project64/Source/Project64-core/N64System/Mips/GBCart.cpp

822 lines
25 KiB
C++

// Project64 - A Nintendo 64 emulator
// http://www.pj64-emu.com/
// Copyright(C) 2001-2021 Project64
// Copyright(C) 2015 Bobby Smiles
// GNU/GPLv2 licensed: https://gnu.org/licenses/gpl-2.0.html
#include "stdafx.h"
#include "GBCart.h"
#include <time.h>
#include <memory>
static void read_gb_cart_normal(struct gb_cart* gb_cart, uint16_t address, uint8_t* data)
{
uint16_t offset;
if ((address >= 0x0000) && (address <= 0x7FFF))
{
//Read GB Cart
if (address >= gb_cart->rom_size)
{
//If address is larger then our rome size, bail out
return;
}
memcpy(data, &gb_cart->rom[address], 0x20);
}
else if ((address >= 0xA000) && (address <= 0xBFFF))
{
//Read from RAM
if (gb_cart->ram == NULL)
{
//No RAM to write to
return;
}
offset = address - 0xA000;
if (offset >= gb_cart->ram_size)
{
//Offset is larger then our ram size
return;
}
memcpy(&gb_cart->ram[offset], data, 0x20);
memcpy(data, &gb_cart->ram[offset], 0x20);
}
}
static void write_gb_cart_normal(struct gb_cart* gb_cart, uint16_t address, const uint8_t* data)
{
uint16_t offset;
if ((address >= 0xA000) && (address <= 0xBFFF))
{
//Write to RAM
if (gb_cart->ram == NULL)
{
//No RAM to write to
return;
}
offset = address - 0xa000;
if (offset >= gb_cart->ram_size)
{
//Offset is larger then our ram size
return;
}
memcpy(&gb_cart->ram[offset], data, 0x20);
}
}
static void read_gb_cart_mbc1(struct gb_cart* gb_cart, uint16_t address, uint8_t* data)
{
size_t offset;
if ((address >= 0x0000) && (address <= 0x3FFF)) //No nbanked memory
{
memcpy(data, &gb_cart->rom[address], 0x20);
}
else if ((address >= 0x4000) && (address <= 0x7FFF)) //Read from ROM
{
offset = (address - 0x4000) + (gb_cart->rom_bank * 0x4000);
if (offset < gb_cart->rom_size)
{
memcpy(data, &gb_cart->rom[offset], 0x20);
}
}
else if ((address >= 0xA000) && (address <= 0xBFFF)) //Read from RAM
{
if (gb_cart->ram != NULL)
{
offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000);
if (offset < gb_cart->ram_size)
{
memcpy(data, &gb_cart->ram[offset], 0x20);
}
}
}
}
static void write_gb_cart_mbc1(struct gb_cart* gb_cart, uint16_t address, const uint8_t* data)
{
size_t offset;
if ((address >= 0x0000) && (address <= 0x1FFF)) // RAM enable
{
//Enable/disable RAM
gb_cart->ram_enabled = (data[0] & 0x0F) == 0x0A;
}
else if ((address >= 0x2000) && (address <= 0x3FFF)) // ROM bank select
{
gb_cart->rom_bank &= 0x60; // keep MSB
gb_cart->rom_bank |= data[0] & 0x1F;
// emulate quirk: 0x00 -> 0x01, 0x20 -> 0x21, 0x40->0x41, 0x60 -> 0x61
if ((gb_cart->rom_bank & 0x1F) == 0)
{
gb_cart->rom_bank |= 0x01;
}
}
else if ((address >= 0x4000) && (address <= 0x5FFF)) // RAM bank select
{
if (gb_cart->ram_bank_mode)
{
gb_cart->ram_bank = data[0] & 0x03;
}
else
{
gb_cart->rom_bank &= 0x1F;
gb_cart->rom_bank |= ((data[0] & 0x03) << 5); // set bits 5 and 6 of ROM bank
}
}
else if ((address >= 0x6000) && (address <= 0x7FFF)) // MBC1 mode select
{
// this is overly complicated, but it keeps us from having to do bitwise math later
// Basically we shuffle the 2 "magic bits" between rom_bank and ram_bank as necessary.
