v1.v0_w*v1.oow,v2.v0_w*v2.oow,v3.v0_w*v3.oow,s1,s2)/oow;
out.u1 = interp3p(v1.u1_w*v1.oow,v2.u1_w*v2.oow,v3.u1_w*v3.oow,s1,s2)/oow;
out.v1 = interp3p(v1.v1_w*v1.oow,v2.v1_w*v2.oow,v3.v1_w*v3.oow,s1,s2)/oow;
*/
}
static void CalculateLOD(VERTEX *v, int n)
{
//rdp.update |= UPDATE_TEXTURE;
/*
if (rdp.lod_calculated)
{
float detailmax;
if (dc0_detailmax < 0.5)
detailmax = rdp.lod_fraction;
else
detailmax = 1.0f - rdp.lod_fraction;
grTexDetailControl (GR_TMU0, dc0_lodbias, dc0_detailscale, detailmax);
if (num_tmu == 2)
grTexDetailControl (GR_TMU1, dc1_lodbias, dc1_detailscale, detailmax);
return;
}
*/
float deltaS, deltaT;
float deltaX, deltaY;
double deltaTexels, deltaPixels, lodFactor = 0;
double intptr;
float s_scale = rdp.tiles[rdp.cur_tile].width / 255.0f;
float t_scale = rdp.tiles[rdp.cur_tile].height / 255.0f;
if (g_settings->lodmode() == CSettings::LOD_Fast)
{
deltaS = (v[1].u0 / v[1].q - v[0].u0 / v[0].q) * s_scale;
deltaT = (v[1].v0 / v[1].q - v[0].v0 / v[0].q) * t_scale;
deltaTexels = sqrt(deltaS * deltaS + deltaT * deltaT);
deltaX = (v[1].x - v[0].x) / rdp.scale_x;
deltaY = (v[1].y - v[0].y) / rdp.scale_y;
deltaPixels = sqrt(deltaX * deltaX + deltaY * deltaY);
lodFactor = deltaTexels / deltaPixels;
}
else
{
int i, j;
for (i = 0; i < n; i++)
{
j = (i < n - 1) ? i + 1 : 0;
deltaS = (v[j].u0 / v[j].q - v[i].u0 / v[i].q) * s_scale;
deltaT = (v[j].v0 / v[j].q - v[i].v0 / v[i].q) * t_scale;
// deltaS = v[j].ou - v[i].ou;
// deltaT = v[j].ov - v[i].ov;
deltaTexels = sqrt(deltaS * deltaS + deltaT * deltaT);
deltaX = (v[j].x - v[i].x) / rdp.scale_x;
deltaY = (v[j].y - v[i].y) / rdp.scale_y;
deltaPixels = sqrt(deltaX * deltaX + deltaY * deltaY);
lodFactor += deltaTexels / deltaPixels;
}
// Divide by n (n edges) to find average
lodFactor = lodFactor / n;
}
int ilod = (int)lodFactor;
int lod_tile = minval((int)(log10f((float)ilod) / log10f(2.0f)), rdp.cur_tile + rdp.mipmap_level);
float lod_fraction = 1.0f;
if (lod_tile < rdp.cur_tile + rdp.mipmap_level)
{
lod_fraction = maxval((float)modf(lodFactor / pow(2., lod_tile), &intptr), rdp.prim_lodmin / 255.0f);
}
float detailmax;
if (cmb.dc0_detailmax < 0.5f)
detailmax = lod_fraction;
else
detailmax = 1.0f - lod_fraction;
grTexDetailControl(GR_TMU0, cmb.dc0_lodbias, cmb.dc0_detailscale, detailmax);
if (voodoo.num_tmu == 2)
grTexDetailControl(GR_TMU1, cmb.dc1_lodbias, cmb.dc1_detailscale, detailmax);
WriteTrace(TraceRDP, TraceDebug, "CalculateLOD factor: %f, tile: %d, lod_fraction: %f", (float)lodFactor, lod_tile, lod_fraction);
}
float ScaleZ(float z)
{
if (g_settings->n64_z_scale())
{
int iz = (int)(z*8.0f + 0.5f);
if (iz < 0) iz = 0;
else if (iz >= 0x40000) iz = 0x40000 - 1;
return (float)zLUT[iz];
}
if (z < 0.0f) return 0.0f;
z *= 1.9f;
if (z > 65534.0f) return 65534.0f;
return z;
}
static void DepthBuffer(VERTEX * vtx, int n)
{
if (g_settings->fb_depth_render_enabled() && !g_settings->hacks(CSettings::hack_RE2) && dzdx && (rdp.flags & ZBUF_UPDATE))
{
vertexi v[12];
if (u_cull_mode == 1) //cull front
{
for (int i = 0; i < n; i++)
{
v[i].x = (int)((vtx[n - i - 1].x - rdp.offset_x) / rdp.scale_x * 65536.0);
v[i].y = (int)((vtx[n - i - 1].y - rdp.offset_y) / rdp.scale_y * 65536.0);
v[i].z = (int)(vtx[n - i - 1].z * 65536.0);
}
}
else
{
for (int i = 0; i < n; i++)
{
v[i].x = (int)((vtx[i].x - rdp.offset_x) / rdp.scale_x * 65536.0);
v[i].y = (int)((vtx[i].y - rdp.offset_y) / rdp.scale_y * 65536.0);
v[i].z = (int)(vtx[i].z * 65536.0);
}
}
Rasterize(v, n, dzdx);
}
for (int i = 0; i < n; i++)
vtx[i].z = ScaleZ(vtx[i].z);
}
void clip_tri(int interpolate_colors)
{
int i, j, index, n = rdp.n_global;
float percent;
// Check which clipping is needed
if (rdp.clip & CLIP_XMAX) // right of the screen
{
