project64/Source/Project64/N64 System/Recompiler/Reg Info.cpp

1277 lines
39 KiB
C++

/****************************************************************************
* *
* Project 64 - A Nintendo 64 emulator. *
* http://www.pj64-emu.com/ *
* Copyright (C) 2012 Project64. All rights reserved. *
* *
* License: *
* GNU/GPLv2 http://www.gnu.org/licenses/gpl-2.0.html *
* *
****************************************************************************/
#include "stdafx.h"
unsigned int CRegInfo::m_fpuControl = 0;
char *Format_Name[] = {"Unknown","dword","qword","float","double"};
CRegInfo::CRegInfo ( void ) :
m_CycleCount(0),
m_Stack_TopPos(0),
m_Fpu_Used(false),
m_RoundingModel(RoundUnknown)
{
m_MIPS_RegState[0] = STATE_CONST_32_SIGN;
m_MIPS_RegVal[0].DW = 0;
m_RegMapLo[0] = x86_Unknown;
m_RegMapHi[0] = x86_Unknown;
for (int i = 1; i < 32; i++ )
{
m_MIPS_RegState[i] = STATE_UNKNOWN;
m_MIPS_RegVal[i].DW = 0;
m_RegMapLo[i] = x86_Unknown;
m_RegMapHi[i] = x86_Unknown;
}
for (int i = 0, n = sizeof(m_x86reg_MappedTo) / sizeof(m_x86reg_MappedTo[0]); i < n; i++ )
{
m_x86reg_MappedTo[i] = NotMapped;
m_x86reg_Protected[i] = false;
m_x86reg_MapOrder[i] = 0;
}
for (int i = 0, n = sizeof(x86fpu_MappedTo) / sizeof(x86fpu_MappedTo[0]); i < n; i++ )
{
x86fpu_MappedTo[i] = -1;
x86fpu_State[i] = FPU_Unknown;
x86fpu_StateChanged[i] = false;
x86fpu_RoundingModel[i] = RoundDefault;
}
}
CRegInfo::CRegInfo(const CRegInfo& rhs)
{
*this = rhs;
}
CRegInfo::~CRegInfo()
{
}
CRegInfo& CRegInfo::operator=(const CRegInfo& right)
{
m_CycleCount = right.m_CycleCount;
m_Stack_TopPos = right.m_Stack_TopPos;
m_Fpu_Used = right.m_Fpu_Used;
m_RoundingModel = right.m_RoundingModel;
memcpy(&m_MIPS_RegState,&right.m_MIPS_RegState,sizeof(m_MIPS_RegState));
memcpy(&m_MIPS_RegVal,&right.m_MIPS_RegVal,sizeof(m_MIPS_RegVal));
memcpy(&m_RegMapLo,&right.m_RegMapLo,sizeof(m_RegMapLo));
memcpy(&m_RegMapHi,&right.m_RegMapHi,sizeof(m_RegMapHi));
memcpy(&m_x86reg_MappedTo,&right.m_x86reg_MappedTo,sizeof(m_x86reg_MappedTo));
memcpy(&m_x86reg_Protected,&right.m_x86reg_Protected,sizeof(m_x86reg_Protected));
memcpy(&m_x86reg_MapOrder,&right.m_x86reg_MapOrder,sizeof(m_x86reg_MapOrder));
memcpy(&x86fpu_MappedTo,&right.x86fpu_MappedTo,sizeof(x86fpu_MappedTo));
memcpy(&x86fpu_State,&right.x86fpu_State,sizeof(x86fpu_State));
memcpy(&x86fpu_StateChanged,&right.x86fpu_StateChanged,sizeof(x86fpu_StateChanged));
memcpy(&x86fpu_RoundingModel,&right.x86fpu_RoundingModel,sizeof(x86fpu_RoundingModel));
#ifdef _DEBUG
if (*this != right)
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
#endif
return *this;
}
bool CRegInfo::operator==(const CRegInfo& right) const
{
int count;
for (count = 0; count < 32; count ++ ) {
if (m_MIPS_RegState[count] != right.m_MIPS_RegState[count])
{
return false;
}
if (m_MIPS_RegState[count] == STATE_UNKNOWN)
{
continue;
}
if (m_MIPS_RegVal[count].DW != right.m_MIPS_RegVal[count].DW)
{
return false;
}
}
for (count = 0; count < 10; count ++ ) {
if (m_x86reg_MappedTo[count] != right.m_x86reg_MappedTo[count]) { return false; }
if (m_x86reg_Protected[count] != right.m_x86reg_Protected[count]) { return false; }
if (m_x86reg_MapOrder[count] != right.m_x86reg_MapOrder[count]) { return false; }
}
if (m_CycleCount != right.m_CycleCount) { return false; }
if (m_Stack_TopPos != right.m_Stack_TopPos) { return false; }
for (count = 0; count < 8; count ++ ) {
if (x86fpu_MappedTo[count] != right.x86fpu_MappedTo[count]) { return false; }
if (x86fpu_State[count] != right.x86fpu_State[count]) { return false; }
if (x86fpu_RoundingModel[count] != right.x86fpu_RoundingModel[count]) { return false; }
}
if (m_Fpu_Used != right.m_Fpu_Used) { return false; }
if (GetRoundingModel() != right.GetRoundingModel()) { return false; }
return true;
}
bool CRegInfo::operator!=(const CRegInfo& right) const
{
return !(right == *this);
}
CRegInfo::REG_STATE CRegInfo::ConstantsType (__int64 Value)
{
if (((Value >> 32) == -1) && ((Value & 0x80000000) != 0)) { return STATE_CONST_32_SIGN; }
if (((Value >> 32) == 0) && ((Value & 0x80000000) == 0)) { return STATE_CONST_32_SIGN; }
return STATE_CONST_64;
}
void CRegInfo::FixRoundModel(FPU_ROUND RoundMethod )
{
if (GetRoundingModel() == RoundMethod)
{
return;
}
CPU_Message(" FixRoundModel: CurrentRoundingModel: %s targetRoundModel: %s",RoundingModelName(GetRoundingModel()),RoundingModelName(RoundMethod));
m_fpuControl = 0;