if (gb_cart->ram_bank_mode != (data[0] & 0x01))
{
// we should only alter the ROM and RAM bank numbers if we have changed modes
gb_cart->ram_bank_mode = data[0] & 0x01;
if (gb_cart->ram_bank_mode)
{
gb_cart->ram_bank = gb_cart->rom_bank >> 5; // set the ram bank to the "magic bits"
gb_cart->rom_bank &= 0x1F; // zero out bits 5 and 6 to keep consistency
}
else
{
gb_cart->rom_bank &= 0x1F;
gb_cart->rom_bank |= (gb_cart->ram_bank << 5);
gb_cart->ram_bank = 0x00; // we can only reach RAM page 0
}
}
}
else if ((address >= 0xA000) && (address <= 0xBFFF)) // Write to RAM
{
if (gb_cart->ram != NULL)
{
offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000);
if (offset < gb_cart->ram_size)
{
memcpy(&gb_cart->ram[offset], data, 0x20);
}
}
}
}
static void read_gb_cart_mbc2(struct gb_cart* gb_cart, uint16_t address, uint8_t* data)
{
size_t offset;
if ((address < 0x4000)) //Rom Bank 0
{
memcpy(data, &gb_cart->rom[address], 0x20);
}
else if ((address >= 0x4000) && (address < 0x8000)) //Switchable Rom Bank
{
offset = (address - 0x4000) + (gb_cart->rom_bank * 0x4000);
if (offset < gb_cart->rom_size)
{
memcpy(data, &gb_cart->rom[offset], 0x20);
}
}
else if ((address >= 0xA000) && (address <= 0xC000)) //Upper Bounds of memory map
{
if (gb_cart->ram != NULL)
{
offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000);
if (offset < gb_cart->ram_size)
{
memcpy(data, &gb_cart->ram[offset], 0x20);
}
}
}
}
static void write_gb_cart_mbc2(struct gb_cart* gb_cart, uint16_t address, const uint8_t* data)
{
size_t offset;
if ((address >= 0x0000) && (address <= 0x1FFF)) // We shouldn't be able to read/write to RAM unless this is toggled on
{
gb_cart->ram_enabled = (data[0] & 0x0F) == 0x0A;
}
else if ((address >= 0x2000) && (address <= 0x3FFF)) // ROM bank select
{
gb_cart->rom_bank = data[0] & 0x0F;
if (gb_cart->rom_bank == 0)
{
gb_cart->rom_bank = 1;
}
}
else if ((address >= 0x4000) && (address <= 0x5FFF)) // RAM bank select
{
if (gb_cart->ram != NULL)
{
gb_cart->ram_bank = data[0] & 0x07;
}
}
else if ((address >= 0xA000) && (address <= 0xBFFF)) // Write to RAM
{
if (gb_cart->ram != NULL)
{
offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000);
if (offset < gb_cart->ram_size)
{
memcpy(&gb_cart->ram[offset], data, 0x20);
}
}
}
}
void memoryUpdateMBC3Clock(struct gb_cart* gb_cart)
{
time_t now = time(NULL);
time_t diff = now - gb_cart->rtc_last_time;
if (diff > 0) {
// update the clock according to the last update time
gb_cart->rtc_data[0] += (int)(diff % 60);
if (gb_cart->rtc_data[0] > 59) {
gb_cart->rtc_data[0] -= 60;
gb_cart->rtc_data[1]++;
}
diff /= 60;
gb_cart->rtc_data[1] += (int)(diff % 60);
if (gb_cart->rtc_data[1] > 59) {
gb_cart->rtc_data[1] -= 60;
gb_cart->rtc_data[2]++;
}
diff /= 60;
gb_cart->rtc_data[2] += (int)(diff % 24);
if (gb_cart->rtc_data[2] > 23) {
gb_cart->rtc_data[2] -= 24;
gb_cart->rtc_data[3]++;
}
diff /= 24;
gb_cart->rtc_data[3] += (int)(diff & 0xFFFFFFFF);
if (gb_cart->rtc_data[3] > 255) {
if (gb_cart->rtc_data[3] > 511) {
gb_cart->rtc_data[3] %= 512;
gb_cart->rtc_data[3] |= 0x80;
}
gb_cart->rtc_data[4] = (gb_cart->rtc_data[4] & 0xFE) | (gb_cart->rtc_data[3] > 255 ? 1 : 0);
}
}
gb_cart->rtc_last_time = now;
}
static void read_gb_cart_mbc3(struct gb_cart* gb_cart, uint16_t address, uint8_t* data)
{
size_t offset;
if ((address < 0x4000)) //Rom Bank 0
{
memcpy(data, &gb_cart->rom[address], 0x20);
}
else if ((address >= 0x4000) && (address < 0x8000)) //Switchable Rom Bank