// Swap vertex buffers
VERTEX *tmp = rdp.vtxbuf2;
rdp.vtxbuf2 = rdp.vtxbuf;
rdp.vtxbuf = tmp;
rdp.vtx_buffer ^= 1;
index = 0;
// Check the vertices for clipping
for (i = 0; i < n; i++)
{
j = i + 1;
if (j == n) j = 0;
if (Vi.x <= rdp.clip_max_x)
{
if (Vj.x <= rdp.clip_max_x) // Both are in, save the last one
{
rdp.vtxbuf[index++] = Vj;
}
else // First is in, second is out, save intersection
{
percent = (rdp.clip_max_x - Vi.x) / (Vj.x - Vi.x);
rdp.vtxbuf[index].x = rdp.clip_max_x;
rdp.vtxbuf[index].y = Vi.y + (Vj.y - Vi.y) * percent;
rdp.vtxbuf[index].z = Vi.z + (Vj.z - Vi.z) * percent;
rdp.vtxbuf[index].q = Vi.q + (Vj.q - Vi.q) * percent;
rdp.vtxbuf[index].u0 = Vi.u0 + (Vj.u0 - Vi.u0) * percent;
rdp.vtxbuf[index].v0 = Vi.v0 + (Vj.v0 - Vi.v0) * percent;
rdp.vtxbuf[index].u1 = Vi.u1 + (Vj.u1 - Vi.u1) * percent;
rdp.vtxbuf[index].v1 = Vi.v1 + (Vj.v1 - Vi.v1) * percent;
if (interpolate_colors)
InterpolateColors(Vi, Vj, rdp.vtxbuf[index++], percent);
else
rdp.vtxbuf[index++].number = Vi.number | Vj.number | 8;
}
}
else
{
//if (Vj.x > rdp.clip_max_x) // Both are out, save nothing
if (Vj.x <= rdp.clip_max_x) // First is out, second is in, save intersection & in point
{
percent = (rdp.clip_max_x - Vj.x) / (Vi.x - Vj.x);
rdp.vtxbuf[index].x = rdp.clip_max_x;
rdp.vtxbuf[index].y = Vj.y + (Vi.y - Vj.y) * percent;
rdp.vtxbuf[index].z = Vj.z + (Vi.z - Vj.z) * percent;
rdp.vtxbuf[index].q = Vj.q + (Vi.q - Vj.q) * percent;
rdp.vtxbuf[index].u0 = Vj.u0 + (Vi.u0 - Vj.u0) * percent;
rdp.vtxbuf[index].v0 = Vj.v0 + (Vi.v0 - Vj.v0) * percent;
rdp.vtxbuf[index].u1 = Vj.u1 + (Vi.u1 - Vj.u1) * percent;
rdp.vtxbuf[index].v1 = Vj.v1 + (Vi.v1 - Vj.v1) * percent;
if (interpolate_colors)
InterpolateColors(Vj, Vi, rdp.vtxbuf[index++], percent);
else
rdp.vtxbuf[index++].number = Vi.number | Vj.number | 8;
// Save the in point
rdp.vtxbuf[index++] = Vj;
}
}
}
n = index;
}
if (rdp.clip & CLIP_XMIN) // left of the screen
{
// Swap vertex buffers
VERTEX *tmp = rdp.vtxbuf2;
rdp.vtxbuf2 = rdp.vtxbuf;
rdp.vtxbuf = tmp;
rdp.vtx_buffer ^= 1;
index = 0;
// Check the vertices for clipping
for (i = 0; i < n; i++)
{
j = i + 1;
if (j == n) j = 0;
if (Vi.x >= rdp.clip_min_x)
{
if (Vj.x >= rdp.clip_min_x) // Both are in, save the last one
{
rdp.vtxbuf[index++] = Vj;
}
else // First is in, second is out, save intersection
{
percent = (rdp.clip_min_x - Vi.x) / (Vj.x - Vi.x);
rdp.vtxbuf[index].x = rdp.clip_min_x;
rdp.vtxbuf[index].y = Vi.y + (Vj.y - Vi.y) * percent;
rdp.vtxbuf[index].z = Vi.z + (Vj.z - Vi.z) * percent;
rdp.vtxbuf[index].q = Vi.q + (Vj.q - Vi.q) * percent;
rdp.vtxbuf[index].u0 = Vi.u0 + (Vj.u0 - Vi.u0) * percent;
rdp.vtxbuf[index].v0 = Vi.v0 + (Vj.v0 - Vi.v0) * percent;
rdp.vtxbuf[index].u1 = Vi.u1 + (Vj.u1 - Vi.u1) * percent;
rdp.vtxbuf[index].v1 = Vi.v1 + (Vj.v1 - Vi.v1) * percent;
if (interpolate_colors)
InterpolateColors(Vi, Vj, rdp.vtxbuf[index++], percent);
else
rdp.vtxbuf[index++].number = Vi.number | Vj.number | 8;
}
}
else
{
//if (Vj.x < rdp.clip_min_x) // Both are out, save nothing
if (Vj.x >= rdp.clip_min_x) // First is out, second is in, save intersection & in point
{
percent = (rdp.clip_min_x - Vj.x) / (Vi.x - Vj.x);
rdp.vtxbuf[index].x = rdp.clip_min_x;
rdp.vtxbuf[index].y = Vj.y + (Vi.y - Vj.y) * percent;
rdp.vtxbuf[index].z = Vj.z + (Vi.z - Vj.z) * percent;
rdp.vtxbuf[index].q = Vj.q + (Vi.q - Vj.q) * percent;
rdp.vtxbuf[index].u0 = Vj.u0 + (Vi.u0 - Vj.u0) * percent;
rdp.vtxbuf[index].v0 = Vj.v0 + (Vi.v0 - Vj.v0) * percent;
rdp.vtxbuf[index].u1 = Vj.u1 + (Vi.u1 - Vj.u1) * percent;
rdp.vtxbuf[index].v1 = Vj.v1 + (Vi.v1 - Vj.v1) * percent;
if (interpolate_colors)
InterpolateColors(Vj, Vi, rdp.vtxbuf[index++], percent);
else
rdp.vtxbuf[index++].number = Vi.number | Vj.number | 8;
