project64/Source/Project64-core/N64System/Recompiler/x86/x86RecompilerOps.h

335 lines
12 KiB
C++

#pragma once
#if defined(__i386__) || defined(_M_IX86)
#include <Project64-core/N64System/Mips/Register.h>
#include <Project64-core/N64System/Mips/R4300iOpcode.h>
#include <Project64-core/N64System/Recompiler/ExitInfo.h>
#include <Project64-core/N64System/Recompiler/RegInfo.h>
#include <Project64-core/N64System/Recompiler/RecompilerOps.h>
#include <Project64-core/N64System/Recompiler/x86/x86ops.h>
#include <Project64-core/N64System/Recompiler/JumpInfo.h>
#include <Project64-core/N64System/Interpreter/InterpreterOps.h>
#include <Project64-core/Settings/N64SystemSettings.h>
#include <Project64-core/Settings/RecompilerSettings.h>
#include <Project64-core/Settings/GameSettings.h>
class CCodeBlock;
class CCodeSection;
class CX86RecompilerOps :
protected R4300iOp,
protected CN64SystemSettings,
protected CRecompilerSettings,
private CGameSettings
{
public:
CX86RecompilerOps(CMipsMemoryVM & MMU, CCodeBlock & CodeBlock);
~CX86RecompilerOps();
// Trap functions
void Compile_TrapCompare(RecompilerTrapCompare CompareType);
// Branch functions
void Compile_BranchCompare(RecompilerBranchCompare CompareType);
void Compile_Branch(RecompilerBranchCompare CompareType, bool Link);
void Compile_BranchLikely(RecompilerBranchCompare CompareType, bool Link);
void BNE_Compare();
void BEQ_Compare();
void BGTZ_Compare();
void BLEZ_Compare();
void BLTZ_Compare();
void BGEZ_Compare();
void COP1_BCF_Compare();
void COP1_BCT_Compare();
// Opcode functions
void J();
void JAL();
void ADDI();
void ADDIU();
void SLTI();
void SLTIU();
void ANDI();
void ORI();
void XORI();
void LUI();
void DADDI();
void DADDIU();
void LDL();
void LDR();
void LB();
void LH();
void LWL();
void LW();
void LBU();
void LHU();
void LWR();
void LWU();
void SB();
void SH();
void SWL();
void SW();
void SWR();
void SDL();
void SDR();
void CACHE();
void LL();
void LWC1();
void LDC1();
void LD();
void SC();
void SWC1();
void SDC1();
void SD();
// R4300i opcodes: Special
void SPECIAL_SLL();
void SPECIAL_SRL();
void SPECIAL_SRA();
void SPECIAL_SLLV();
void SPECIAL_SRLV();
void SPECIAL_SRAV();
void SPECIAL_JR();
void SPECIAL_JALR();
void SPECIAL_SYSCALL();
void SPECIAL_MFLO();
void SPECIAL_MTLO();
void SPECIAL_MFHI();
void SPECIAL_MTHI();
void SPECIAL_DSLLV();
void SPECIAL_DSRLV();
void SPECIAL_DSRAV();
void SPECIAL_MULT();
void SPECIAL_MULTU();
void SPECIAL_DIV();
void SPECIAL_DIVU();
void SPECIAL_DMULT();
void SPECIAL_DMULTU();
void SPECIAL_DDIV();
void SPECIAL_DDIVU();
void SPECIAL_ADD();
void SPECIAL_ADDU();
void SPECIAL_SUB();
void SPECIAL_SUBU();
void SPECIAL_AND();
void SPECIAL_OR();
void SPECIAL_XOR();
void SPECIAL_NOR();
void SPECIAL_SLT();
void SPECIAL_SLTU();
void SPECIAL_DADD();
void SPECIAL_DADDU();
void SPECIAL_DSUB();
void SPECIAL_DSUBU();
void SPECIAL_DSLL();
void SPECIAL_DSRL();
void SPECIAL_DSRA();