{
offset = (address - 0x4000) + (gb_cart->rom_bank * 0x4000);
if (offset < gb_cart->rom_size)
{
memcpy(data, &gb_cart->rom[offset], 0x20);
}
}
else if ((address >= 0xA000) && (address <= 0xC000)) //Upper Bounds of memory map
{
if (gb_cart->ram != NULL)
{
if (gb_cart->ram_bank <= 0x03)
{
offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000);
if (offset < gb_cart->ram_size)
{
memcpy(data, &gb_cart->ram[offset], 0x20);
}
}
else if (gb_cart->has_rtc)
{
if (gb_cart->rtc_latch)
{
for (int i = 0; i < 32; i++)
{
data[i] = (uint8_t)(gb_cart->rtc_latch_data[gb_cart->ram_bank - 0x08]);
}
}
else
{
memoryUpdateMBC3Clock(gb_cart);
for (int i = 0; i < 32; i++)
{
data[i] = (uint8_t)(gb_cart->rtc_data[gb_cart->ram_bank - 0x08]);
}
}
}
}
}
}
static void write_gb_cart_mbc3(struct gb_cart* gb_cart, uint16_t address, const uint8_t* data)
{
uint8_t bank;
size_t offset;
if ((address >= 0x0000) && (address <= 0x1FFF)) // We shouldn't be able to read/write to RAM unless this is toggled on
{
//Enable / Disable RAM -- NOT WORKING -- FIXME
gb_cart->ram_enabled = (data[0] & 0x0F) == 0x0A;
}
else if ((address >= 0x2000) && (address <= 0x3FFF)) // ROM bank select
{
bank = data[0] & 0x7F;
gb_cart->rom_bank = (bank == 0) ? 1 : bank;
}
else if ((address >= 0x4000) && (address <= 0x5FFF)) // RAM/Clock bank select
{
if (gb_cart->ram != NULL)
{
bank = data[0];
if (gb_cart->has_rtc && (bank >= 0x8 && bank <= 0xc))
{
//Set the bank for the timer
gb_cart->ram_bank = bank;
}
else
{
gb_cart->ram_bank = bank & 0x03;
}
}
}
else if ((address >= 0x6000) && (address <= 0x7FFF)) // Latch timer data
{
//Implement RTC timer / latch
if (gb_cart->rtc_latch == 0 && data[0] == 1)
{
//Update time
memoryUpdateMBC3Clock(gb_cart);
for (int i = 0; i < 4; i++)
{
gb_cart->rtc_latch_data[i] = gb_cart->rtc_data[i];
}
}
gb_cart->rtc_latch = data[0];
}
else if ((address >= 0xA000) && (address <= 0xBFFF)) // Write to RAM
{
if (gb_cart->ram != NULL)
{
if (gb_cart->ram_bank <= 0x03)
{
offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000);
if (offset < gb_cart->ram_size)
{
memcpy(&gb_cart->ram[offset], data, 0x20);
}
}
else if (gb_cart->has_rtc)
{
/* RTC write */
gb_cart->rtc_data[gb_cart->ram_bank - 0x08] = data[0];
}
}
}
}
static void read_gb_cart_mbc4(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, uint8_t * /*data*/)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
static void write_gb_cart_mbc4(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, const uint8_t * /*data*/)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
static void read_gb_cart_mbc5(struct gb_cart * gb_cart, uint16_t address, uint8_t * data)
{
size_t offset;
if ((address < 0x4000)) //Rom Bank 0
{
memcpy(data, &gb_cart->rom[address], 0x20);
}
else if ((address >= 0x4000) && (address < 0x8000)) //Switchable ROM BANK
{
offset = (address - 0x4000) + (gb_cart->rom_bank * 0x4000);
if (offset < gb_cart->rom_size)
{
memcpy(data, &gb_cart->rom[offset], 0x20);
}
}
else if ((address >= 0xA000) && (address <= 0xC000)) //Upper bounds of memory map
{
if (gb_cart->ram != NULL)
{
offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000);
if (offset < gb_cart->ram_size)
{
memcpy(data, &gb_cart->ram[offset], 0x20);
}
}
}
}
static void write_gb_cart_mbc5(struct gb_cart* gb_cart, uint16_t address, const uint8_t* data)
{
size_t offset;
if ((address >= 0x0000) && (address <= 0x1FFF)) // We shouldn't be able to read/write to RAM unless this is toggled on