fpuStoreControl(&m_fpuControl, "m_fpuControl");
x86Reg reg = Map_TempReg(x86_Any,-1,FALSE);
MoveVariableToX86reg(&m_fpuControl, "m_fpuControl", reg);
AndConstToX86Reg(reg, 0xF3FF);
if (RoundMethod == RoundDefault)
{
x86Reg RoundReg = Map_TempReg(x86_Any,-1,FALSE);
MoveVariableToX86reg(&g_Reg->m_RoundingModel,"m_RoundingModel", RoundReg);
ShiftLeftSignImmed(RoundReg,2);
OrX86RegToX86Reg(reg,RoundReg);
SetX86Protected(RoundReg,false);
} else {
switch (RoundMethod) {
case RoundTruncate: OrConstToX86Reg(0x0C00, reg); break;
case RoundNearest: /*OrConstToX86Reg(0x0000, reg);*/ break;
case RoundDown: OrConstToX86Reg(0x0400, reg); break;
case RoundUp: OrConstToX86Reg(0x0800, reg); break;
default:
g_Notify->DisplayError(L"Unknown Rounding model");
}
}
MoveX86regToVariable(reg, &m_fpuControl, "m_fpuControl");
SetX86Protected(reg,false);
fpuLoadControl(&m_fpuControl, "m_fpuControl");
SetRoundingModel(RoundMethod);
}
void CRegInfo::ChangeFPURegFormat (int Reg, FPU_STATE OldFormat, FPU_STATE NewFormat, FPU_ROUND RoundingModel)
{
for (DWORD i = 0; i < 8; i++)
{
if (x86fpu_MappedTo[i] != Reg)
{
continue;
}
if (x86fpu_State[i] != OldFormat || x86fpu_StateChanged[i])
{
UnMap_FPR(Reg,TRUE);
Load_FPR_ToTop(Reg,Reg,OldFormat);
} else {
CPU_Message(" regcache: Changed format of ST(%d) from %s to %s", (i - StackTopPos() + 8) & 7,Format_Name[OldFormat],Format_Name[NewFormat]);
}
FpuRoundingModel(i) = RoundingModel;
x86fpu_State[i] = NewFormat;
x86fpu_StateChanged[i] = true;
return;
}
if (bHaveDebugger())
{
g_Notify->DisplayError(L"ChangeFormat: Register not on stack!!");
}
}
void CRegInfo::Load_FPR_ToTop ( int Reg, int RegToLoad, FPU_STATE Format)
{
if (GetRoundingModel() != RoundDefault)
{
FixRoundModel(RoundDefault);
}
CPU_Message("CurrentRoundingModel: %s FpuRoundingModel(StackTopPos()): %s",RoundingModelName(GetRoundingModel()),RoundingModelName(FpuRoundingModel(StackTopPos())));
int i;
if (RegToLoad < 0) { g_Notify->DisplayError(L"Load_FPR_ToTop\nRegToLoad < 0 ???"); return; }
if (Reg < 0) { g_Notify->DisplayError(L"Load_FPR_ToTop\nReg < 0 ???"); return; }
if (Format == FPU_Double || Format == FPU_Qword) {
UnMap_FPR(Reg + 1,TRUE);
UnMap_FPR(RegToLoad + 1,TRUE);
} else {
if ((Reg & 1) != 0) {
for (i = 0; i < 8; i++) {
if (x86fpu_MappedTo[i] == (Reg - 1)) {
if (x86fpu_State[i] == FPU_Double || x86fpu_State[i] == FPU_Qword) {
UnMap_FPR(Reg,TRUE);
}
i = 8;
}
}
}
if ((RegToLoad & 1) != 0) {
for (i = 0; i < 8; i++) {
if (x86fpu_MappedTo[i] == (RegToLoad - 1)) {
if (x86fpu_State[i] == FPU_Double || x86fpu_State[i] == FPU_Qword) {
UnMap_FPR(RegToLoad,TRUE);
}
i = 8;
}
}
}
}
if (Reg == RegToLoad) {
//if different format then unmap original reg from stack
for (i = 0; i < 8; i++) {
if (x86fpu_MappedTo[i] != Reg)
{
continue;
}
if (x86fpu_State[i] != Format) {
UnMap_FPR(Reg,TRUE);
}
break;
}
} else {
//if different format then unmap original reg from stack
for (i = 0; i < 8; i++)
{
if (x86fpu_MappedTo[i] != Reg)
{
continue;
}
UnMap_FPR(Reg,x86fpu_State[i] != Format);
break;
}
}
if (RegInStack(RegToLoad,Format)) {
if (Reg != RegToLoad) {
if (x86fpu_MappedTo[(StackTopPos() - 1) & 7] != RegToLoad) {
UnMap_FPR(x86fpu_MappedTo[(StackTopPos() - 1) & 7],TRUE);
CPU_Message(" regcache: allocate ST(0) to %s", CRegName::FPR[Reg]);
fpuLoadReg(&StackTopPos(),StackPosition(RegToLoad));
FpuRoundingModel(StackTopPos()) = RoundDefault;
x86fpu_MappedTo[StackTopPos()] = Reg;
x86fpu_State[StackTopPos()] = Format;
x86fpu_StateChanged[StackTopPos()] = false;
} else {
UnMap_FPR(x86fpu_MappedTo[(StackTopPos() - 1) & 7],TRUE);
Load_FPR_ToTop (Reg, RegToLoad, Format);
}
} else {
x86FpuValues RegPos = x86_ST_Unknown;
for (DWORD i = 0; i < 8; i++) {
if (x86fpu_MappedTo[i] == Reg) {
RegPos = (x86FpuValues)i;
i = 8;
}
}
if (RegPos == StackTopPos()) {
return;
}
x86FpuValues StackPos = StackPosition(Reg);
FpuRoundingModel(RegPos) = FpuRoundingModel(StackTopPos());
x86fpu_MappedTo[RegPos] = x86fpu_MappedTo[StackTopPos()];
x86fpu_State[RegPos] = x86fpu_State[StackTopPos()];
x86fpu_StateChanged[RegPos] = x86fpu_StateChanged[StackTopPos()];
CPU_Message(" regcache: allocate ST(%d) to %s", StackPos,CRegName::FPR[x86fpu_MappedTo[RegPos]]);
CPU_Message(" regcache: allocate ST(0) to %s", CRegName::FPR[Reg]);
fpuExchange(StackPos);
FpuRoundingModel(StackTopPos()) = RoundDefault;
x86fpu_MappedTo[StackTopPos()] = Reg;
x86fpu_State[StackTopPos()] = Format;