void SPECIAL_DSLL32();
void SPECIAL_DSRL32();
void SPECIAL_DSRA32();
// COP0 functions
void COP0_MF();
void COP0_MT();
// COP0 CO functions
void COP0_CO_TLBR();
void COP0_CO_TLBWI();
void COP0_CO_TLBWR();
void COP0_CO_TLBP();
void COP0_CO_ERET();
// COP1 functions
void COP1_MF();
void COP1_DMF();
void COP1_CF();
void COP1_MT();
void COP1_DMT();
void COP1_CT();
// COP1: S functions
void COP1_S_ADD();
void COP1_S_SUB();
void COP1_S_MUL();
void COP1_S_DIV();
void COP1_S_ABS();
void COP1_S_NEG();
void COP1_S_SQRT();
void COP1_S_MOV();
void COP1_S_ROUND_L();
void COP1_S_TRUNC_L();
void COP1_S_CEIL_L();
void COP1_S_FLOOR_L();
void COP1_S_ROUND_W();
void COP1_S_TRUNC_W();
void COP1_S_CEIL_W();
void COP1_S_FLOOR_W();
void COP1_S_CVT_D();
void COP1_S_CVT_W();
void COP1_S_CVT_L();
void COP1_S_CMP();
// COP1: D functions
void COP1_D_ADD();
void COP1_D_SUB();
void COP1_D_MUL();
void COP1_D_DIV();
void COP1_D_ABS();
void COP1_D_NEG();
void COP1_D_SQRT();
void COP1_D_MOV();
void COP1_D_ROUND_L();
void COP1_D_TRUNC_L();
void COP1_D_CEIL_L();
void COP1_D_FLOOR_L();
void COP1_D_ROUND_W();
void COP1_D_TRUNC_W();
void COP1_D_CEIL_W();
void COP1_D_FLOOR_W();
void COP1_D_CVT_S();
void COP1_D_CVT_W();
void COP1_D_CVT_L();
void COP1_D_CMP();
// COP1: W functions
void COP1_W_CVT_S();
void COP1_W_CVT_D();
// COP1: L functions
void COP1_L_CVT_S();
void COP1_L_CVT_D();
// Other functions
void UnknownOpcode();
void ClearCachedInstructionInfo();
void FoundMemoryBreakpoint();
void PreReadInstruction();
void PreWriteInstruction();
void TestWriteBreakpoint(CX86Ops::x86Reg AddressReg, uint32_t FunctAddress, const char * FunctName);
void TestReadBreakpoint(CX86Ops::x86Reg AddressReg, uint32_t FunctAddress, const char * FunctName);
void TestBreakpoint(CX86Ops::x86Reg AddressReg, uint32_t FunctAddress, const char * FunctName);
void EnterCodeBlock();
void ExitCodeBlock();
void CompileExitCode();
void CompileCop1Test();
void CompileInPermLoop(CRegInfo & RegSet, uint32_t ProgramCounter);
void SyncRegState(const CRegInfo & SyncTo);
bool SetupRegisterForLoop(CCodeBlock & BlockInfo, const CRegInfo & RegSet);
CRegInfo & GetRegWorkingSet(void);
void SetRegWorkingSet(const CRegInfo & RegInfo);
bool InheritParentInfo();
void LinkJump(CJumpInfo & JumpInfo, uint32_t SectionID = -1, uint32_t FromSectionID = -1);
void JumpToSection(CCodeSection * Section);
void JumpToUnknown(CJumpInfo * JumpInfo);
void SetCurrentPC(uint32_t ProgramCounter);
uint32_t GetCurrentPC(void);
void SetCurrentSection(CCodeSection * section);
void SetNextStepType(PIPELINE_STAGE StepType);
PIPELINE_STAGE GetNextStepType(void);
const R4300iOpcode & GetOpcode(void) const;
void PreCompileOpcode(void);
void PostCompileOpcode(void);
void CompileExit(uint32_t JumpPC, uint32_t TargetPC, CRegInfo &ExitRegSet, ExitReason Reason);
void CompileReadTLBMiss(uint32_t VirtualAddress, CX86Ops::x86Reg LookUpReg);