{
//Enable / Disable RAM -- NOT WORKING -- CHECK ME
gb_cart->ram_enabled = (data[0] & 0x0F) == 0x0A;
}
else if ((address >= 0x2000) && (address <= 0x2FFF)) // ROM bank select, low bits
{
gb_cart->rom_bank &= 0xff00;
gb_cart->rom_bank |= data[0];
}
else if ((address >= 0x3000) && (address <= 0x3FFF)) // ROM bank select, high bit
{
gb_cart->rom_bank &= 0x00ff;
gb_cart->rom_bank |= (data[0] & 0x01) << 8;
}
else if ((address >= 0x4000) && (address <= 0x5FFF)) // RAM bank select
{
if (gb_cart->ram != NULL)
{
gb_cart->ram_bank = data[0] & 0x0f;
}
}
else if ((address >= 0xA000) && (address <= 0xBFFF)) // Write to RAM
{
if (gb_cart->ram != NULL)
{
offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000);
if (offset < gb_cart->ram_size)
{
memcpy(&gb_cart->ram[offset], data, 0x20);
}
}
}
}
static void read_gb_cart_mmm01(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, uint8_t * /*data*/)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
static void write_gb_cart_mmm01(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, const uint8_t * /*data*/)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
static void read_gb_cart_pocket_cam(struct gb_cart * gb_cart, uint16_t address, uint8_t * data)
{
size_t offset;
if ((address < 0x4000)) //Rom Bank 0
{
memcpy(data, &gb_cart->rom[address], 0x20);
}
else if ((address >= 0x4000) && (address < 0x8000)) //Switchable ROM BANK
{
offset = (address - 0x4000) + (gb_cart->rom_bank * 0x4000);
if (offset < gb_cart->rom_size)
{
memcpy(data, &gb_cart->rom[offset], 0x20);
}
}
else if ((address >= 0xA000) && (address <= 0xC000)) //Upper bounds of memory map
{
//Check to see if where currently in register mode
if (gb_cart->ram != NULL)
{
if (gb_cart->ram_bank & 0x10)
{
//Where in register mode, based off NRAGE we just fill the memory with Zeroes.
//Seems to be incorrect behaviour but need to find more doccumentation
memset(data, 0x00, 0x20);
}
else
{
//Read RAM normally
offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000);
if (offset < gb_cart->ram_size)
{
memcpy(data, &gb_cart->ram[offset], 0x20);
}
}
}
}
}
static void write_gb_cart_pocket_cam(struct gb_cart* gb_cart, uint16_t address, const uint8_t* data)
{
size_t offset;
if ((address >= 0x0000) && (address <= 0x1FFF)) // We shouldn't be able to read/write to RAM unless this is toggled on
{
//Enable / Disable RAM
gb_cart->ram_enabled = (data[0] & 0x0F) == 0x0A;
}
else if ((address >= 0x2000) && (address <= 0x2FFF)) // ROM bank select, low bits
{
gb_cart->rom_bank &= 0xFF00;
gb_cart->rom_bank |= data[0];
}
else if ((address >= 0x4000) && (address <= 0x4FFF)) // Camera Register & RAM bank select
{
if (gb_cart->ram != NULL)
{
if (data[0] & 0x10)
{
//REGISTER MODE
gb_cart->ram_bank = data[0];
}
else
{
//RAM MODE
gb_cart->ram_bank = data[0] & 0x0F;
}
}
}
else if ((address >= 0xA000) && (address <= 0xBFFF)) // Write to RAM
{
if (gb_cart->ram != NULL)
{
if (gb_cart->ram_bank & 0x10)
{
//REGISTER MODE (DO NOTHING)
}
else
{
//RAM MODE
offset = (address - 0xA000) + (gb_cart->ram_bank * 0x2000);
if (offset < gb_cart->ram_size)
{
memcpy(&gb_cart->ram[offset], data, 0x20);
}
}
}
}
}
static void read_gb_cart_bandai_tama5(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, uint8_t * /*data*/)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