// Save the in point
rdp.vtxbuf[index++] = Vj;
}
}
}
n = index;
}
if (rdp.clip & CLIP_YMAX) // top of the screen
{
// Swap vertex buffers
VERTEX *tmp = rdp.vtxbuf2;
rdp.vtxbuf2 = rdp.vtxbuf;
rdp.vtxbuf = tmp;
rdp.vtx_buffer ^= 1;
index = 0;
// Check the vertices for clipping
for (i = 0; i < n; i++)
{
j = i + 1;
if (j == n) j = 0;
if (Vi.y <= rdp.clip_max_y)
{
if (Vj.y <= rdp.clip_max_y) // Both are in, save the last one
{
rdp.vtxbuf[index++] = Vj;
}
else // First is in, second is out, save intersection
{
percent = (rdp.clip_max_y - Vi.y) / (Vj.y - Vi.y);
rdp.vtxbuf[index].x = Vi.x + (Vj.x - Vi.x) * percent;
rdp.vtxbuf[index].y = rdp.clip_max_y;
rdp.vtxbuf[index].z = Vi.z + (Vj.z - Vi.z) * percent;
rdp.vtxbuf[index].q = Vi.q + (Vj.q - Vi.q) * percent;
rdp.vtxbuf[index].u0 = Vi.u0 + (Vj.u0 - Vi.u0) * percent;
rdp.vtxbuf[index].v0 = Vi.v0 + (Vj.v0 - Vi.v0) * percent;
rdp.vtxbuf[index].u1 = Vi.u1 + (Vj.u1 - Vi.u1) * percent;
rdp.vtxbuf[index].v1 = Vi.v1 + (Vj.v1 - Vi.v1) * percent;
if (interpolate_colors)
InterpolateColors(Vi, Vj, rdp.vtxbuf[index++], percent);
else
rdp.vtxbuf[index++].number = Vi.number | Vj.number | 16;
}
}
else
{
//if (Vj.y > rdp.clip_max_y) // Both are out, save nothing
if (Vj.y <= rdp.clip_max_y) // First is out, second is in, save intersection & in point
{
percent = (rdp.clip_max_y - Vj.y) / (Vi.y - Vj.y);
rdp.vtxbuf[index].x = Vj.x + (Vi.x - Vj.x) * percent;
rdp.vtxbuf[index].y = rdp.clip_max_y;
rdp.vtxbuf[index].z = Vj.z + (Vi.z - Vj.z) * percent;
rdp.vtxbuf[index].q = Vj.q + (Vi.q - Vj.q) * percent;
rdp.vtxbuf[index].u0 = Vj.u0 + (Vi.u0 - Vj.u0) * percent;
rdp.vtxbuf[index].v0 = Vj.v0 + (Vi.v0 - Vj.v0) * percent;
rdp.vtxbuf[index].u1 = Vj.u1 + (Vi.u1 - Vj.u1) * percent;
rdp.vtxbuf[index].v1 = Vj.v1 + (Vi.v1 - Vj.v1) * percent;
if (interpolate_colors)
InterpolateColors(Vj, Vi, rdp.vtxbuf[index++], percent);
else
rdp.vtxbuf[index++].number = Vi.number | Vj.number | 16;
// Save the in point
rdp.vtxbuf[index++] = Vj;
}
}
}
n = index;
}
if (rdp.clip & CLIP_YMIN) // bottom of the screen
{
// Swap vertex buffers
VERTEX *tmp = rdp.vtxbuf2;
rdp.vtxbuf2 = rdp.vtxbuf;
rdp.vtxbuf = tmp;
rdp.vtx_buffer ^= 1;
index = 0;
// Check the vertices for clipping
for (i = 0; i < n; i++)
{
j = i + 1;
if (j == n) j = 0;
if (Vi.y >= rdp.clip_min_y)
{
if (Vj.y >= rdp.clip_min_y) // Both are in, save the last one
{
rdp.vtxbuf[index++] = Vj;
}
else // First is in, second is out, save intersection
{
percent = (rdp.clip_min_y - Vi.y) / (Vj.y - Vi.y);
rdp.vtxbuf[index].x = Vi.x + (Vj.x - Vi.x) * percent;
rdp.vtxbuf[index].y = rdp.clip_min_y;
rdp.vtxbuf[index].z = Vi.z + (Vj.z - Vi.z) * percent;
rdp.vtxbuf[index].q = Vi.q + (Vj.q - Vi.q) * percent;
rdp.vtxbuf[index].u0 = Vi.u0 + (Vj.u0 - Vi.u0) * percent;
rdp.vtxbuf[index].v0 = Vi.v0 + (Vj.v0 - Vi.v0) * percent;
rdp.vtxbuf[index].u1 = Vi.u1 + (Vj.u1 - Vi.u1) * percent;
rdp.vtxbuf[index].v1 = Vi.v1 + (Vj.v1 - Vi.v1) * percent;
if (interpolate_colors)
InterpolateColors(Vi, Vj, rdp.vtxbuf[index++], percent);
else
rdp.vtxbuf[index++].number = Vi.number | Vj.number | 16;
}
}
else
{
//if (Vj.y < rdp.clip_min_y) // Both are out, save nothing
if (Vj.y >= rdp.clip_min_y) // First is out, second is in, save intersection & in point
{
percent = (rdp.clip_min_y - Vj.y) / (Vi.y - Vj.y);
rdp.vtxbuf[index].x = Vj.x + (Vi.x - Vj.x) * percent;
rdp.vtxbuf[index].y = rdp.clip_min_y;
rdp.vtxbuf[index].z = Vj.z + (Vi.z - Vj.z) * percent;
rdp.vtxbuf[index].q = Vj.q + (Vi.q - Vj.q) * percent;
rdp.vtxbuf[index].u0 = Vj.u0 + (Vi.u0 - Vj.u0) * percent;
rdp.vtxbuf[index].v0 = Vj.v0 + (Vi.v0 - Vj.v0) * percent;
rdp.vtxbuf[index].u1 = Vj.u1 + (Vi.u1 - Vj.u1) * percent;