x86fpu_StateChanged[StackTopPos()] = false;
}
} else {
char Name[50];
x86Reg TempReg;
UnMap_FPR(x86fpu_MappedTo[(StackTopPos() - 1) & 7],TRUE);
for (i = 0; i < 8; i++) {
if (x86fpu_MappedTo[i] == RegToLoad) {
UnMap_FPR(RegToLoad,TRUE);
i = 8;
}
}
CPU_Message(" regcache: allocate ST(0) to %s", CRegName::FPR[Reg]);
TempReg = Map_TempReg(x86_Any,-1,FALSE);
switch (Format) {
case FPU_Dword:
sprintf(Name,"m_FPR_S[%d]",RegToLoad);
MoveVariableToX86reg(&g_Reg->m_FPR_S[RegToLoad],Name,TempReg);
fpuLoadIntegerDwordFromX86Reg(&StackTopPos(),TempReg);
break;
case FPU_Qword:
sprintf(Name,"m_FPR_D[%d]",RegToLoad);
MoveVariableToX86reg(&g_Reg->m_FPR_D[RegToLoad],Name,TempReg);
fpuLoadIntegerQwordFromX86Reg(&StackTopPos(),TempReg);
break;
case FPU_Float:
sprintf(Name,"m_FPR_S[%d]",RegToLoad);
MoveVariableToX86reg(&g_Reg->m_FPR_S[RegToLoad],Name,TempReg);
fpuLoadDwordFromX86Reg(&StackTopPos(),TempReg);
break;
case FPU_Double:
sprintf(Name,"m_FPR_D[%d]",RegToLoad);
MoveVariableToX86reg(&g_Reg->m_FPR_D[RegToLoad],Name,TempReg);
fpuLoadQwordFromX86Reg(&StackTopPos(),TempReg);
break;
default:
if (bHaveDebugger()) { g_Notify->DisplayError(L"Load_FPR_ToTop\nUnkown format to load %d",Format); }
}
SetX86Protected(TempReg,FALSE);
FpuRoundingModel(StackTopPos()) = RoundDefault;
x86fpu_MappedTo[StackTopPos()] = Reg;
x86fpu_State[StackTopPos()] = Format;
x86fpu_StateChanged[StackTopPos()] = false;
}
}
CRegInfo::x86FpuValues CRegInfo::StackPosition (int Reg)
{
int i;
for (i = 0; i < 8; i++) {
if (x86fpu_MappedTo[i] == Reg) {
return (x86FpuValues)((i - StackTopPos()) & 7);
}
}
return x86_ST_Unknown;
}
CX86Ops::x86Reg CRegInfo::FreeX86Reg ( void )
{
if (GetX86Mapped(x86_EDI) == NotMapped && !GetX86Protected(x86_EDI)) { return x86_EDI; }
if (GetX86Mapped(x86_ESI) == NotMapped && !GetX86Protected(x86_ESI)) { return x86_ESI; }
if (GetX86Mapped(x86_EBX) == NotMapped && !GetX86Protected(x86_EBX)) { return x86_EBX; }
if (GetX86Mapped(x86_EAX) == NotMapped && !GetX86Protected(x86_EAX)) { return x86_EAX; }
if (GetX86Mapped(x86_EDX) == NotMapped && !GetX86Protected(x86_EDX)) { return x86_EDX; }
if (GetX86Mapped(x86_ECX) == NotMapped && !GetX86Protected(x86_ECX)) { return x86_ECX; }
x86Reg Reg = UnMap_TempReg();
if (Reg != x86_Unknown) { return Reg; }
int count, MapCount[10];
x86Reg MapReg[10];
for (count = 0; count < 10; count ++)
{
MapCount[count] = GetX86MapOrder((x86Reg)count);
MapReg[count] = (x86Reg)count;
}
for (count = 0; count < 10; count ++) {
int i;
for (i = 0; i < 9; i ++) {
x86Reg tempReg;
DWORD temp;
if (MapCount[i] < MapCount[i+1]) {
temp = MapCount[i];
MapCount[i] = MapCount[i+1];
MapCount[i+1] = temp;
tempReg = MapReg[i];
MapReg[i] = MapReg[i+1];
MapReg[i+1] = tempReg;
}
}
}
x86Reg StackReg = x86_Unknown;
for (count = 0; count < 10; count ++)
{
if (MapCount[count] > 0 && GetX86Mapped(MapReg[count]) != Stack_Mapped)
{
if (UnMap_X86reg((x86Reg)MapReg[count]))
{
return (x86Reg)MapReg[count];
}
}
if (GetX86Mapped(MapReg[count]) == Stack_Mapped) { StackReg = MapReg[count]; }
}
if (StackReg != x86_Unknown) {
UnMap_X86reg(StackReg);
return StackReg;
}
return x86_Unknown;
}
CX86Ops::x86Reg CRegInfo::Free8BitX86Reg ( void )
{
if (GetX86Mapped(x86_EBX) == NotMapped && !GetX86Protected(x86_EBX)) {return x86_EBX; }
if (GetX86Mapped(x86_EAX) == NotMapped && !GetX86Protected(x86_EAX)) {return x86_EAX; }
if (GetX86Mapped(x86_EDX) == NotMapped && !GetX86Protected(x86_EDX)) {return x86_EDX; }
if (GetX86Mapped(x86_ECX) == NotMapped && !GetX86Protected(x86_ECX)) {return x86_ECX; }
x86Reg Reg = UnMap_8BitTempReg();
if (Reg > 0) { return Reg; }
int count, MapCount[10], MapReg[10];
for (count = 0; count < 10; count ++) {
MapCount[count] = GetX86MapOrder((x86Reg)count);
MapReg[count] = count;
}
for (count = 0; count < 10; count ++) {
int i;
for (i = 0; i < 9; i ++) {
int temp;
if (MapCount[i] < MapCount[i+1]) {
temp = MapCount[i];
MapCount[i] = MapCount[i+1];
MapCount[i+1] = temp;
temp = MapReg[i];
MapReg[i] = MapReg[i+1];
MapReg[i+1] = temp;
}
}
}
for (count = 0; count < 10; count ++) {
if (MapCount[count] > 0) {
if (!Is8BitReg((x86Reg)count)) { continue; }
if (UnMap_X86reg((x86Reg)count)) {
return (x86Reg)count;
}
}
}
return x86_Unknown;
}
CX86Ops::x86Reg CRegInfo::UnMap_8BitTempReg (void )
{
int count;
for (count = 0; count < 10; count ++) {
if (!Is8BitReg((x86Reg)count)) { continue; }
if (GetMipsRegState((x86Reg)count) == Temp_Mapped) {
