project64/Source/Project64-core/N64System/Recompiler/Recompiler.cpp

609 lines
18 KiB
C++

#include "stdafx.h"
#include <Project64-core/N64System/Recompiler/Recompiler.h>
#include <Project64-core/N64System/SystemGlobals.h>
#include <Project64-core/N64System/N64System.h>
#include <Project64-core/N64System/Interpreter/InterpreterCPU.h>
#include <Project64-core/ExceptionHandler.h>
CRecompiler::CRecompiler(CMipsMemoryVM & MMU, CRegisters & Registers, bool & EndEmulation) :
m_MMU(MMU),
m_Registers(Registers),
m_EndEmulation(EndEmulation),
m_MemoryStack(0),
PROGRAM_COUNTER(Registers.m_PROGRAM_COUNTER),
m_LogFile(nullptr)
{
CFunctionMap::AllocateMemory();
ResetMemoryStackPos();
}
CRecompiler::~CRecompiler()
{
ResetRecompCode(false);
StopLog();
}
void CRecompiler::Run()
{
WriteTrace(TraceRecompiler, TraceDebug, "Start");
StartLog();
if (!CRecompMemory::AllocateMemory())
{
WriteTrace(TraceRecompiler, TraceError, "AllocateMemory failed");
return;
}
if (!CFunctionMap::AllocateMemory())
{
WriteTrace(TraceRecompiler, TraceError, "AllocateMemory failed");
return;
}
m_EndEmulation = false;
__except_try()
{
if (g_System->LookUpMode() == FuncFind_VirtualLookup)
{
if (g_System->bSMM_ValidFunc())
{
RecompilerMain_VirtualTable_validate();
}
else
{
RecompilerMain_VirtualTable();
}
}
else if (g_System->LookUpMode() == FuncFind_ChangeMemory)
{
RecompilerMain_ChangeMemory();
}
else
{
if (g_System->bSMM_ValidFunc())
{
RecompilerMain_Lookup_validate();
}
else
{
RecompilerMain_Lookup();
}
}
}
__except_catch()
{
g_Notify->DisplayError(MSG_UNKNOWN_MEM_ACTION);
}
WriteTrace(TraceRecompiler, TraceDebug, "Done");
}
void CRecompiler::RecompilerMain_VirtualTable()
{
bool & Done = m_EndEmulation;
uint32_t & PC = PROGRAM_COUNTER;
while (!Done)
{
if (!m_MMU.ValidVaddr(PC))
{
m_Registers.DoTLBReadMiss(false, PC);
if (!m_MMU.ValidVaddr(PC))
{
g_Notify->DisplayError(stdstr_f("Failed to translate PC to a PAddr: %X\n\nEmulation stopped", PC).c_str());
return;
}
continue;
}
PCCompiledFunc_TABLE & table = FunctionTable()[PC >> 0xC];
uint32_t TableEntry = (PC & 0xFFF) >> 2;
if (table)
{
CCompiledFunc * info = table[TableEntry];
if (info != nullptr)
{
(info->Function())();
continue;
}
}
CCompiledFunc * info = CompileCode();
if (info == nullptr || m_EndEmulation)
{
break;
}
if (table == nullptr)
{
table = new PCCompiledFunc[(0x1000 >> 2)];
if (table == nullptr)
{
WriteTrace(TraceRecompiler, TraceError, "Failed to allocate PCCompiledFunc");
g_Notify->FatalError(MSG_MEM_ALLOC_ERROR);
}
memset(table, 0, sizeof(PCCompiledFunc)* (0x1000 >> 2));
if (g_System->bSMM_Protect())
{
WriteTrace(TraceRecompiler, TraceError, "Create Table (%X): Index = %d", table, PC >> 0xC);
m_MMU.ProtectMemory(PC & ~0xFFF, PC | 0xFFF);
}
}
table[TableEntry] = info;
(info->Function())();
}
}