rdp.vtxbuf[index].v1 = Vj.v1 + (Vi.v1 - Vj.v1) * percent;
if (interpolate_colors)
InterpolateColors(Vj, Vi, rdp.vtxbuf[index++], percent);
else
rdp.vtxbuf[index++].number = Vi.number | Vj.number | 16;
// Save the in point
rdp.vtxbuf[index++] = Vj;
}
}
}
n = index;
}
if (rdp.clip & CLIP_ZMAX) // far plane
{
// Swap vertex buffers
VERTEX *tmp = rdp.vtxbuf2;
rdp.vtxbuf2 = rdp.vtxbuf;
rdp.vtxbuf = tmp;
rdp.vtx_buffer ^= 1;
index = 0;
float maxZ = rdp.view_trans[2] + rdp.view_scale[2];
// Check the vertices for clipping
for (i = 0; i < n; i++)
{
j = i + 1;
if (j == n) j = 0;
if (Vi.z < maxZ)
{
if (Vj.z < maxZ) // Both are in, save the last one
{
rdp.vtxbuf[index++] = Vj;
}
else // First is in, second is out, save intersection
{
percent = (maxZ - Vi.z) / (Vj.z - Vi.z);
rdp.vtxbuf[index].x = Vi.x + (Vj.x - Vi.x) * percent;
rdp.vtxbuf[index].y = Vi.y + (Vj.y - Vi.y) * percent;
rdp.vtxbuf[index].z = maxZ - 0.001f;
rdp.vtxbuf[index].q = Vi.q + (Vj.q - Vi.q) * percent;
rdp.vtxbuf[index].u0 = Vi.u0 + (Vj.u0 - Vi.u0) * percent;
rdp.vtxbuf[index].v0 = Vi.v0 + (Vj.v0 - Vi.v0) * percent;
rdp.vtxbuf[index].u1 = Vi.u1 + (Vj.u1 - Vi.u1) * percent;
rdp.vtxbuf[index].v1 = Vi.v1 + (Vj.v1 - Vi.v1) * percent;
if (interpolate_colors)
InterpolateColors(Vi, Vj, rdp.vtxbuf[index++], percent);
else
rdp.vtxbuf[index++].number = Vi.number | Vj.number;
}
}
else
{
//if (Vj.z > maxZ) // Both are out, save nothing
if (Vj.z < maxZ) // First is out, second is in, save intersection & in point
{
percent = (maxZ - Vj.z) / (Vi.z - Vj.z);
rdp.vtxbuf[index].x = Vj.x + (Vi.x - Vj.x) * percent;
rdp.vtxbuf[index].y = Vj.y + (Vi.y - Vj.y) * percent;
rdp.vtxbuf[index].z = maxZ - 0.001f;;
rdp.vtxbuf[index].q = Vj.q + (Vi.q - Vj.q) * percent;
rdp.vtxbuf[index].u0 = Vj.u0 + (Vi.u0 - Vj.u0) * percent;
rdp.vtxbuf[index].v0 = Vj.v0 + (Vi.v0 - Vj.v0) * percent;
rdp.vtxbuf[index].u1 = Vj.u1 + (Vi.u1 - Vj.u1) * percent;
rdp.vtxbuf[index].v1 = Vj.v1 + (Vi.v1 - Vj.v1) * percent;
if (interpolate_colors)
InterpolateColors(Vj, Vi, rdp.vtxbuf[index++], percent);
else
rdp.vtxbuf[index++].number = Vi.number | Vj.number;
// Save the in point
rdp.vtxbuf[index++] = Vj;
}
}
}
n = index;
}
/*
if (rdp.clip & CLIP_ZMIN) // near Z
{
// Swap vertex buffers
VERTEX *tmp = rdp.vtxbuf2;
rdp.vtxbuf2 = rdp.vtxbuf;
rdp.vtxbuf = tmp;
rdp.vtx_buffer ^= 1;
index = 0;
// Check the vertices for clipping
for (i=0; i<n; i++)
{
j = i+1;
if (j == n) j = 0;
if (Vi.z >= 0.0f)
{
if (Vj.z >= 0.0f) // Both are in, save the last one
{
rdp.vtxbuf[index++] = Vj;
}
else // First is in, second is out, save intersection
{
percent = (-Vi.z) / (Vj.z - Vi.z);
rdp.vtxbuf[index].x = Vi.x + (Vj.x - Vi.x) * percent;
rdp.vtxbuf[index].y = Vi.y + (Vj.y - Vi.y) * percent;
rdp.vtxbuf[index].z = 0.0f;
rdp.vtxbuf[index].q = Vi.q + (Vj.q - Vi.q) * percent;
rdp.vtxbuf[index].u0 = Vi.u0 + (Vj.u0 - Vi.u0) * percent;
rdp.vtxbuf[index].v0 = Vi.v0 + (Vj.v0 - Vi.v0) * percent;
rdp.vtxbuf[index].u1 = Vi.u1 + (Vj.u1 - Vi.u1) * percent;
rdp.vtxbuf[index].v1 = Vi.v1 + (Vj.v1 - Vi.v1) * percent;
if (interpolate_colors)
InterpolateColors(Vi, Vj, rdp.vtxbuf[index++], percent);
else
rdp.vtxbuf[index++].number = Vi.number | Vj.number;
}
}
else
{
//if (Vj.z < 0.0f) // Both are out, save nothing
if (Vj.z >= 0.0f) // First is out, second is in, save intersection & in point
{
percent = (-Vj.z) / (Vi.z - Vj.z);
rdp.vtxbuf[index].x = Vj.x + (Vi.x - Vj.x) * percent;
rdp.vtxbuf[index].y = Vj.y + (Vi.y - Vj.y) * percent;
rdp.vtxbuf[index].z = 0.0f;;
rdp.vtxbuf[index].q = Vj.q + (Vi.q - Vj.q) * percent;
rdp.vtxbuf[index].u0 = Vj.u0 + (Vi.u0 - Vj.u0) * percent;
rdp.vtxbuf[index].v0 = Vj.v0 + (Vi.v0 - Vj.v0) * percent;
rdp.vtxbuf[index].u1 = Vj.u1 + (Vi.u1 - Vj.u1) * percent;
