project64/Source/Project64-core/N64System/Recompiler/CodeSection.cpp

2282 lines
88 KiB
C++

/****************************************************************************
* *
* Project64 - A Nintendo 64 emulator. *
* http://www.pj64-emu.com/ *
* Copyright (C) 2012 Project64. All rights reserved. *
* *
* License: *
* GNU/GPLv2 http://www.gnu.org/licenses/gpl-2.0.html *
* *
****************************************************************************/
#include "stdafx.h"
#include <Project64-core/N64System/Recompiler/CodeSection.h>
#include <Project64-core/N64System/Mips/OpCode.h>
#include <Project64-core/N64System/SystemGlobals.h>
#include <Project64-core/N64System/Mips/MemoryVirtualMem.h>
#include <Project64-core/N64System/Recompiler/x86CodeLog.h>
#include <Project64-core/N64System/Recompiler/CodeBlock.h>
#include <Project64-core/N64System/N64Class.h>
#include <Project64-core/N64System/Interpreter/InterpreterCPU.h>
#include <Project64-core/N64System/Recompiler/LoopAnalysis.h>
#include <Project64-core/N64System/Recompiler/SectionInfo.h>
#include <Project64-core/ExceptionHandler.h>
void InPermLoop();
bool DelaySlotEffectsCompare(uint32_t PC, uint32_t Reg1, uint32_t Reg2);
static bool DelaySlotEffectsJump(uint32_t JumpPC)
{
OPCODE Command;
if (!g_MMU->LW_VAddr(JumpPC, Command.Hex))
{
return true;
}
switch (Command.op)
{
case R4300i_SPECIAL:
switch (Command.funct)
{
case R4300i_SPECIAL_JR: return DelaySlotEffectsCompare(JumpPC, Command.rs, 0);
case R4300i_SPECIAL_JALR: return DelaySlotEffectsCompare(JumpPC, Command.rs, 31);
}
break;
case R4300i_REGIMM:
switch (Command.rt)
{
case R4300i_REGIMM_BLTZ:
case R4300i_REGIMM_BGEZ:
case R4300i_REGIMM_BLTZL:
case R4300i_REGIMM_BGEZL:
case R4300i_REGIMM_BLTZAL:
case R4300i_REGIMM_BGEZAL:
return DelaySlotEffectsCompare(JumpPC, Command.rs, 0);
}
break;
case R4300i_JAL:
case R4300i_SPECIAL_JALR: return DelaySlotEffectsCompare(JumpPC, 31, 0); break;
case R4300i_J: return false;
case R4300i_BEQ:
case R4300i_BNE:
case R4300i_BLEZ:
case R4300i_BGTZ:
return DelaySlotEffectsCompare(JumpPC, Command.rs, Command.rt);
case R4300i_CP1:
switch (Command.fmt)
{
case R4300i_COP1_BC:
switch (Command.ft)
{
case R4300i_COP1_BC_BCF:
case R4300i_COP1_BC_BCT:
case R4300i_COP1_BC_BCFL:
case R4300i_COP1_BC_BCTL:
{
bool EffectDelaySlot = false;
OPCODE NewCommand;
if (!g_MMU->LW_VAddr(JumpPC + 4, NewCommand.Hex))
{
return true;
}
if (NewCommand.op == R4300i_CP1)
{
if (NewCommand.fmt == R4300i_COP1_S && (NewCommand.funct & 0x30) == 0x30)
{
EffectDelaySlot = true;
}
if (NewCommand.fmt == R4300i_COP1_D && (NewCommand.funct & 0x30) == 0x30)
{
EffectDelaySlot = true;
}
}
return EffectDelaySlot;
}
break;
}
break;
}
break;
case R4300i_BEQL:
case R4300i_BNEL:
case R4300i_BLEZL:
case R4300i_BGTZL:
return DelaySlotEffectsCompare(JumpPC, Command.rs, Command.rt);