if (GetX86Protected((x86Reg)count) == FALSE) {
CPU_Message(" regcache: unallocate %s from temp storage",x86_Name((x86Reg)count));
SetX86Mapped((x86Reg)count, CRegInfo::NotMapped);
return (x86Reg)count;
}
}
}
return x86_Unknown;
}
CRegInfo::x86Reg CRegInfo::Get_MemoryStack ( void ) const
{
for (int i = 0, n = sizeof(x86_Registers)/ sizeof(x86_Registers[0]); i < n; i++)
{
if (GetX86Mapped(x86_Registers[i]) == Stack_Mapped)
{
return x86_Registers[i];
}
}
return x86_Unknown;
}
CRegInfo::x86Reg CRegInfo::Map_MemoryStack ( x86Reg Reg, bool bMapRegister, bool LoadValue)
{
x86Reg CurrentMap = Get_MemoryStack();
if (!bMapRegister)
{
//if not mapping then just return what the current mapping is
return CurrentMap;
}
if (CurrentMap != x86_Unknown && CurrentMap == Reg)
{
//already mapped to correct reg
return CurrentMap;
}
// map a register
if (Reg == x86_Any)
{
if (CurrentMap != x86_Unknown)
{
return CurrentMap;
}
Reg = FreeX86Reg();
if (Reg == x86_Unknown)
{
g_Notify->DisplayError(L"Map_MemoryStack\n\nOut of registers");
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
SetX86Mapped(Reg,CRegInfo::Stack_Mapped);
CPU_Message(" regcache: allocate %s as Memory Stack",x86_Name(Reg));
if (LoadValue)
{
MoveVariableToX86reg(&g_Recompiler->MemoryStackPos(),"MemoryStack",Reg);
}
return Reg;
}
//move to a register/allocate register
UnMap_X86reg(Reg);
if (CurrentMap != x86_Unknown)
{
CPU_Message(" regcache: change allocation of Memory Stack from %s to %s",x86_Name(CurrentMap),x86_Name(Reg));
SetX86Mapped(Reg, CRegInfo::Stack_Mapped);
SetX86Mapped(CurrentMap,CRegInfo::NotMapped);
MoveX86RegToX86Reg(CurrentMap,Reg);
} else {
SetX86Mapped(Reg,CRegInfo::Stack_Mapped);
CPU_Message(" regcache: allocate %s as Memory Stack",x86_Name(Reg));
if (LoadValue)
{
MoveVariableToX86reg(&g_Recompiler->MemoryStackPos(),"MemoryStack",Reg);
}
}
return Reg;
}
void CRegInfo::Map_GPR_32bit (int MipsReg, bool SignValue, int MipsRegToLoad)
{
int count;
x86Reg Reg;
if (MipsReg == 0)
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
return;
}
if (IsUnknown(MipsReg) || IsConst(MipsReg))
{
Reg = FreeX86Reg();
if (Reg < 0) {
if (bHaveDebugger()) { g_Notify->DisplayError(L"Map_GPR_32bit\n\nOut of registers"); }
g_Notify->BreakPoint(__FILEW__,__LINE__);
return;
}
CPU_Message(" regcache: allocate %s to %s",x86_Name(Reg),CRegName::GPR[MipsReg]);
} else {
if (Is64Bit(MipsReg))
{
CPU_Message(" regcache: unallocate %s from high 32bit of %s",x86_Name(GetMipsRegMapHi(MipsReg)),CRegName::GPR_Hi[MipsReg]);
SetX86MapOrder(GetMipsRegMapHi(MipsReg),0);
SetX86Mapped(GetMipsRegMapHi(MipsReg),NotMapped);
SetX86Protected(GetMipsRegMapHi(MipsReg),FALSE);
SetMipsRegHi(MipsReg,0);
}
Reg = GetMipsRegMapLo(MipsReg);
}
for (count = 0; count < 10; count ++)
{
DWORD Count = GetX86MapOrder((x86Reg)count);
if ( Count > 0)
{
SetX86MapOrder((x86Reg)count,Count + 1);
}
}
SetX86MapOrder(Reg,1);
if (MipsRegToLoad > 0)
{
if (IsUnknown(MipsRegToLoad))
{
MoveVariableToX86reg(&_GPR[MipsRegToLoad].UW[0],CRegName::GPR_Lo[MipsRegToLoad],Reg);
} else if (IsMapped(MipsRegToLoad)) {
if (MipsReg != MipsRegToLoad)
{
MoveX86RegToX86Reg(GetMipsRegMapLo(MipsRegToLoad),Reg);
}
} else {
MoveConstToX86reg(GetMipsRegLo(MipsRegToLoad),Reg);
}
} else if (MipsRegToLoad == 0) {
XorX86RegToX86Reg(Reg,Reg);
}
SetX86Mapped(Reg,GPR_Mapped);
SetX86Protected(Reg,TRUE);
SetMipsRegMapLo(MipsReg,Reg);
SetMipsRegState(MipsReg,SignValue ? STATE_MAPPED_32_SIGN : STATE_MAPPED_32_ZERO);
}
void CRegInfo::Map_GPR_64bit ( int MipsReg, int MipsRegToLoad)
{
x86Reg x86Hi, x86lo;
int count;
if (MipsReg == 0) {
if (bHaveDebugger()) { g_Notify->DisplayError(L"Map_GPR_32bit\n\nWhy are you trying to map reg 0"); }
return;
}
ProtectGPR(MipsReg);
if (IsUnknown(MipsReg) || IsConst(MipsReg)) {
x86Hi = FreeX86Reg();
if (x86Hi < 0)
{
if (bHaveDebugger()) { g_Notify->DisplayError(L"Map_GPR_64bit\n\nOut of registers"); }
return;
}
SetX86Protected(x86Hi,TRUE);
x86lo = FreeX86Reg();
if (x86lo < 0) { g_Notify->DisplayError(L"Map_GPR_64bit\n\nOut of registers"); return; }
SetX86Protected(x86lo,TRUE);
CPU_Message(" regcache: allocate %s to hi word of %s",x86_Name(x86Hi),CRegName::GPR[MipsReg]);
CPU_Message(" regcache: allocate %s to low word of %s",x86_Name(x86lo),CRegName::GPR[MipsReg]);
} else {
x86lo = GetMipsRegMapLo(MipsReg);
if (Is32Bit(MipsReg)) {
SetX86Protected(x86lo,TRUE);
x86Hi = FreeX86Reg();