void CompileReadTLBMiss(CX86Ops::x86Reg AddressReg, CX86Ops::x86Reg LookUpReg);
void CompileWriteTLBMiss(CX86Ops::x86Reg AddressReg, CX86Ops::x86Reg LookUpReg);
void UpdateSyncCPU(CRegInfo & RegSet, uint32_t Cycles);
void UpdateCounters(CRegInfo & RegSet, bool CheckTimer, bool ClearValues = false, bool UpdateTimer = true);
void CompileSystemCheck(uint32_t TargetPC, const CRegInfo & RegSet);
void CompileExecuteBP(void);
void CompileExecuteDelaySlotBP(void);
static void ChangeDefaultRoundingModel();
void OverflowDelaySlot(bool TestTimer);
CX86Ops & Assembler() { return m_Assembler; }
// Helper functions
typedef CRegInfo::REG_STATE REG_STATE;
REG_STATE GetMipsRegState(int32_t Reg) { return m_RegWorkingSet.GetMipsRegState(Reg); }
uint64_t GetMipsReg(int32_t Reg) { return m_RegWorkingSet.GetMipsReg(Reg); }
int64_t GetMipsReg_S(int32_t Reg) { return m_RegWorkingSet.GetMipsReg_S(Reg); }
uint32_t GetMipsRegLo(int32_t Reg) { return m_RegWorkingSet.GetMipsRegLo(Reg); }
int32_t GetMipsRegLo_S(int32_t Reg) { return m_RegWorkingSet.GetMipsRegLo_S(Reg); }
uint32_t GetMipsRegHi(int32_t Reg) { return m_RegWorkingSet.GetMipsRegHi(Reg); }
int32_t GetMipsRegHi_S(int32_t Reg) { return m_RegWorkingSet.GetMipsRegHi_S(Reg); }
CX86Ops::x86Reg GetMipsRegMapLo(int32_t Reg) { return m_RegWorkingSet.GetMipsRegMapLo(Reg); }
CX86Ops::x86Reg GetMipsRegMapHi(int32_t Reg) { return m_RegWorkingSet.GetMipsRegMapHi(Reg); }
bool IsKnown(int32_t Reg) { return m_RegWorkingSet.IsKnown(Reg); }
bool IsUnknown(int32_t Reg) { return m_RegWorkingSet.IsUnknown(Reg); }
bool IsMapped(int32_t Reg) { return m_RegWorkingSet.IsMapped(Reg); }
bool IsConst(int32_t Reg) { return m_RegWorkingSet.IsConst(Reg); }
bool IsSigned(int32_t Reg) { return m_RegWorkingSet.IsSigned(Reg); }
bool IsUnsigned(int32_t Reg) { return m_RegWorkingSet.IsUnsigned(Reg); }
bool Is32Bit(int32_t Reg) { return m_RegWorkingSet.Is32Bit(Reg); }
bool Is64Bit(int32_t Reg) { return m_RegWorkingSet.Is64Bit(Reg); }
bool Is32BitMapped(int32_t Reg) { return m_RegWorkingSet.Is32BitMapped(Reg); }
bool Is64BitMapped(int32_t Reg) { return m_RegWorkingSet.Is64BitMapped(Reg); }
void FixRoundModel(CRegInfo::FPU_ROUND RoundMethod) { m_RegWorkingSet.FixRoundModel(RoundMethod); }
void ChangeFPURegFormat(int32_t Reg, CRegInfo::FPU_STATE OldFormat, CRegInfo::FPU_STATE NewFormat, CRegInfo::FPU_ROUND RoundingModel) { m_RegWorkingSet.ChangeFPURegFormat(Reg, OldFormat, NewFormat, RoundingModel); }
void Load_FPR_ToTop(int32_t Reg, int32_t RegToLoad, CRegInfo::FPU_STATE Format) { m_RegWorkingSet.Load_FPR_ToTop(Reg, RegToLoad, Format); }
bool RegInStack(int32_t Reg, CRegInfo::FPU_STATE Format) { return m_RegWorkingSet.RegInStack(Reg, Format); }
CX86Ops::x86FpuValues StackPosition(int32_t Reg) { return m_RegWorkingSet.StackPosition(Reg); }
void UnMap_AllFPRs() { m_RegWorkingSet.UnMap_AllFPRs(); }
void UnMap_FPR(uint32_t Reg, bool WriteBackValue) { m_RegWorkingSet.UnMap_FPR(Reg, WriteBackValue); }