}
return true;
}
CCodeSection::CCodeSection(CCodeBlock * CodeBlock, uint32_t EnterPC, uint32_t ID, bool LinkAllowed) :
m_BlockInfo(CodeBlock),
m_SectionID(ID),
m_EnterPC(EnterPC),
m_EndPC((uint32_t)-1),
m_ContinueSection(NULL),
m_JumpSection(NULL),
m_EndSection(false),
m_LinkAllowed(LinkAllowed),
m_Test(0),
m_Test2(0),
m_CompiledLocation(NULL),
m_InLoop(false),
m_DelaySlot(false)
{
CPU_Message("%s: ID %d EnterPC 0x%08X", __FUNCTION__, ID, EnterPC);
}
CCodeSection::~CCodeSection()
{
}
void CCodeSection::CompileExit(uint32_t JumpPC, uint32_t TargetPC, CRegInfo &ExitRegSet, CExitInfo::EXIT_REASON reason, bool CompileNow, void(*x86Jmp)(const char * Label, uint32_t Value))
{
if (!CompileNow)
{
char String[100];
sprintf(String, "Exit_%d", m_BlockInfo->m_ExitInfo.size());
if (x86Jmp == NULL)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
return;
}
x86Jmp(String, 0);
CExitInfo ExitInfo;
ExitInfo.ID = m_BlockInfo->m_ExitInfo.size();
ExitInfo.TargetPC = TargetPC;
ExitInfo.ExitRegSet = ExitRegSet;
ExitInfo.reason = reason;
ExitInfo.NextInstruction = m_NextInstruction;
ExitInfo.JumpLoc = (uint32_t *)(m_RecompPos - 4);
m_BlockInfo->m_ExitInfo.push_back(ExitInfo);
return;
}
//CPU_Message("CompileExit: %d",reason);
ExitRegSet.WriteBackRegisters();
if (TargetPC != (uint32_t)-1)
{
MoveConstToVariable(TargetPC, &g_Reg->m_PROGRAM_COUNTER, "PROGRAM_COUNTER");
UpdateCounters(ExitRegSet, TargetPC <= JumpPC && JumpPC != -1, reason == CExitInfo::Normal);
}
else
{
UpdateCounters(ExitRegSet, false, reason == CExitInfo::Normal);
}
switch (reason)
{
case CExitInfo::Normal: case CExitInfo::Normal_NoSysCheck:
ExitRegSet.SetBlockCycleCount(0);
if (TargetPC != (uint32_t)-1)
{
if (TargetPC <= JumpPC && reason == CExitInfo::Normal)
{
CPU_Message("CompileSystemCheck 1");
CompileSystemCheck((uint32_t)-1, ExitRegSet);
}
}
else
{
if (reason == CExitInfo::Normal)
{
CPU_Message("CompileSystemCheck 2");
CompileSystemCheck((uint32_t)-1, ExitRegSet);
}
}
if (g_SyncSystem)
{
MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX);
Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem");
}
#ifdef LinkBlocks
if (bSMM_ValidFunc == false)
{
if (LookUpMode() == FuncFind_ChangeMemory)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
// uint8_t * Jump, * Jump2;
// if (TargetPC >= 0x80000000 && TargetPC < 0xC0000000) {
// uint32_t pAddr = TargetPC & 0x1FFFFFFF;
//
// MoveVariableToX86reg((uint8_t *)RDRAM + pAddr,"RDRAM + pAddr",x86_EAX);
// Jump2 = NULL;
// } else {
// MoveConstToX86reg((TargetPC >> 12),x86_ECX);
// MoveConstToX86reg(TargetPC,x86_EBX);
// MoveVariableDispToX86Reg(TLB_ReadMap,"TLB_ReadMap",x86_ECX,x86_ECX,4);
// TestX86RegToX86Reg(x86_ECX,x86_ECX);
// JeLabel8("NoTlbEntry",0);
// Jump2 = m_RecompPos - 1;
// MoveX86regPointerToX86reg(x86_ECX, x86_EBX,x86_EAX);