if (x86Hi == x86_Unknown)
{
g_Notify->BreakPoint(__FILEW__,__LINE__);
return;
}
SetX86Protected(x86Hi,TRUE);
CPU_Message(" regcache: allocate %s to hi word of %s",x86_Name(x86Hi),CRegName::GPR[MipsReg]);
} else {
x86Hi = GetMipsRegMapHi(MipsReg);
}
}
for (count = 0; count < 10; count ++)
{
int MapOrder = GetX86MapOrder((x86Reg)count);
if (MapOrder > 0)
{
SetX86MapOrder((x86Reg)count,MapOrder + 1);
}
}
SetX86MapOrder(x86Hi,1);
SetX86MapOrder(x86lo,1);
if (MipsRegToLoad > 0) {
if (IsUnknown(MipsRegToLoad)) {
MoveVariableToX86reg(&_GPR[MipsRegToLoad].UW[1],CRegName::GPR_Hi[MipsRegToLoad],x86Hi);
MoveVariableToX86reg(&_GPR[MipsRegToLoad].UW[0],CRegName::GPR_Lo[MipsRegToLoad],x86lo);
} else if (IsMapped(MipsRegToLoad)) {
if (Is32Bit(MipsRegToLoad)) {
if (IsSigned(MipsRegToLoad)) {
MoveX86RegToX86Reg(GetMipsRegMapLo(MipsRegToLoad),x86Hi);
ShiftRightSignImmed(x86Hi,31);
} else {
XorX86RegToX86Reg(x86Hi,x86Hi);
}
if (MipsReg != MipsRegToLoad) {
MoveX86RegToX86Reg(GetMipsRegMapLo(MipsRegToLoad),x86lo);
}
} else {
if (MipsReg != MipsRegToLoad) {
MoveX86RegToX86Reg(GetMipsRegMapHi(MipsRegToLoad),x86Hi);
MoveX86RegToX86Reg(GetMipsRegMapLo(MipsRegToLoad),x86lo);
}
}
} else {
CPU_Message("Map_GPR_64bit 11");
if (Is32Bit(MipsRegToLoad)) {
if (IsSigned(MipsRegToLoad)) {
MoveConstToX86reg(GetMipsRegLo_S(MipsRegToLoad) >> 31,x86Hi);
} else {
MoveConstToX86reg(0,x86Hi);
}
} else {
MoveConstToX86reg(GetMipsRegHi(MipsRegToLoad),x86Hi);
}
MoveConstToX86reg(GetMipsRegLo(MipsRegToLoad),x86lo);
}
} else if (MipsRegToLoad == 0) {
XorX86RegToX86Reg(x86Hi,x86Hi);
XorX86RegToX86Reg(x86lo,x86lo);
}
SetX86Mapped(x86Hi,GPR_Mapped);
SetX86Mapped(x86lo,GPR_Mapped);
SetMipsRegMapHi(MipsReg,x86Hi);
SetMipsRegMapLo(MipsReg,x86lo);
SetMipsRegState(MipsReg,STATE_MAPPED_64);
}
CX86Ops::x86Reg CRegInfo::Map_TempReg (CX86Ops::x86Reg Reg, int MipsReg, BOOL LoadHiWord)
{
int count;
if (Reg == x86_Any)
{
if (GetX86Mapped(x86_EAX) == Temp_Mapped && !GetX86Protected(x86_EAX)) { Reg = x86_EAX; }
else if (GetX86Mapped(x86_EBX) == Temp_Mapped && !GetX86Protected(x86_EBX)) { Reg = x86_EBX; }
else if (GetX86Mapped(x86_ECX) == Temp_Mapped && !GetX86Protected(x86_ECX)) { Reg = x86_ECX; }
else if (GetX86Mapped(x86_EDX) == Temp_Mapped && !GetX86Protected(x86_EDX)) { Reg = x86_EDX; }
else if (GetX86Mapped(x86_ESI) == Temp_Mapped && !GetX86Protected(x86_ESI)) { Reg = x86_ESI; }
else if (GetX86Mapped(x86_EDI) == Temp_Mapped && !GetX86Protected(x86_EDI)) { Reg = x86_EDI; }
else if (GetX86Mapped(x86_EBP) == Temp_Mapped && !GetX86Protected(x86_EBP)) { Reg = x86_EBP; }
else if (GetX86Mapped(x86_ESP) == Temp_Mapped && !GetX86Protected(x86_ESP)) { Reg = x86_ESP; }
if (Reg == x86_Any) {
Reg = FreeX86Reg();
if (Reg == x86_Unknown)
{
WriteTrace(TraceError,__FUNCTION__ ": Failed to find a free register");
g_Notify->BreakPoint(__FILEW__,__LINE__);
return x86_Unknown;
}
}
}
else if (Reg == x86_Any8Bit)
{
if (GetX86Mapped(x86_EAX) == Temp_Mapped && !GetX86Protected(x86_EAX)) { Reg = x86_EAX; }
else if (GetX86Mapped(x86_EBX) == Temp_Mapped && !GetX86Protected(x86_EBX)) { Reg = x86_EBX; }
else if (GetX86Mapped(x86_ECX) == Temp_Mapped && !GetX86Protected(x86_ECX)) { Reg = x86_ECX; }
else if (GetX86Mapped(x86_EDX) == Temp_Mapped && !GetX86Protected(x86_EDX)) { Reg = x86_EDX; }
if (Reg == x86_Any8Bit)
{
Reg = Free8BitX86Reg();
if (Reg < 0) {
WriteTrace(TraceError,__FUNCTION__ ": Failed to find a free 8 bit register");
g_Notify->BreakPoint(__FILEW__,__LINE__);
return x86_Unknown;
}
}
} else if (GetX86Mapped(Reg) == GPR_Mapped) {
if (GetX86Protected(Reg))
{
WriteTrace(TraceError,__FUNCTION__ ": Register is protected");
g_Notify->BreakPoint(__FILEW__,__LINE__);
return x86_Unknown;
}
SetX86Protected(Reg,true);
x86Reg NewReg = FreeX86Reg();
for (count = 1; count < 32; count ++)
{
if (!IsMapped(count))
{
continue;
}
if (GetMipsRegMapLo(count) == Reg)
{
if (NewReg == x86_Unknown)
{
UnMap_GPR(count,TRUE);
break;
}
CPU_Message(" regcache: change allocation of %s from %s to %s",CRegName::GPR[count],x86_Name(Reg),x86_Name(NewReg));
SetX86Mapped(NewReg,GPR_Mapped);
SetX86MapOrder(NewReg,GetX86MapOrder(Reg));
SetMipsRegMapLo(count,NewReg);
MoveX86RegToX86Reg(Reg,NewReg);
if (MipsReg == count && LoadHiWord == FALSE) { MipsReg = -1; }
break;
}
if (Is64Bit(count) && GetMipsRegMapHi(count) == Reg)
{
if (NewReg == x86_Unknown)
{
UnMap_GPR(count,TRUE);
break;
}