void CRecompiler::RecompilerMain_VirtualTable_validate()
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
void CRecompiler::RecompilerMain_Lookup()
{
uint32_t PhysicalAddr;
while (!m_EndEmulation)
{
if (!m_MMU.VAddrToPAddr(PROGRAM_COUNTER, PhysicalAddr))
{
m_Registers.DoTLBReadMiss(false, PROGRAM_COUNTER);
if (!m_MMU.VAddrToPAddr(PROGRAM_COUNTER, PhysicalAddr))
{
g_Notify->DisplayError(stdstr_f("Failed to translate PC to a PAddr: %X\n\nEmulation stopped", PROGRAM_COUNTER).c_str());
m_EndEmulation = true;
}
continue;
}
if (PhysicalAddr < g_System->RdramSize())
{
CCompiledFunc * info = JumpTable()[PhysicalAddr >> 2];
if (info == nullptr)
{
info = CompileCode();
if (info == nullptr || m_EndEmulation)
{
break;
}
if (g_System->bSMM_Protect())
{
m_MMU.ProtectMemory(PROGRAM_COUNTER & ~0xFFF, PROGRAM_COUNTER | 0xFFF);
}
JumpTable()[PhysicalAddr >> 2] = info;
}
(info->Function())();
}
else
{
uint32_t opsExecuted = 0;
while (m_MMU.VAddrToPAddr(PROGRAM_COUNTER, PhysicalAddr) && PhysicalAddr >= g_System->RdramSize())
{
CInterpreterCPU::ExecuteOps(g_System->CountPerOp());
opsExecuted += g_System->CountPerOp();
}
if (g_SyncSystem)
{
g_System->UpdateSyncCPU(g_SyncSystem, opsExecuted);
g_System->SyncCPU(g_SyncSystem);
}
}
}
}
void CRecompiler::RecompilerMain_Lookup_validate()
{
WriteTrace(TraceRecompiler, TraceInfo, "Start");
bool & Done = m_EndEmulation;
uint32_t & PC = PROGRAM_COUNTER;
uint32_t PhysicalAddr;
while (!Done)
{
if (!m_MMU.VAddrToPAddr(PC, PhysicalAddr))
{
m_Registers.DoTLBReadMiss(false, PC);
if (!m_MMU.VAddrToPAddr(PC, PhysicalAddr))
{
g_Notify->DisplayError(stdstr_f("Failed to translate PC to a PAddr: %X\n\nEmulation stopped", PC).c_str());
Done = true;
}
continue;
}
if (PhysicalAddr < g_System->RdramSize())
{
CCompiledFunc * info = JumpTable()[PhysicalAddr >> 2];
if (info == nullptr)
{
info = CompileCode();
if (info == nullptr || m_EndEmulation)
{
break;
}
if (g_System->bSMM_Protect())
{
m_MMU.ProtectMemory(PC & ~0xFFF, PC | 0xFFF);
}
JumpTable()[PhysicalAddr >> 2] = info;
}
else
{
if (*(info->MemLocation(0)) != info->MemContents(0) ||
*(info->MemLocation(1)) != info->MemContents(1))
{
if (PhysicalAddr > 0x1000)
{
ClearRecompCode_Phys((PhysicalAddr - 0x1000) & ~0xFFF, 0x3000, Remove_ValidateFunc);
}
else
{
ClearRecompCode_Phys(0, 0x2000, Remove_ValidateFunc);
}
info = JumpTable()[PhysicalAddr >> 2];
if (info != nullptr)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
info = nullptr;
}
continue;
}
}
if (bRecordExecutionTimes())
{
uint64_t PreNonCPUTime = g_System->m_CPU_Usage.NonCPUTime();
HighResTimeStamp StartTime, EndTime;
StartTime.SetToNow();
(info->Function())();
EndTime.SetToNow();
uint64_t PostNonCPUTime = g_System->m_CPU_Usage.NonCPUTime();
uint64_t TimeTaken = EndTime.GetMicroSeconds() - StartTime.GetMicroSeconds();