// }
// MoveX86RegToX86Reg(x86_EAX,x86_ECX);
// AndConstToX86Reg(x86_ECX,0xFFFF0000);
// CompConstToX86reg(x86_ECX,0x7C7C0000);
// JneLabel8("NoCode",0);
// Jump = m_RecompPos - 1;
// AndConstToX86Reg(x86_EAX,0xFFFF);
// ShiftLeftSignImmed(x86_EAX,4);
// AddConstToX86Reg(x86_EAX,0xC);
// MoveVariableDispToX86Reg(OrigMem,"OrigMem",x86_ECX,x86_EAX,1);
// JmpDirectReg(x86_ECX);
// CPU_Message(" NoCode:");
// *((uint8_t *)(Jump))=(uint8_t)(m_RecompPos - Jump - 1);
// if (Jump2 != NULL) {
// CPU_Message(" NoTlbEntry:");
// *((uint8_t *)(Jump2))=(uint8_t)(m_RecompPos - Jump2 - 1);
// }
}
else if (LookUpMode() == FuncFind_VirtualLookup)
{
MoveConstToX86reg(TargetPC,x86_EDX);
MoveConstToX86reg((uint32_t)&m_Functions,x86_ECX);
Call_Direct(AddressOf(&CFunctionMap::CompilerFindFunction), "CFunctionMap::CompilerFindFunction");
MoveX86RegToX86Reg(x86_EAX,x86_ECX);
JecxzLabel8("NullPointer",0);
uint8_t * Jump = m_RecompPos - 1;
MoveX86PointerToX86regDisp(x86_EBX,x86_ECX,0xC);
JmpDirectReg(x86_EBX);
CPU_Message(" NullPointer:");
*((uint8_t *)(Jump))=(uint8_t)(m_RecompPos - Jump - 1);
}
else if (LookUpMode() == FuncFind_PhysicalLookup)
{
uint8_t * Jump2 = NULL;
if (TargetPC >= 0x80000000 && TargetPC < 0x90000000)
{
uint32_t pAddr = TargetPC & 0x1FFFFFFF;
MoveVariableToX86reg((uint8_t *)JumpTable + pAddr,"JumpTable + pAddr",x86_ECX);
}
else if (TargetPC >= 0x90000000 && TargetPC < 0xC0000000)
{
}
else
{
MoveConstToX86reg((TargetPC >> 12),x86_ECX);
MoveConstToX86reg(TargetPC,x86_EBX);
MoveVariableDispToX86Reg(TLB_ReadMap,"TLB_ReadMap",x86_ECX,x86_ECX,4);
TestX86RegToX86Reg(x86_ECX,x86_ECX);
JeLabel8("NoTlbEntry",0);
Jump2 = m_RecompPos - 1;
AddConstToX86Reg(x86_ECX,(uint32_t)JumpTable - (uint32_t)RDRAM);
MoveX86regPointerToX86reg(x86_ECX, x86_EBX,x86_ECX);
}
if (TargetPC < 0x90000000 || TargetPC >= 0xC0000000)
{
JecxzLabel8("NullPointer",0);
uint8_t * Jump = m_RecompPos - 1;
MoveX86PointerToX86regDisp(x86_EAX,x86_ECX,0xC);
JmpDirectReg(x86_EAX);
CPU_Message(" NullPointer:");
*((uint8_t *)(Jump))=(uint8_t)(m_RecompPos - Jump - 1);
if (Jump2 != NULL)
{
CPU_Message(" NoTlbEntry:");
*((uint8_t *)(Jump2))=(uint8_t)(m_RecompPos - Jump2 - 1);
}
}
}
}
ExitCodeBlock();
#else
ExitCodeBlock();
#endif
break;
case CExitInfo::DoCPU_Action:
MoveConstToX86reg((uint32_t)g_SystemEvents, x86_ECX);
Call_Direct(AddressOf(&CSystemEvents::ExecuteEvents), "CSystemEvents::ExecuteEvents");
if (g_SyncSystem)
{
MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX);
Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem");
}
//g_System->SyncCPU(g_SyncSystem);
ExitCodeBlock();
break;
case CExitInfo::DoSysCall:
{
bool bDelay = m_NextInstruction == JUMP || m_NextInstruction == DELAY_SLOT;
PushImm32(bDelay ? "true" : "false", bDelay);
MoveConstToX86reg((uint32_t)g_Reg, x86_ECX);