rdp.vtxbuf[index].v1 = Vj.v1 + (Vi.v1 - Vj.v1) * percent;
if (interpolate_colors)
InterpolateColors(Vj, Vi, rdp.vtxbuf[index++], percent);
else
rdp.vtxbuf[index++].number = Vi.number | Vj.number;
// Save the in point
rdp.vtxbuf[index++] = Vj;
}
}
}
n = index;
}
*/
rdp.n_global = n;
}
static void render_tri(uint16_t linew, int old_interpolate)
{
if (rdp.clip)
clip_tri(old_interpolate);
int n = rdp.n_global;
if (n < 3)
{
WriteTrace(TraceRDP, TraceDebug, " * render_tri: n < 3");
return;
}
int i, j;
//*
if ((rdp.clip & CLIP_ZMIN) && (rdp.othermode_l & 0x00000030))
{
int to_render = FALSE;
for (i = 0; i < n; i++)
{
if (rdp.vtxbuf[i].z >= 0.0f)
{
to_render = TRUE;
break;
}
}
if (!to_render) //all z < 0
{
WriteTrace(TraceRDP, TraceDebug, " * render_tri: all z < 0");
return;
}
}
//*/
if (rdp.clip && !old_interpolate)
{
for (i = 0; i < n; i++)
{
float percent = 101.0f;
VERTEX * v1 = 0, *v2 = 0;
switch (rdp.vtxbuf[i].number & 7)
{
case 1:
case 2:
case 4:
continue;
break;
case 3:
v1 = org_vtx[0];
v2 = org_vtx[1];
break;
case 5:
v1 = org_vtx[0];
v2 = org_vtx[2];
break;
case 6:
v1 = org_vtx[1];
v2 = org_vtx[2];
break;
case 7:
InterpolateColors3(*org_vtx[0], *org_vtx[1], *org_vtx[2], rdp.vtxbuf[i]);
continue;
break;
}
switch (rdp.vtxbuf[i].number & 24)
{
case 8:
percent = (rdp.vtxbuf[i].x - v1->sx) / (v2->sx - v1->sx);
break;
case 16:
percent = (rdp.vtxbuf[i].y - v1->sy) / (v2->sy - v1->sy);
break;
default:
{
float d = (v2->sx - v1->sx);
if (fabs(d) > 1.0)
percent = (rdp.vtxbuf[i].x - v1->sx) / d;
if (percent > 100.0f)
percent = (rdp.vtxbuf[i].y - v1->sy) / (v2->sy - v1->sy);
}
}
InterpolateColors2(*v1, *v2, rdp.vtxbuf[i], percent);
}
}
ConvertCoordsConvert(rdp.vtxbuf, n);
if (rdp.fog_mode == RDP::fog_enabled)
{
for (i = 0; i < n; i++)
{
rdp.vtxbuf[i].f = 1.0f / maxval(4.0f, rdp.vtxbuf[i].f);
}
}
else if (rdp.fog_mode == RDP::fog_blend)
{
float fog = 1.0f / maxval(1, rdp.fog_color & 0xFF);
for (i = 0; i < n; i++)
{
rdp.vtxbuf[i].f = fog;
}
}
else if (rdp.fog_mode == RDP::fog_blend_inverse)
{
float fog = 1.0f / maxval(1, (~rdp.fog_color) & 0xFF);
for (i = 0; i < n; i++)
{
rdp.vtxbuf[i].f = fog;
}
}
if (g_settings->lodmode() != CSettings::LOD_Off && rdp.cur_tile < rdp.mipmap_level)
{
CalculateLOD(rdp.vtxbuf, n);
}
cmb.cmb_ext_use = cmb.tex_cmb_ext_use = 0;
if (g_settings->wireframe())
{
SetWireframeCol();
for (i = 0; i < n; i++)
{
j = i + 1;
if (j == n) j = 0;
grDrawLine(&rdp.vtxbuf[i], &rdp.vtxbuf[j]);
}
}
else
{
if (linew > 0)
{
VERTEX *V0 = &rdp.vtxbuf[0];
VERTEX *V1 = &rdp.vtxbuf[1];
if (fabs(V0->x - V1->x) < 0.01 && fabs(V0->y - V1->y) < 0.01)
V1 = &rdp.vtxbuf[2];
V0->z = ScaleZ(V0->z);
V1->z = ScaleZ(V1->z);
VERTEX v[4];
v[0] = *V0;
v[1] = *V0;
v[2] = *V1;
v[3] = *V1;
float width = linew * 0.25f;
if (fabs(V0->y - V1->y) < 0.0001)
{
v[0].x = v[1].x = V0->x;
v[2].x = v[3].x = V1->x;
width *= rdp.scale_y;
v[0].y = v[2].y = V0->y - width;
v[1].y = v[3].y = V0->y + width;
}
else if (fabs(V0->x - V1->x) < 0.0001)
{
v[0].y = v[1].y = V0->y;
v[2].y = v[3].y = V1->y;
width *= rdp.scale_x;
v[0].x = v[2].x = V0->x - width;
v[1].x = v[3].x = V0->x + width;
}
else
{
float dx = V1->x - V0->x;
float dy = V1->y - V0->y;
float len = sqrtf(dx*dx + dy*dy);
float wx = dy * width * rdp.scale_x / len;
float wy = dx * width * rdp.scale_y / len;
v[0].x = V0->x + wx;
v[0].y = V0->y - wy;
v[1].x = V0->x - wx;
v[1].y = V0->y + wy;
v[2].x = V1->x + wx;
v[2].y = V1->y - wy;
v[3].x = V1->x - wx;
v[3].y = V1->y + wy;
}
grDrawTriangle(&v[0], &v[1], &v[2]);
grDrawTriangle(&v[1], &v[2], &v[3]);
}
else
{
DepthBuffer(rdp.vtxbuf, n);
if ((rdp.rm & 0xC10) == 0xC10)
grDepthBiasLevel(-deltaZ);
grDrawVertexArray(GR_TRIANGLE_FAN, n, rdp.vtx_buffer ? (&vtx_list2) : (&vtx_list1));
}
}
}
void update_scissor()