static void write_gb_cart_bandai_tama5(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, const uint8_t * /*data*/)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
static void read_gb_cart_huc1(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, uint8_t * /*data*/)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
static void write_gb_cart_huc1(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, const uint8_t * /*data*/)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
static void read_gb_cart_huc3(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, uint8_t * /*data*/)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
static void write_gb_cart_huc3(struct gb_cart * /*gb_cart*/, uint16_t /*address*/, const uint8_t * /*data*/)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
enum gbcart_extra_devices
{
GED_NONE = 0x00,
GED_RAM = 0x01,
GED_BATTERY = 0x02,
GED_RTC = 0x04,
GED_RUMBLE = 0x08
};
struct parsed_cart_type
{
void(*read_gb_cart)(struct gb_cart*, uint16_t, uint8_t*);
void(*write_gb_cart)(struct gb_cart*, uint16_t, const uint8_t*);
unsigned int extra_devices;
};
static const struct parsed_cart_type* parse_cart_type(uint8_t cart_type)
{
#define MBC(x) read_gb_cart_ ## x, write_gb_cart_ ## x
static const struct parsed_cart_type GB_CART_TYPES[] =
{
{ MBC(normal), GED_NONE },
{ MBC(mbc1), GED_NONE },
{ MBC(mbc1), GED_RAM },
{ MBC(mbc1), GED_RAM | GED_BATTERY },
{ MBC(mbc2), GED_NONE },
{ MBC(mbc2), GED_BATTERY },
{ MBC(normal), GED_RAM },
{ MBC(normal), GED_RAM | GED_BATTERY },
{ MBC(mmm01), GED_NONE },
{ MBC(mmm01), GED_RAM },
{ MBC(mmm01), GED_RAM | GED_BATTERY },
{ MBC(mbc3), GED_BATTERY | GED_RTC },
{ MBC(mbc3), GED_RAM | GED_BATTERY | GED_RTC },
{ MBC(mbc3), GED_NONE },
{ MBC(mbc3), GED_RAM },
{ MBC(mbc3), GED_RAM | GED_BATTERY },
{ MBC(mbc4), GED_NONE },
{ MBC(mbc4), GED_RAM },
{ MBC(mbc4), GED_RAM | GED_BATTERY },
{ MBC(mbc5), GED_NONE },
{ MBC(mbc5), GED_RAM },
{ MBC(mbc5), GED_RAM | GED_BATTERY },
{ MBC(mbc5), GED_RUMBLE },
{ MBC(mbc5), GED_RAM | GED_RUMBLE },
{ MBC(mbc5), GED_RAM | GED_BATTERY | GED_RUMBLE },
{ MBC(pocket_cam), GED_NONE },
{ MBC(bandai_tama5), GED_NONE },
{ MBC(huc3), GED_NONE },
{ MBC(huc1), GED_RAM | GED_BATTERY }
};
#undef MBC
switch (cart_type)
{
case 0x00: return &GB_CART_TYPES[0];
case 0x01: return &GB_CART_TYPES[1];
case 0x02: return &GB_CART_TYPES[2];
case 0x03: return &GB_CART_TYPES[3];
case 0x05: return &GB_CART_TYPES[4];
case 0x06: return &GB_CART_TYPES[5];
case 0x08: return &GB_CART_TYPES[6];
case 0x09: return &GB_CART_TYPES[7];
case 0x0B: return &GB_CART_TYPES[8];
case 0x0C: return &GB_CART_TYPES[9];
case 0x0D: return &GB_CART_TYPES[10];
case 0x0F: return &GB_CART_TYPES[11];
case 0x10: return &GB_CART_TYPES[12];
case 0x11: return &GB_CART_TYPES[13];
case 0x12: return &GB_CART_TYPES[14];
case 0x13: return &GB_CART_TYPES[15];
case 0x15: return &GB_CART_TYPES[16];
case 0x16: return &GB_CART_TYPES[17];
case 0x17: return &GB_CART_TYPES[18];
case 0x19: return &GB_CART_TYPES[19];
case 0x1A: return &GB_CART_TYPES[20];
case 0x1B: return &GB_CART_TYPES[21];
case 0x1C: return &GB_CART_TYPES[22];
case 0x1D: return &GB_CART_TYPES[23];
case 0x1E: return &GB_CART_TYPES[24];
case 0xFC: return &GB_CART_TYPES[25];
case 0xFD: return &GB_CART_TYPES[26];
case 0xFE: return &GB_CART_TYPES[27];
case 0xFF: return &GB_CART_TYPES[28];
default: return NULL;
}
}
bool GBCart::init_gb_cart(struct gb_cart* gb_cart, const char* gb_file)
{
const struct parsed_cart_type* type;
std::unique_ptr<uint8_t> rom;