Call_Direct(AddressOf(&CRegisters::DoSysCallException), "CRegisters::DoSysCallException");
if (g_SyncSystem)
{
MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX);
Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem");
}
ExitCodeBlock();
}
break;
case CExitInfo::COP1_Unuseable:
{
bool bDelay = m_NextInstruction == JUMP || m_NextInstruction == DELAY_SLOT;
PushImm32("1", 1);
PushImm32(bDelay ? "true" : "false", bDelay);
MoveConstToX86reg((uint32_t)g_Reg, x86_ECX);
Call_Direct(AddressOf(&CRegisters::DoCopUnusableException), "CRegisters::DoCopUnusableException");
if (g_SyncSystem)
{
MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX);
Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem");
}
ExitCodeBlock();
}
break;
case CExitInfo::ExitResetRecompCode:
g_Notify->BreakPoint(__FILE__, __LINE__);
#ifdef legacycode
if (m_NextInstruction == JUMP || m_NextInstruction == DELAY_SLOT)
{
X86BreakPoint(__FILEW__,__LINE__);
}
if (g_SyncSystem)
{
MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX);
Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem");
}
X86BreakPoint(__FILEW__,__LINE__);
MoveVariableToX86reg(this,"this",x86_ECX);
Call_Direct(AddressOf(ResetRecompCode), "ResetRecompCode");
#endif
ExitCodeBlock();
break;
case CExitInfo::TLBReadMiss:
MoveVariableToX86reg(g_TLBLoadAddress, "g_TLBLoadAddress", x86_EDX);
Push(x86_EDX);
PushImm32(m_NextInstruction == JUMP || m_NextInstruction == DELAY_SLOT);
MoveConstToX86reg((uint32_t)g_Reg, x86_ECX);
Call_Direct(AddressOf(&CRegisters::DoTLBReadMiss), "CRegisters::DoTLBReadMiss");
if (g_SyncSystem)
{
MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX);
Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem");
}
ExitCodeBlock();
break;
case CExitInfo::TLBWriteMiss:
X86BreakPoint(__FILE__, __LINE__);
ExitCodeBlock();
break;
case CExitInfo::DivByZero:
AddConstToVariable(4, _PROGRAM_COUNTER, "PROGRAM_COUNTER");
if (!g_System->b32BitCore())
{
MoveConstToVariable(0, &_RegHI->UW[1], "_RegHI->UW[1]");
MoveConstToVariable(0, &_RegLO->UW[1], "_RegLO->UW[1]");
}
MoveConstToVariable(0, &_RegHI->UW[0], "_RegHI->UW[0]");
MoveConstToVariable(0, &_RegLO->UW[0], "_RegLO->UW[0]");
if (g_SyncSystem)
{
MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX);
Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem");
}
ExitCodeBlock();
break;
default:
WriteTrace(TraceRecompiler, TraceError, "how did you want to exit on reason (%d) ???", reason);
g_Notify->BreakPoint(__FILE__, __LINE__);
}
}
void CCodeSection::GenerateSectionLinkage()
{
CCodeSection * TargetSection[] = { m_ContinueSection, m_JumpSection };
CJumpInfo * JumpInfo[] = { &m_Cont, &m_Jump };
int i;
for (i = 0; i < 2; i++)
{
if (JumpInfo[i]->LinkLocation == NULL &&
JumpInfo[i]->FallThrough == false)
{
JumpInfo[i]->TargetPC = (uint32_t)-1;