{
if (rdp.update & UPDATE_SCISSOR)
{
rdp.update ^= UPDATE_SCISSOR;
// KILL the floating point error with 0.01f
rdp.scissor.ul_x = (uint32_t)maxval(minval((rdp.scissor_o.ul_x * rdp.scale_x + rdp.offset_x + 0.01f), g_settings->res_x()), 0);
rdp.scissor.lr_x = (uint32_t)maxval(minval((rdp.scissor_o.lr_x * rdp.scale_x + rdp.offset_x + 0.01f), g_settings->res_x()), 0);
rdp.scissor.ul_y = (uint32_t)maxval(minval((rdp.scissor_o.ul_y * rdp.scale_y + rdp.offset_y + 0.01f), g_settings->res_y()), 0);
rdp.scissor.lr_y = (uint32_t)maxval(minval((rdp.scissor_o.lr_y * rdp.scale_y + rdp.offset_y + 0.01f), g_settings->res_y()), 0);
//grClipWindow specifies the hardware clipping window. Any pixels outside the clipping window are rejected.
//Values are inclusive for minimum x and y values and exclusive for maximum x and y values.
// grClipWindow (rdp.scissor.ul_x?rdp.scissor.ul_x+1:0, rdp.scissor.ul_y?rdp.scissor.ul_y+1:0, rdp.scissor.lr_x, rdp.scissor.lr_y);
grClipWindow(rdp.scissor.ul_x, rdp.scissor.ul_y, rdp.scissor.lr_x, rdp.scissor.lr_y);
WriteTrace(TraceRDP, TraceDebug, " |- scissor - (%d, %d) -> (%d, %d)", rdp.scissor.ul_x, rdp.scissor.ul_y, rdp.scissor.lr_x, rdp.scissor.lr_y);
}
}
//
// update - update states if they need it
//
typedef struct
{
unsigned int c2_m2b : 2;
unsigned int c1_m2b : 2;
unsigned int c2_m2a : 2;
unsigned int c1_m2a : 2;
unsigned int c2_m1b : 2;
unsigned int c1_m1b : 2;
unsigned int c2_m1a : 2;
unsigned int c1_m1a : 2;
} rdp_blender_setting;
void update()
{
WriteTrace(TraceRDP, TraceDebug, "-+ update called");
// Check for rendermode changes
// Z buffer
if (rdp.render_mode_changed & 0x00000C30)
{
WriteTrace(TraceRDP, TraceDebug, " |- render_mode_changed zbuf - decal: %s, update: %s, compare: %s",
str_yn[(rdp.othermode_l & 0x00000400) ? 1 : 0],
str_yn[(rdp.othermode_l & 0x00000020) ? 1 : 0],
str_yn[(rdp.othermode_l & 0x00000010) ? 1 : 0]);
rdp.render_mode_changed &= ~0x00000C30;
rdp.update |= UPDATE_ZBUF_ENABLED;
// Update?
if ((rdp.othermode_l & 0x00000020))
rdp.flags |= ZBUF_UPDATE;
else
rdp.flags &= ~ZBUF_UPDATE;
// Compare?
if (rdp.othermode_l & 0x00000010)
rdp.flags |= ZBUF_COMPARE;
else
rdp.flags &= ~ZBUF_COMPARE;
}
// Alpha compare
if (rdp.render_mode_changed & 0x00001000)
{
WriteTrace(TraceRDP, TraceDebug, " |- render_mode_changed alpha compare - on: %s",
str_yn[(rdp.othermode_l & 0x00001000) ? 1 : 0]);
rdp.render_mode_changed &= ~0x00001000;
rdp.update |= UPDATE_ALPHA_COMPARE;
if (rdp.othermode_l & 0x00001000)
rdp.flags |= ALPHA_COMPARE;
else
rdp.flags &= ~ALPHA_COMPARE;
}
if (rdp.render_mode_changed & 0x00002000) // alpha cvg sel
{
WriteTrace(TraceRDP, TraceDebug, " |- render_mode_changed alpha cvg sel - on: %s",
str_yn[(rdp.othermode_l & 0x00002000) ? 1 : 0]);
rdp.render_mode_changed &= ~0x00002000;
rdp.update |= UPDATE_COMBINE;
rdp.update |= UPDATE_ALPHA_COMPARE;
}
// Force blend
if (rdp.render_mode_changed & 0xFFFF0000)
{
WriteTrace(TraceRDP, TraceDebug, " |- render_mode_changed force_blend - %08lx", rdp.othermode_l & 0xFFFF0000);
rdp.render_mode_changed &= 0x0000FFFF;
rdp.fbl_a0 = (uint8_t)((rdp.othermode_l >> 30) & 0x3);
rdp.fbl_b0 = (uint8_t)((rdp.othermode_l >> 26) & 0x3);
rdp.fbl_c0 = (uint8_t)((rdp.othermode_l >> 22) & 0x3);
rdp.fbl_d0 = (uint8_t)((rdp.othermode_l >> 18) & 0x3);
rdp.fbl_a1 = (uint8_t)((rdp.othermode_l >> 28) & 0x3);
rdp.fbl_b1 = (uint8_t)((rdp.othermode_l >> 24) & 0x3);
rdp.fbl_c1 = (uint8_t)((rdp.othermode_l >> 20) & 0x3);
rdp.fbl_d1 = (uint8_t)((rdp.othermode_l >> 16) & 0x3);
rdp.update |= UPDATE_COMBINE;
}
// Combine MUST go before texture
if ((rdp.update & UPDATE_COMBINE) && rdp.allow_combine)
{
TBUFF_COLOR_IMAGE * aTBuff[2] = { 0, 0 };
if (rdp.aTBuffTex[0])