CPU_Message(" regcache: change allocation of %s from %s to %s",CRegName::GPR_Hi[count],x86_Name(Reg),x86_Name(NewReg));
SetX86Mapped(NewReg,GPR_Mapped);
SetX86MapOrder(NewReg,GetX86MapOrder(Reg));
SetMipsRegMapHi(count,NewReg);
MoveX86RegToX86Reg(Reg,NewReg);
if (MipsReg == count && LoadHiWord == TRUE) { MipsReg = -1; }
break;
}
}
}
else if (GetX86Mapped(Reg) == Stack_Mapped)
{
UnMap_X86reg(Reg);
}
CPU_Message(" regcache: allocate %s as temp storage",x86_Name(Reg));
if (MipsReg >= 0) {
if (LoadHiWord) {
if (IsUnknown(MipsReg))
{
MoveVariableToX86reg(&_GPR[MipsReg].UW[1],CRegName::GPR_Hi[MipsReg],Reg);
}
else if (IsMapped(MipsReg))
{
if (Is64Bit(MipsReg)) {
MoveX86RegToX86Reg(GetMipsRegMapHi(MipsReg),Reg);
} else if (IsSigned(MipsReg)){
MoveX86RegToX86Reg(GetMipsRegMapLo(MipsReg),Reg);
ShiftRightSignImmed(Reg,31);
} else {
MoveConstToX86reg(0,Reg);
}
} else {
if (Is64Bit(MipsReg))
{
MoveConstToX86reg(GetMipsRegHi(MipsReg),Reg);
} else {
MoveConstToX86reg(GetMipsRegLo_S(MipsReg) >> 31,Reg);
}
}
} else {
if (IsUnknown(MipsReg)) {
MoveVariableToX86reg(&_GPR[MipsReg].UW[0],CRegName::GPR_Lo[MipsReg],Reg);
} else if (IsMapped(MipsReg)) {
MoveX86RegToX86Reg(GetMipsRegMapLo(MipsReg),Reg);
} else {
MoveConstToX86reg(GetMipsRegLo(MipsReg),Reg);
}
}
}
SetX86Mapped(Reg,Temp_Mapped);
SetX86Protected(Reg,TRUE);
for (count = 0; count < 10; count ++)
{
int MapOrder = GetX86MapOrder((x86Reg)count);
if (MapOrder > 0) {
SetX86MapOrder((x86Reg)count,MapOrder + 1);
}
}
SetX86MapOrder(Reg,1);
return Reg;
}
void CRegInfo::ProtectGPR(DWORD Reg) {
if (IsUnknown(Reg) || IsConst(Reg)) { return; }
if (Is64Bit(Reg)) {
SetX86Protected(GetMipsRegMapHi(Reg),TRUE);
}
SetX86Protected(GetMipsRegMapLo(Reg),TRUE);
}
void CRegInfo::UnProtectGPR(DWORD Reg) {
if (IsUnknown(Reg) || IsConst(Reg)) { return; }
if (Is64Bit(Reg)) {
SetX86Protected(GetMipsRegMapHi(Reg),false);
}
SetX86Protected(GetMipsRegMapLo(Reg),false);
}
void CRegInfo::ResetX86Protection (void)
{
for (int count = 0; count < 10; count ++)
{
SetX86Protected((x86Reg)count, false);
}
}
BOOL CRegInfo::RegInStack( int Reg, FPU_STATE Format) {
int i;
for (i = 0; i < 8; i++)
{
if (x86fpu_MappedTo[i] == Reg)
{
if (x86fpu_State[i] == Format || Format == FPU_Any)
{
return TRUE;
}
return FALSE;
}
}
return FALSE;
}
void CRegInfo::UnMap_AllFPRs ( void )
{
for (;;) {
int StackPos = StackTopPos();
if (x86fpu_MappedTo[StackPos] != -1 ) {
UnMap_FPR(x86fpu_MappedTo[StackPos],TRUE);
continue;
}
//see if any more registers mapped
int StartPos = StackTopPos();
for (int i = 0; i < 8; i++) {
if (x86fpu_MappedTo[(StartPos + i) & 7] != -1 ) { fpuIncStack(&StackTopPos()); }
}
if (StackPos != StackTopPos()) { continue; }
return;
}
}
void CRegInfo::UnMap_FPR (int Reg, int WriteBackValue )
{
char Name[50];
int i;
if (Reg < 0) { return; }
for (i = 0; i < 8; i++) {
if (x86fpu_MappedTo[i] != Reg) { continue; }
CPU_Message(" regcache: unallocate %s from ST(%d)",CRegName::FPR[Reg],(i - StackTopPos() + 8) & 7);
if (WriteBackValue) {
int RegPos;
if (((i - StackTopPos() + 8) & 7) != 0)
{
if (x86fpu_MappedTo[StackTopPos()] == -1 && x86fpu_MappedTo[(StackTopPos() + 1) & 7] == Reg)
{
fpuIncStack(&StackTopPos());
} else {
CRegInfo::FPU_ROUND RoundingModel = FpuRoundingModel(StackTopPos());
FPU_STATE RegState = x86fpu_State[StackTopPos()];
BOOL Changed = x86fpu_StateChanged[StackTopPos()];
DWORD MappedTo = x86fpu_MappedTo[StackTopPos()];
FpuRoundingModel(StackTopPos()) = FpuRoundingModel(i);
x86fpu_MappedTo[StackTopPos()] = x86fpu_MappedTo[i];
x86fpu_State[StackTopPos()] = x86fpu_State[i];
x86fpu_StateChanged[StackTopPos()] = x86fpu_StateChanged[i];
FpuRoundingModel(i) = RoundingModel;
x86fpu_MappedTo[i] = MappedTo;
x86fpu_State[i] = RegState;
x86fpu_StateChanged[i] = Changed;
fpuExchange((x86FpuValues)((i - StackTopPos()) & 7));
}
}
FixRoundModel(FpuRoundingModel(i));
RegPos = StackTopPos();
x86Reg TempReg = Map_TempReg(x86_Any,-1,FALSE);
switch (x86fpu_State[StackTopPos()]) {
case FPU_Dword:
sprintf(Name,"_FPR_S[%d]",x86fpu_MappedTo[StackTopPos()]);
MoveVariableToX86reg(&_FPR_S[x86fpu_MappedTo[StackTopPos()]],Name,TempReg);
fpuStoreIntegerDwordFromX86Reg(&StackTopPos(),TempReg, TRUE);
break;
case FPU_Qword:
sprintf(Name,"_FPR_D[%d]",x86fpu_MappedTo[StackTopPos()]);
MoveVariableToX86reg(&_FPR_D[x86fpu_MappedTo[StackTopPos()]],Name,TempReg);
fpuStoreIntegerQwordFromX86Reg(&StackTopPos(),TempReg, TRUE);