if (PostNonCPUTime >= PreNonCPUTime)
{
TimeTaken -= PostNonCPUTime - PreNonCPUTime;
}
else
{
TimeTaken -= PostNonCPUTime;
}
FUNCTION_PROFILE::iterator itr = m_BlockProfile.find(info->Function());
if (itr == m_BlockProfile.end())
{
FUNCTION_PROFILE_DATA data = { 0 };
data.Address = info->EnterPC();
std::pair<FUNCTION_PROFILE::iterator, bool> res = m_BlockProfile.insert(FUNCTION_PROFILE::value_type(info->Function(), data));
itr = res.first;
}
WriteTrace(TraceN64System, TraceNotice, "EndTime: %X StartTime: %X TimeTaken: %X", (uint32_t)(EndTime.GetMicroSeconds() & 0xFFFFFFFF), (uint32_t)(StartTime.GetMicroSeconds() & 0xFFFFFFFF), (uint32_t)TimeTaken);
itr->second.TimeTaken += TimeTaken;
}
else
{
(info->Function())();
}
}
else
{
uint32_t opsExecuted = 0;
while (m_MMU.VAddrToPAddr(PC, PhysicalAddr) && PhysicalAddr >= g_System->RdramSize())
{
CInterpreterCPU::ExecuteOps(g_System->CountPerOp());
opsExecuted += g_System->CountPerOp();
}
if (g_SyncSystem)
{
g_System->UpdateSyncCPU(g_SyncSystem, opsExecuted);
g_System->SyncCPU(g_SyncSystem);
}
}
}
WriteTrace(TraceRecompiler, TraceDebug, "Done");
}
void CRecompiler::Reset()
{
WriteTrace(TraceRecompiler, TraceDebug, "Start");
ResetRecompCode(true);
ResetMemoryStackPos();
WriteTrace(TraceRecompiler, TraceDebug, "Done");
}
void CRecompiler::ResetRecompCode(bool bAllocate)
{
WriteTrace(TraceRecompiler, TraceDebug, "Start");
CRecompMemory::Reset();
CFunctionMap::Reset(bAllocate);
for (CCompiledFuncList::iterator iter = m_Functions.begin(); iter != m_Functions.end(); iter++)
{
CCompiledFunc * Func = iter->second;
while (Func != nullptr)
{
CCompiledFunc * CurrentFunc = Func;
Func = Func->Next();
delete CurrentFunc;
}
}
m_Functions.clear();
WriteTrace(TraceRecompiler, TraceDebug, "Done");
}
void CRecompiler::RecompilerMain_ChangeMemory()
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
CCompiledFunc * CRecompiler::CompileCode()
{
WriteTrace(TraceRecompiler, TraceDebug, "Start (PC: %X)", PROGRAM_COUNTER);
uint32_t pAddr = 0;
if (!m_MMU.VAddrToPAddr(PROGRAM_COUNTER, pAddr))
{
WriteTrace(TraceRecompiler, TraceError, "Failed to translate %X", PROGRAM_COUNTER);
return nullptr;
}
CCompiledFuncList::iterator iter = m_Functions.find(PROGRAM_COUNTER);
if (iter != m_Functions.end())
{
WriteTrace(TraceRecompiler, TraceInfo, "Existing functions for address (Program Counter: %X pAddr: %X)", PROGRAM_COUNTER, pAddr);
for (CCompiledFunc * Func = iter->second; Func != nullptr; Func = Func->Next())
{
uint32_t PAddr;
if (m_MMU.VAddrToPAddr(Func->MinPC(), PAddr))
{
MD5Digest Hash;
MD5(m_MMU.Rdram() + PAddr, (Func->MaxPC() - Func->MinPC()) + 4).get_digest(Hash);
if (memcmp(Hash.digest, Func->Hash().digest, sizeof(Hash.digest)) == 0)
{