CX86Ops::x86Reg FreeX86Reg() { return m_RegWorkingSet.FreeX86Reg(); }
CX86Ops::x86Reg Free8BitX86Reg() { return m_RegWorkingSet.Free8BitX86Reg(); }
void Map_GPR_32bit(int32_t Reg, bool SignValue, int32_t MipsRegToLoad) { m_RegWorkingSet.Map_GPR_32bit(Reg, SignValue, MipsRegToLoad); }
void Map_GPR_64bit(int32_t Reg, int32_t MipsRegToLoad) { m_RegWorkingSet.Map_GPR_64bit(Reg, MipsRegToLoad); }
CX86Ops::x86Reg Get_MemoryStack() { return m_RegWorkingSet.Get_MemoryStack(); }
CX86Ops::x86Reg Map_MemoryStack(CX86Ops::x86Reg Reg, bool bMapRegister, bool LoadValue = true) { return m_RegWorkingSet.Map_MemoryStack(Reg, bMapRegister, LoadValue); }
CX86Ops::x86Reg Map_TempReg(CX86Ops::x86Reg Reg, int32_t MipsReg, bool LoadHiWord) { return m_RegWorkingSet.Map_TempReg(Reg, MipsReg, LoadHiWord); }
void ProtectGPR(uint32_t Reg) { m_RegWorkingSet.ProtectGPR(Reg); }
void UnProtectGPR(uint32_t Reg) { m_RegWorkingSet.UnProtectGPR(Reg); }
void ResetX86Protection() { m_RegWorkingSet.ResetX86Protection(); }
CX86Ops::x86Reg UnMap_TempReg() { return m_RegWorkingSet.UnMap_TempReg(); }
void UnMap_GPR(uint32_t Reg, bool WriteBackValue) { m_RegWorkingSet.UnMap_GPR(Reg, WriteBackValue); }
bool UnMap_X86reg(CX86Ops::x86Reg Reg) { return m_RegWorkingSet.UnMap_X86reg(Reg); }
public:
uint32_t CompilePC() { return m_CompilePC; }
private:
CX86RecompilerOps(const CX86RecompilerOps&);
CX86RecompilerOps& operator=(const CX86RecompilerOps&);
CX86Ops::x86Reg BaseOffsetAddress(bool UseBaseRegister);
void CompileLoadMemoryValue(CX86Ops::x86Reg AddressReg, CX86Ops::x86Reg ValueReg, CX86Ops::x86Reg ValueRegHi, uint8_t ValueSize, bool SignExtend);
void CompileStoreMemoryValue(CX86Ops::x86Reg AddressReg, CX86Ops::x86Reg ValueReg, CX86Ops::x86Reg ValueRegHi, uint64_t Value, uint8_t ValueSize);
void SB_Const(uint32_t Value, uint32_t Addr);
void SB_Register(CX86Ops::x86Reg Reg, uint32_t Addr);
void SH_Const(uint32_t Value, uint32_t Addr);
void SH_Register(CX86Ops::x86Reg Reg, uint32_t Addr);
void SW_Const(uint32_t Value, uint32_t Addr);
void SW_Register(CX86Ops::x86Reg Reg, uint32_t Addr);
void LB_KnownAddress(CX86Ops::x86Reg Reg, uint32_t VAddr, bool SignExtend);
void LH_KnownAddress(CX86Ops::x86Reg Reg, uint32_t VAddr, bool SignExtend);
void LW_KnownAddress(CX86Ops::x86Reg Reg, uint32_t VAddr);
void LW(bool ResultSigned, bool bRecordLLBit);
void SW(bool bCheckLLbit);
void CompileExit(uint32_t JumpPC, uint32_t TargetPC, CRegInfo &ExitRegSet, ExitReason Reason, bool CompileNow, void(CX86Ops::*x86Jmp)(const char * Label, uint32_t Value));
void ResetMemoryStack();
EXIT_LIST m_ExitInfo;
CMipsMemoryVM & m_MMU;
CCodeBlock & m_CodeBlock;
CX86Ops m_Assembler;
PIPELINE_STAGE m_PipelineStage;
uint32_t m_CompilePC;
R4300iOpcode m_Opcode;
CX86RegInfo m_RegWorkingSet;
CCodeSection * m_Section;
CRegInfo m_RegBeforeDelay;
bool m_EffectDelaySlot;
static uint32_t m_TempValue32;
static uint32_t m_BranchCompare;
};
#endif