break;
case FPU_Float:
sprintf(Name,"_FPR_S[%d]",x86fpu_MappedTo[StackTopPos()]);
MoveVariableToX86reg(&_FPR_S[x86fpu_MappedTo[StackTopPos()]],Name,TempReg);
fpuStoreDwordFromX86Reg(&StackTopPos(),TempReg, TRUE);
break;
case FPU_Double:
sprintf(Name,"_FPR_D[%d]",x86fpu_MappedTo[StackTopPos()]);
MoveVariableToX86reg(&_FPR_D[x86fpu_MappedTo[StackTopPos()]],Name,TempReg);
fpuStoreQwordFromX86Reg(&StackTopPos(),TempReg, TRUE);
break;
default:
if (bHaveDebugger()) { g_Notify->DisplayError(__FUNCTIONW__ L"\nUnknown format to load %d",x86fpu_State[StackTopPos()]); }
}
SetX86Protected(TempReg,FALSE);
FpuRoundingModel(RegPos) = RoundDefault;
x86fpu_MappedTo[RegPos] = -1;
x86fpu_State[RegPos] = FPU_Unknown;
x86fpu_StateChanged[RegPos] = false;
} else {
fpuFree((x86FpuValues)((i - StackTopPos()) & 7));
FpuRoundingModel(i) = RoundDefault;
x86fpu_MappedTo[i] = -1;
x86fpu_State[i] = FPU_Unknown;
x86fpu_StateChanged[i] = false;
}
return;
}
}
void CRegInfo::UnMap_GPR (DWORD Reg, bool WriteBackValue)
{
if (Reg == 0)
{
if (bHaveDebugger()) { g_Notify->DisplayError(__FUNCTIONW__ L"\n\nWhy are you trying to unmap reg 0"); }
return;
}
if (IsUnknown(Reg)) { return; }
//CPU_Message("UnMap_GPR: State: %X\tReg: %s\tWriteBack: %s",State,CRegName::GPR[Reg],WriteBackValue?"TRUE":"FALSE");
if (IsConst(Reg)) {
if (!WriteBackValue) {
SetMipsRegState(Reg,STATE_UNKNOWN);
return;
}
if (Is64Bit(Reg)) {
MoveConstToVariable(GetMipsRegHi(Reg),&_GPR[Reg].UW[1],CRegName::GPR_Hi[Reg]);
MoveConstToVariable(GetMipsRegLo(Reg),&_GPR[Reg].UW[0],CRegName::GPR_Lo[Reg]);
SetMipsRegState(Reg,STATE_UNKNOWN);
return;
}
if ((GetMipsRegLo(Reg) & 0x80000000) != 0) {
MoveConstToVariable(0xFFFFFFFF,&_GPR[Reg].UW[1],CRegName::GPR_Hi[Reg]);
} else {
MoveConstToVariable(0,&_GPR[Reg].UW[1],CRegName::GPR_Hi[Reg]);
}
MoveConstToVariable(GetMipsRegLo(Reg),&_GPR[Reg].UW[0],CRegName::GPR_Lo[Reg]);
SetMipsRegState(Reg,STATE_UNKNOWN);
return;
}
if (Is64Bit(Reg)) {
CPU_Message(" regcache: unallocate %s from %s",x86_Name(GetMipsRegMapHi(Reg)),CRegName::GPR_Hi[Reg]);
SetX86Mapped(GetMipsRegMapHi(Reg),NotMapped);
SetX86Protected(GetMipsRegMapHi(Reg),FALSE);
}
CPU_Message(" regcache: unallocate %s from %s",x86_Name(GetMipsRegMapLo(Reg)),CRegName::GPR_Lo[Reg]);
SetX86Mapped(GetMipsRegMapLo(Reg),NotMapped);
SetX86Protected(GetMipsRegMapLo(Reg),FALSE);
if (!WriteBackValue)
{
SetMipsRegState(Reg,STATE_UNKNOWN);
return;
}
MoveX86regToVariable(GetMipsRegMapLo(Reg),&_GPR[Reg].UW[0],CRegName::GPR_Lo[Reg]);
if (Is64Bit(Reg)) {
SetMipsRegMapLo(Reg, x86_Unknown);
MoveX86regToVariable(GetMipsRegMapHi(Reg),&_GPR[Reg].UW[1],CRegName::GPR_Hi[Reg]);
SetMipsRegMapHi(Reg,x86_Unknown);
} else {
if (!g_System->b32BitCore()) {
if (IsSigned(Reg)) {
ShiftRightSignImmed(GetMipsRegMapLo(Reg),31);
MoveX86regToVariable(GetMipsRegMapLo(Reg),&_GPR[Reg].UW[1],CRegName::GPR_Hi[Reg]);
} else {
MoveConstToVariable(0,&_GPR[Reg].UW[1],CRegName::GPR_Hi[Reg]);
}
}
SetMipsRegMapLo(Reg, x86_Unknown);
}
SetMipsRegState(Reg,STATE_UNKNOWN);
}
CX86Ops::x86Reg CRegInfo::UnMap_TempReg ( void )
{
CX86Ops::x86Reg Reg = x86_Unknown;
if (GetX86Mapped(x86_EAX) == Temp_Mapped && !GetX86Protected(x86_EAX)) { Reg = x86_EAX; }
else if (GetX86Mapped(x86_EBX) == Temp_Mapped && !GetX86Protected(x86_EBX)) { Reg = x86_EBX; }
else if (GetX86Mapped(x86_ECX) == Temp_Mapped && !GetX86Protected(x86_ECX)) { Reg = x86_ECX; }
else if (GetX86Mapped(x86_EDX) == Temp_Mapped && !GetX86Protected(x86_EDX)) { Reg = x86_EDX; }
else if (GetX86Mapped(x86_ESI) == Temp_Mapped && !GetX86Protected(x86_ESI)) { Reg = x86_ESI; }
else if (GetX86Mapped(x86_EDI) == Temp_Mapped && !GetX86Protected(x86_EDI)) { Reg = x86_EDI; }
else if (GetX86Mapped(x86_EBP) == Temp_Mapped && !GetX86Protected(x86_EBP)) { Reg = x86_EBP; }
else if (GetX86Mapped(x86_ESP) == Temp_Mapped && !GetX86Protected(x86_ESP)) { Reg = x86_ESP; }
if (Reg != x86_Unknown)
{
if (GetX86Mapped(Reg) == Temp_Mapped)
{
CPU_Message(" regcache: unallocate %s from temp storage",x86_Name(Reg));
}
SetX86Mapped(Reg,NotMapped);
}
return Reg;
}
bool CRegInfo::UnMap_X86reg ( CX86Ops::x86Reg Reg )
{
int count;
if (GetX86Mapped(Reg) == NotMapped)
{
if (!GetX86Protected(Reg))
{
return TRUE;
}
} else if (GetX86Mapped(Reg) == CRegInfo::GPR_Mapped) {
for (count = 1; count < 32; count ++)
{
if (!IsMapped(count))
{
continue;
}
if (Is64Bit(count) && GetMipsRegMapHi(count) == Reg)
{
if (GetX86Protected(Reg) == FALSE)