aTBuff[rdp.aTBuffTex[0]->tile] = rdp.aTBuffTex[0];
if (rdp.aTBuffTex[1])
aTBuff[rdp.aTBuffTex[1]->tile] = rdp.aTBuffTex[1];
rdp.aTBuffTex[0] = aTBuff[0];
rdp.aTBuffTex[1] = aTBuff[1];
WriteTrace(TraceRDP, TraceDebug, " |-+ update_combine");
Combine();
}
if (rdp.update & UPDATE_TEXTURE) // note: UPDATE_TEXTURE and UPDATE_COMBINE are the same
{
rdp.tex_ctr++;
if (rdp.tex_ctr == 0xFFFFFFFF)
rdp.tex_ctr = 0;
TexCache();
if (rdp.noise == RDP::noise_none)
rdp.update ^= UPDATE_TEXTURE;
}
// Z buffer
if (rdp.update & UPDATE_ZBUF_ENABLED)
{
// already logged above
rdp.update ^= UPDATE_ZBUF_ENABLED;
if (((rdp.flags & ZBUF_ENABLED) || rdp.zsrc == 1) && rdp.cycle_mode < 2)
{
if (rdp.flags & ZBUF_COMPARE)
{
switch ((rdp.rm & 0xC00) >> 10) {
case 0:
grDepthBiasLevel(0);
grDepthBufferFunction(g_settings->zmode_compare_less() ? GR_CMP_LESS : GR_CMP_LEQUAL);
break;
case 1:
grDepthBiasLevel(-4);
grDepthBufferFunction(g_settings->zmode_compare_less() ? GR_CMP_LESS : GR_CMP_LEQUAL);
break;
case 2:
grDepthBiasLevel(g_settings->ucode() == CSettings::ucode_PerfectDark ? -4 : 0);
grDepthBufferFunction(GR_CMP_LESS);
break;
case 3:
// will be set dynamically per polygon
//grDepthBiasLevel(-deltaZ);
grDepthBufferFunction(GR_CMP_LEQUAL);
break;
}
}
else
{
grDepthBiasLevel(0);
grDepthBufferFunction(GR_CMP_ALWAYS);
}
if (rdp.flags & ZBUF_UPDATE)
grDepthMask(FXTRUE);
else
grDepthMask(FXFALSE);
}
else
{
grDepthBiasLevel(0);
grDepthBufferFunction(GR_CMP_ALWAYS);
grDepthMask(FXFALSE);
}
}
// Alpha compare
if (rdp.update & UPDATE_ALPHA_COMPARE)
{
// already logged above
rdp.update ^= UPDATE_ALPHA_COMPARE;
// if (rdp.acmp == 1 && !(rdp.othermode_l & 0x00002000) && !force_full_alpha)
// if (rdp.acmp == 1 && !(rdp.othermode_l & 0x00002000) && (rdp.blend_color&0xFF))
if (rdp.acmp == 1 && !(rdp.othermode_l & 0x00002000) && (!(rdp.othermode_l & 0x00004000) || (rdp.blend_color & 0xFF)))
{
uint8_t reference = (uint8_t)(rdp.blend_color & 0xFF);
grAlphaTestFunction(reference ? GR_CMP_GEQUAL : GR_CMP_GREATER);
grAlphaTestReferenceValue(reference);
WriteTrace(TraceRDP, TraceDebug, " |- alpha compare: blend: %02lx", reference);
}
else
{
if (rdp.flags & ALPHA_COMPARE)
{
if ((rdp.othermode_l & 0x5000) != 0x5000)
{
grAlphaTestFunction(GR_CMP_GEQUAL);
grAlphaTestReferenceValue(0x20);//0xA0);
WriteTrace(TraceRDP, TraceDebug, " |- alpha compare: 0x20");
}
else
{
grAlphaTestFunction(GR_CMP_GREATER);
if (rdp.acmp == 3)
{
grAlphaTestReferenceValue((uint8_t)(rdp.blend_color & 0xFF));
WriteTrace(TraceRDP, TraceDebug, " |- alpha compare: blend: %02lx", rdp.blend_color & 0xFF);
}
else
{
grAlphaTestReferenceValue(0x00);
WriteTrace(TraceRDP, TraceDebug, " |- alpha compare: 0x00");
}
}
}
else
{
grAlphaTestFunction(GR_CMP_ALWAYS);
WriteTrace(TraceRDP, TraceDebug, " |- alpha compare: none");
}
}
if (rdp.acmp == 3 && rdp.cycle_mode < 2)
{
if (g_settings->old_style_adither() || rdp.alpha_dither_mode != 3)
{
WriteTrace(TraceRDP, TraceDebug, " |- alpha compare: dither");
grStippleMode(g_settings->stipple_mode());
}
else
{
grStippleMode(GR_STIPPLE_DISABLE);
}
}
else
{
//WriteTrace(TraceRDP, TraceDebug, " |- alpha compare: dither disabled");
grStippleMode(GR_STIPPLE_DISABLE);
}
}
// Cull mode (leave this in for z-clipped triangles)
if (rdp.update & UPDATE_CULL_MODE)
{
rdp.update ^= UPDATE_CULL_MODE;
uint32_t mode = (rdp.flags & CULLMASK) >> CULLSHIFT;
WriteTrace(TraceRDP, TraceDebug, " |- cull_mode - mode: %s", str_cull[mode]);
switch (mode)
{
case 0: // cull none
case 3: // cull both
grCullMode(GR_CULL_DISABLE);
break;
case 1: // cull front
// grCullMode(GR_CULL_POSITIVE);
grCullMode(GR_CULL_NEGATIVE);
break;
case 2: // cull back
// grCullMode (GR_CULL_NEGATIVE);
grCullMode(GR_CULL_POSITIVE);
break;
}
}
//Added by Gonetz.