size_t rom_size = 0;
std::unique_ptr<uint8_t> ram;
size_t ram_size = 0;
CFile tempFile;
/* load GB cart ROM */
if (!tempFile.Open(gb_file, CFileBase::modeRead))
{
g_Notify->DisplayError("Failed to open Transferpak ROM");
return false;
}
rom_size = tempFile.GetLength();
rom.reset(new uint8_t[rom_size]);
tempFile.Read(rom.get(), rom_size);
tempFile.Close();
if (rom_size < 0x8000)
{
return false;
}
/* get and parse cart type */
uint8_t cart_type = rom.get()[0x147];
type = parse_cart_type(cart_type);
if (type == NULL)
{
return false;
}
/* load ram (if present) */
if (type->extra_devices & GED_RAM)
{
ram_size = 0;
switch (rom.get()[0x149])
{
case 0x01: ram_size = 1 * 0x800; break;
case 0x02: ram_size = 4 * 0x800; break;
case 0x03: ram_size = 16 * 0x800; break;
case 0x04: ram_size = 64 * 0x800; break;
case 0x05: ram_size = 32 * 0x800; break;
}
if (ram_size != 0)
{
ram.reset(new uint8_t[ram_size]);
if (ram.get() == NULL)
{
return false;
}
if (!tempFile.Open(g_Settings->LoadStringVal(Game_Transferpak_Sav).c_str(), CFileBase::modeRead))
{
g_Notify->DisplayError("Failed to open Transferpak SAV File");
return false;
}
tempFile.Read(ram.get(), ram_size);
}
//If we have RTC we need to load in the data, we assume the save will use the VBA-M format
if (type->extra_devices & GED_RTC)
{
tempFile.Read(&gb_cart->rtc_data[0], 4);
tempFile.Read(&gb_cart->rtc_data[1], 4);
tempFile.Read(&gb_cart->rtc_data[2], 4);
tempFile.Read(&gb_cart->rtc_data[3], 4);
tempFile.Read(&gb_cart->rtc_data[4], 4);
tempFile.Read(&gb_cart->rtc_latch_data[0], 4);
tempFile.Read(&gb_cart->rtc_latch_data[1], 4);
tempFile.Read(&gb_cart->rtc_latch_data[2], 4);
tempFile.Read(&gb_cart->rtc_latch_data[3], 4);
tempFile.Read(&gb_cart->rtc_latch_data[4], 4);
tempFile.Read(&gb_cart->rtc_last_time, 8);
memoryUpdateMBC3Clock(gb_cart);
}
tempFile.Close();
}
/* update gb_cart */
gb_cart->rom = rom.release();
gb_cart->ram = ram.release();
gb_cart->rom_size = rom_size;
gb_cart->ram_size = ram_size;
gb_cart->rom_bank = 1;
gb_cart->ram_bank = 0;
gb_cart->has_rtc = (type->extra_devices & GED_RTC) ? 1 : 0;
gb_cart->read_gb_cart = type->read_gb_cart;
gb_cart->write_gb_cart = type->write_gb_cart;
return true;
}
void GBCart::save_gb_cart(struct gb_cart* gb_cart)
{
CFile ramFile;
ramFile.Open(g_Settings->LoadStringVal(Game_Transferpak_Sav).c_str(), CFileBase::modeWrite | CFileBase::modeCreate);
ramFile.Write(gb_cart->ram, gb_cart->ram_size);
if (gb_cart->has_rtc)
{
ramFile.Write(&gb_cart->rtc_data[0], 4);
ramFile.Write(&gb_cart->rtc_data[1], 4);
ramFile.Write(&gb_cart->rtc_data[2], 4);
ramFile.Write(&gb_cart->rtc_data[3], 4);
ramFile.Write(&gb_cart->rtc_data[4], 4);
ramFile.Write(&gb_cart->rtc_latch_data[0], 4);
ramFile.Write(&gb_cart->rtc_latch_data[1], 4);
ramFile.Write(&gb_cart->rtc_latch_data[2], 4);
ramFile.Write(&gb_cart->rtc_latch_data[3], 4);
ramFile.Write(&gb_cart->rtc_latch_data[4], 4);
ramFile.Write(&gb_cart->rtc_last_time, 8);
}
ramFile.Close();
}
void GBCart::release_gb_cart(struct gb_cart* gb_cart)
{
if (gb_cart->rom != NULL)
delete gb_cart->rom;
if (gb_cart->ram != NULL)
delete gb_cart->ram;
memset(gb_cart, 0, sizeof(*gb_cart));
}
void GBCart::read_gb_cart(struct gb_cart* gb_cart, uint16_t address, uint8_t* data)
{
gb_cart->read_gb_cart(gb_cart, address, data);
}
void GBCart::write_gb_cart(struct gb_cart* gb_cart, uint16_t address, const uint8_t* data)
{
gb_cart->write_gb_cart(gb_cart, address, data);
}