WriteTrace(TraceRecompiler, TraceInfo, "Using existing compiled code (Program Counter: %X pAddr: %X)", PROGRAM_COUNTER, pAddr);
return Func;
}
}
}
}
CheckRecompMem();
WriteTrace(TraceRecompiler, TraceDebug, "Compile Block-Start: Program Counter: %X pAddr: %X", PROGRAM_COUNTER, pAddr);
CCodeBlock CodeBlock(m_MMU, PROGRAM_COUNTER, *g_RecompPos);
if (!CodeBlock.Compile())
{
return nullptr;
}
if (bShowRecompMemSize())
{
ShowMemUsed();
}
LogCodeBlock(CodeBlock);
CCompiledFunc * Func = new CCompiledFunc(CodeBlock);
std::pair<CCompiledFuncList::iterator, bool> ret = m_Functions.insert(CCompiledFuncList::value_type(Func->EnterPC(), Func));
if (ret.second == false)
{
Func->SetNext(ret.first->second->Next());
ret.first->second->SetNext(Func);
}
#if defined(__aarch64__) || defined(__amd64__) || defined(_M_X64)
g_Notify->BreakPoint(__FILE__,__LINE__);
#else
if (g_ModuleLogLevel[TraceRecompiler] >= TraceDebug)
{
WriteTrace(TraceRecompiler, TraceDebug, "Info->Function() = %X", Func->Function());
std::string dumpline;
uint32_t start_address = (uint32_t)(Func->Function()) & ~1;
for (uint8_t * ptr = (uint8_t *)start_address; ptr < CodeBlock.CompiledLocationEnd(); ptr++)
{
if (dumpline.empty())
{
dumpline += stdstr_f("%X: ", ptr);
}
dumpline += stdstr_f(" %02X", *ptr);
if ((((uint32_t)ptr - start_address) + 1) % 30 == 0)
{
WriteTrace(TraceRecompiler, TraceDebug, "%s", dumpline.c_str());
dumpline.clear();
}
}
if (!dumpline.empty())
{
WriteTrace(TraceRecompiler, TraceDebug, "%s", dumpline.c_str());
}
}
#endif
WriteTrace(TraceRecompiler, TraceVerbose, "Done");
return Func;
}
void CRecompiler::ClearRecompCode_Phys(uint32_t Address, int length, REMOVE_REASON Reason)
{
if (g_System->LookUpMode() == FuncFind_VirtualLookup)
{
ClearRecompCode_Virt(Address + 0x80000000, length, Reason);
ClearRecompCode_Virt(Address + 0xA0000000, length, Reason);
uint32_t VAddr, Index = 0;
while (g_TLB->PAddrToVAddr(Address, VAddr, Index))
{
WriteTrace(TraceRecompiler, TraceInfo, "ClearRecompCode Vaddr %X len: %d", VAddr, length);
ClearRecompCode_Virt(VAddr, length, Reason);
}
}
else if (g_System->LookUpMode() == FuncFind_PhysicalLookup)
{
if (Address < g_System->RdramSize())
{
int ClearLen = ((length + 3) & ~3);
if (Address + ClearLen > g_System->RdramSize())
{
g_Notify->BreakPoint(__FILE__, __LINE__);
ClearLen = g_System->RdramSize() - Address;
}
WriteTrace(TraceRecompiler, TraceInfo, "Resetting jump table, Addr: %X len: %d", Address, ClearLen);
memset((uint8_t *)JumpTable() + Address, 0, ClearLen);
if (g_System->bSMM_Protect())
{
m_MMU.UnProtectMemory(Address + 0x80000000, Address + 0x80000004);
}
}
else
{
WriteTrace(TraceRecompiler, TraceInfo, "Ignoring reset of jump table, Addr: %X len: %d", Address, ((length + 3) & ~3));
}
}
}
void CRecompiler::ClearRecompCode_Virt(uint32_t Address, int length, REMOVE_REASON Reason)