{
UnMap_GPR(count,TRUE);
return TRUE;
}
break;
}
if (GetMipsRegMapLo(count) == Reg)
{
if (GetX86Protected(Reg) == FALSE)
{
UnMap_GPR(count,TRUE);
return TRUE;
}
break;
}
}
} else if (GetX86Mapped(Reg) == CRegInfo::Temp_Mapped) {
if (GetX86Protected(Reg) == FALSE) {
CPU_Message(" regcache: unallocate %s from temp storage",x86_Name(Reg));
SetX86Mapped(Reg,NotMapped);
return TRUE;
}
} else if (GetX86Mapped(Reg) == CRegInfo::Stack_Mapped) {
CPU_Message(" regcache: unallocate %s from Memory Stack",x86_Name(Reg));
MoveX86regToVariable(Reg,&(g_Recompiler->MemoryStackPos()),"MemoryStack");
SetX86Mapped(Reg,NotMapped);
return TRUE;
}
return FALSE;
}
void CRegInfo::WriteBackRegisters ()
{
UnMap_AllFPRs();
int count;
bool bEdiZero = FALSE;
bool bEsiSign = FALSE;
int X86RegCount = sizeof(x86_Registers)/ sizeof(x86_Registers[0]);
for (int i = 0; i < X86RegCount; i++) { SetX86Protected(x86_Registers[i],FALSE); }
for (int i = 0; i < X86RegCount; i++) { UnMap_X86reg(x86_Registers[i]); }
/*************************************/
for (count = 1; count < 32; count ++) {
switch (GetMipsRegState(count)) {
case CRegInfo::STATE_UNKNOWN: break;
case CRegInfo::STATE_CONST_32_SIGN:
if (!g_System->b32BitCore())
{
if (!bEdiZero && (!GetMipsRegLo(count) || !(GetMipsRegLo(count) & 0x80000000)))
{
XorX86RegToX86Reg(x86_EDI, x86_EDI);
bEdiZero = TRUE;
}
if (!bEsiSign && (GetMipsRegLo(count) & 0x80000000))
{
MoveConstToX86reg(0xFFFFFFFF, x86_ESI);
bEsiSign = TRUE;
}
if ((GetMipsRegLo(count) & 0x80000000) != 0)
{
MoveX86regToVariable(x86_ESI,&_GPR[count].UW[1],CRegName::GPR_Hi[count]);
}
else
{
MoveX86regToVariable(x86_EDI,&_GPR[count].UW[1],CRegName::GPR_Hi[count]);
}
}
if (GetMipsRegLo(count) == 0)
{
if (g_System->b32BitCore())
{
if (!bEdiZero)
{
XorX86RegToX86Reg(x86_EDI, x86_EDI);
bEdiZero = TRUE;
}
}
MoveX86regToVariable(x86_EDI,&_GPR[count].UW[0],CRegName::GPR_Lo[count]);
}
else if (GetMipsRegLo(count) == 0xFFFFFFFF)
{
if (g_System->b32BitCore())
{
if (!bEsiSign)
{
MoveConstToX86reg(0xFFFFFFFF, x86_ESI);
bEsiSign = TRUE;
}
}
MoveX86regToVariable(x86_ESI,&_GPR[count].UW[0],CRegName::GPR_Lo[count]);
}
else
{
MoveConstToVariable(GetMipsRegLo(count),&_GPR[count].UW[0],CRegName::GPR_Lo[count]);
}
SetMipsRegState(count, CRegInfo::STATE_UNKNOWN);
break;
case CRegInfo::STATE_CONST_32_ZERO:
if (!g_System->b32BitCore())
{
if (!bEdiZero)
{
XorX86RegToX86Reg(x86_EDI, x86_EDI);
bEdiZero = TRUE;
}
MoveX86regToVariable(x86_EDI,&_GPR[count].UW[1],CRegName::GPR_Hi[count]);
}
if (GetMipsRegLo(count) == 0)
{
if (g_System->b32BitCore())
{
if (!bEdiZero)
{
XorX86RegToX86Reg(x86_EDI, x86_EDI);
bEdiZero = TRUE;
}
}
MoveX86regToVariable(x86_EDI,&_GPR[count].UW[0],CRegName::GPR_Lo[count]);
}
else
{
MoveConstToVariable(GetMipsRegLo(count),&_GPR[count].UW[0],CRegName::GPR_Lo[count]);
}
SetMipsRegState(count, CRegInfo::STATE_UNKNOWN);
break;
case CRegInfo::STATE_CONST_64:
if (GetMipsRegLo(count) == 0 || GetMipsRegHi(count) == 0) {
XorX86RegToX86Reg(x86_EDI, x86_EDI);
bEdiZero = TRUE;
}
if (GetMipsRegLo(count) == 0xFFFFFFFF || GetMipsRegHi(count) == 0xFFFFFFFF) {
MoveConstToX86reg(0xFFFFFFFF, x86_ESI);
bEsiSign = TRUE;
}
if (GetMipsRegHi(count) == 0) {
MoveX86regToVariable(x86_EDI,&_GPR[count].UW[1],CRegName::GPR_Hi[count]);
} else if (GetMipsRegLo(count) == 0xFFFFFFFF) {
MoveX86regToVariable(x86_ESI,&_GPR[count].UW[1],CRegName::GPR_Hi[count]);
} else {
MoveConstToVariable(GetMipsRegHi(count),&_GPR[count].UW[1],CRegName::GPR_Hi[count]);
}
if (GetMipsRegLo(count) == 0) {
MoveX86regToVariable(x86_EDI,&_GPR[count].UW[0],CRegName::GPR_Lo[count]);
} else if (GetMipsRegLo(count) == 0xFFFFFFFF) {
MoveX86regToVariable(x86_ESI,&_GPR[count].UW[0],CRegName::GPR_Lo[count]);
} else {
MoveConstToVariable(GetMipsRegLo(count),&_GPR[count].UW[0],CRegName::GPR_Lo[count]);
}
SetMipsRegState(count, CRegInfo::STATE_UNKNOWN);
break;
default:
CPU_Message(__FUNCTION__ ": Unknown State: %d reg %d (%s)",GetMipsRegState(count),count,CRegName::GPR[count])
g_Notify->BreakPoint(__FILEW__,__LINE__);
}
}
}
const char * CRegInfo::RoundingModelName ( FPU_ROUND RoundType )
{
switch (RoundType)
{
case RoundUnknown: return "RoundUnknown";
case RoundDefault: return "RoundDefault";
case RoundTruncate: return "RoundTruncate";
case RoundNearest: return "RoundNearest";
case RoundDown: return "RoundDown";
case RoundUp: return "RoundUp";
}
return "** Invalid **";
}