if (g_settings->fog() && (rdp.update & UPDATE_FOG_ENABLED))
{
rdp.update ^= UPDATE_FOG_ENABLED;
uint16_t blender = (uint16_t)(rdp.othermode_l >> 16);
if (rdp.flags & FOG_ENABLED)
{
rdp_blender_setting &bl = *(rdp_blender_setting*)(&(blender));
if ((rdp.fog_multiplier > 0) && (bl.c1_m1a == 3 || bl.c1_m2a == 3 || bl.c2_m1a == 3 || bl.c2_m2a == 3))
{
grFogColorValue(rdp.fog_color);
grFogMode(GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT);
rdp.fog_mode = RDP::fog_enabled;
WriteTrace(TraceRDP, TraceDebug, "fog enabled ");
}
else
{
WriteTrace(TraceRDP, TraceDebug, "fog disabled in blender");
rdp.fog_mode = RDP::fog_disabled;
grFogMode(GR_FOG_DISABLE);
}
}
else if (blender == 0xc410 || blender == 0xc411 || blender == 0xf500)
{
grFogColorValue(rdp.fog_color);
grFogMode(GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT);
rdp.fog_mode = RDP::fog_blend;
WriteTrace(TraceRDP, TraceDebug, "fog blend ");
}
else if (blender == 0x04d1)
{
grFogColorValue(rdp.fog_color);
grFogMode(GR_FOG_WITH_TABLE_ON_FOGCOORD_EXT);
rdp.fog_mode = RDP::fog_blend_inverse;
WriteTrace(TraceRDP, TraceDebug, "fog blend ");
}
else
{
WriteTrace(TraceRDP, TraceDebug, "fog disabled");
rdp.fog_mode = RDP::fog_disabled;
grFogMode(GR_FOG_DISABLE);
}
}
if (rdp.update & UPDATE_VIEWPORT)
{
rdp.update ^= UPDATE_VIEWPORT;
float scale_x = (float)fabs(rdp.view_scale[0]);
float scale_y = (float)fabs(rdp.view_scale[1]);
rdp.clip_min_x = maxval((rdp.view_trans[0] - scale_x + rdp.offset_x) / rdp.clip_ratio, 0.0f);
rdp.clip_min_y = maxval((rdp.view_trans[1] - scale_y + rdp.offset_y) / rdp.clip_ratio, 0.0f);
rdp.clip_max_x = minval((rdp.view_trans[0] + scale_x + rdp.offset_x) * rdp.clip_ratio, g_settings->res_x());
rdp.clip_max_y = minval((rdp.view_trans[1] + scale_y + rdp.offset_y) * rdp.clip_ratio, g_settings->res_y());
WriteTrace(TraceRDP, TraceDebug, " |- viewport - (%d, %d, %d, %d)", (uint32_t)rdp.clip_min_x, (uint32_t)rdp.clip_min_y, (uint32_t)rdp.clip_max_x, (uint32_t)rdp.clip_max_y);
if (!rdp.scissor_set)
{
rdp.scissor.ul_x = (uint32_t)rdp.clip_min_x;
rdp.scissor.lr_x = (uint32_t)rdp.clip_max_x;
rdp.scissor.ul_y = (uint32_t)rdp.clip_min_y;
rdp.scissor.lr_y = (uint32_t)rdp.clip_max_y;
grClipWindow(rdp.scissor.ul_x, rdp.scissor.ul_y, rdp.scissor.lr_x, rdp.scissor.lr_y);
}
}
if (rdp.update & UPDATE_SCISSOR)
{
update_scissor();
}
WriteTrace(TraceRDP, TraceDebug, " + update end");
}
void set_message_combiner()
{
grColorCombine(GR_COMBINE_FUNCTION_SCALE_OTHER,
GR_COMBINE_FACTOR_ONE,
GR_COMBINE_LOCAL_NONE,
GR_COMBINE_OTHER_TEXTURE,
FXFALSE);
grAlphaCombine(GR_COMBINE_FUNCTION_SCALE_OTHER,
GR_COMBINE_FACTOR_ONE,
GR_COMBINE_LOCAL_NONE,
GR_COMBINE_OTHER_TEXTURE,
FXFALSE);
grAlphaBlendFunction(GR_BLEND_ONE,
GR_BLEND_ZERO,
GR_BLEND_ZERO,
GR_BLEND_ZERO);
grAlphaTestFunction(GR_CMP_ALWAYS);
grStippleMode(GR_STIPPLE_DISABLE);
grTexFilterMode(0, GR_TEXTUREFILTER_BILINEAR, GR_TEXTUREFILTER_BILINEAR);
grTexCombine(GR_TMU1,
GR_COMBINE_FUNCTION_NONE,
GR_COMBINE_FACTOR_NONE,
GR_COMBINE_FUNCTION_NONE,
GR_COMBINE_FACTOR_NONE,
FXFALSE, FXFALSE);
grTexCombine(GR_TMU0,
GR_COMBINE_FUNCTION_LOCAL,
GR_COMBINE_FACTOR_NONE,
GR_COMBINE_FUNCTION_LOCAL,
GR_COMBINE_FACTOR_NONE,
FXFALSE, FXFALSE);
grTexSource(GR_TMU0,
voodoo.tex_min_addr[GR_TMU0] + offset_font,
GR_MIPMAPLEVELMASK_BOTH,
&fontTex);
grFogMode(GR_FOG_DISABLE);
}