{
uint32_t AddressIndex, WriteStart;
int DataInBlock, DataToWrite, DataLeft;
switch (g_System->LookUpMode())
{
case FuncFind_VirtualLookup:
AddressIndex = Address >> 0xC;
WriteStart = (Address & 0xFFC);
length = ((length + 3) & ~0x3);
DataInBlock = 0x1000 - WriteStart;
DataToWrite = length < DataInBlock ? length : DataInBlock;
DataLeft = length - DataToWrite;
{
PCCompiledFunc_TABLE & table = FunctionTable()[AddressIndex];
if (table)
{
WriteTrace(TraceRecompiler, TraceError, "Delete table (%X): Index = %d", table, AddressIndex);
delete table;
table = nullptr;
m_MMU.UnProtectMemory(Address, Address + length);
}
if (DataLeft > 0)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
}
break;
case FuncFind_PhysicalLookup:
{
uint32_t pAddr = 0;
if (m_MMU.VAddrToPAddr(Address, pAddr))
{
ClearRecompCode_Phys(pAddr, length, Reason);
}
}
break;
default:
g_Notify->BreakPoint(__FILE__, __LINE__);
}
}
void CRecompiler::ResetLog()
{
StopLog();
StartLog();
}
void CRecompiler::ResetMemoryStackPos()
{
#if defined(__aarch64__) || defined(__amd64__) || defined(_M_X64)
g_Notify->BreakPoint(__FILE__,__LINE__);
#else
if (m_Registers.m_GPR[29].UW[0] == 0)
{
m_MemoryStack = 0;
return;
}
uint32_t pAddr = 0;
if (m_MMU.VAddrToPAddr(m_Registers.m_GPR[29].UW[0], pAddr))
{
m_MemoryStack = (uint32_t)(m_MMU.Rdram() + pAddr);
}
else
{
WriteTrace(TraceRecompiler, TraceError, "Failed to translate SP address (%s)", m_Registers.m_GPR[29].UW[0]);
g_Notify->BreakPoint(__FILE__, __LINE__);
}
#endif
}
void CRecompiler::DumpFunctionTimes()
{
#if defined(__aarch64__) || defined(__amd64__) || defined(_M_X64)
g_Notify->BreakPoint(__FILE__,__LINE__);
#else
CPath LogFileName(g_Settings->LoadStringVal(Directory_Log).c_str(), "FunctionTimes.csv");
CLog Log;
Log.Open(LogFileName);
for (FUNCTION_PROFILE::iterator itr = m_BlockProfile.begin(); itr != m_BlockProfile.end(); itr++)
{
Log.LogF("%X,0x%X,%d\r\n", (uint32_t)itr->first, itr->second.Address, (uint32_t)itr->second.TimeTaken);
}
#endif
}
void CRecompiler::ResetFunctionTimes()
{
m_BlockProfile.clear();
}
void CRecompiler::StartLog()
{
if (!bRecordRecompilerAsm())
{
return;
}
CPath LogFileName(g_Settings->LoadStringVal(Directory_Log).c_str(), "CPUoutput.log");
if (m_LogFile != nullptr)
{
StopLog();
}
m_LogFile = new CLog();
if (m_LogFile)
{
if (m_LogFile->Open(LogFileName))
{
m_LogFile->SetMaxFileSize(300 * CLog::MB);
}
else
{
StopLog();
}
}
}
void CRecompiler::StopLog(void)
{
if (m_LogFile != nullptr)
{
delete m_LogFile;
m_LogFile = nullptr;
}
}
void CRecompiler::LogCodeBlock(const CCodeBlock & CodeBlock)
{
if (!bRecordRecompilerAsm() || m_LogFile == nullptr || CodeBlock.CodeLog().empty())
{
return;
}
m_LogFile->Log(CodeBlock.CodeLog().c_str());
m_LogFile->Log("\r\n");
m_LogFile->Flush();
}