}
}
if ((CompilePC() & 0xFFC) == 0xFFC)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
#ifdef legacycode
//Handle Fall througth
uint8_t * Jump = NULL;
for (i = 0; i < 2; i ++)
{
if (!JumpInfo[i]->FallThrough) { continue; }
JumpInfo[i]->FallThrough = false;
if (JumpInfo[i]->LinkLocation != NULL)
{
SetJump32(JumpInfo[i]->LinkLocation,(uint32_t *)m_RecompPos);
JumpInfo[i]->LinkLocation = NULL;
if (JumpInfo[i]->LinkLocation2 != NULL)
{
SetJump32(JumpInfo[i]->LinkLocation2,(uint32_t *)m_RecompPos);
JumpInfo[i]->LinkLocation2 = NULL;
}
}
PushImm32(stdstr_f("0x%08X",JumpInfo[i]->TargetPC).c_str(),JumpInfo[i]->TargetPC);
if (JumpInfo[(i + 1) & 1]->LinkLocation == NULL) { break; }
JmpLabel8("FinishBlock",0);
Jump = m_RecompPos - 1;
}
for (i = 0; i < 2; i ++)
{
if (JumpInfo[i]->LinkLocation == NULL) { continue; }
JumpInfo[i]->FallThrough = false;
if (JumpInfo[i]->LinkLocation != NULL)
{
SetJump32(JumpInfo[i]->LinkLocation,(uint32_t *)m_RecompPos);
JumpInfo[i]->LinkLocation = NULL;
if (JumpInfo[i]->LinkLocation2 != NULL)
{
SetJump32(JumpInfo[i]->LinkLocation2,(uint32_t *)m_RecompPos);
JumpInfo[i]->LinkLocation2 = NULL;
}
}
PushImm32(stdstr_f("0x%08X",JumpInfo[i]->TargetPC).c_str(),JumpInfo[i]->TargetPC);
if (JumpInfo[(i + 1) & 1]->LinkLocation == NULL) { break; }
JmpLabel8("FinishBlock",0);
Jump = m_RecompPos - 1;
}
if (Jump != NULL)
{
CPU_Message(" $FinishBlock:");
SetJump8(Jump,m_RecompPos);
}
//MoveConstToVariable(CompilePC() + 4,_PROGRAM_COUNTER,"PROGRAM_COUNTER");
m_RegWorkingSet.WriteBackRegisters();
UpdateCounters(m_RegWorkingSet,false,true);
// WriteBackRegisters(Section);
// if (g_SyncSystem) {
MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX);
Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem");
//}
// MoveConstToVariable(DELAY_SLOT,&m_NextInstruction,"m_NextInstruction");
PushImm32(stdstr_f("0x%08X",CompilePC() + 4).c_str(),CompilePC() + 4);
// check if there is an existing section
MoveConstToX86reg((uint32_t)g_Recompiler,x86_ECX);
Call_Direct(AddressOf(&CRecompiler::CompileDelaySlot), "CRecompiler::CompileDelaySlot");
JmpDirectReg(x86_EAX);
ExitCodeBlock();
return;
#endif
}
// Handle Perm Loop
if (CRecompilerOps::m_CompilePC == m_Jump.TargetPC && (m_Cont.FallThrough == false))
{
if (!DelaySlotEffectsJump(CompilePC()))
{
MoveConstToVariable(CompilePC(), _PROGRAM_COUNTER, "PROGRAM_COUNTER");
m_Jump.RegSet.WriteBackRegisters();
UpdateCounters(m_Jump.RegSet, false, true);
Call_Direct(AddressOf(CInterpreterCPU::InPermLoop), "CInterpreterCPU::InPermLoop");
MoveConstToX86reg((uint32_t)g_SystemTimer, x86_ECX);
Call_Direct(AddressOf(&CSystemTimer::TimerDone), "CSystemTimer::TimerDone");
CPU_Message("CompileSystemCheck 3");
CompileSystemCheck((uint32_t)-1, m_Jump.RegSet);
}
}
if (TargetSection[0] != TargetSection[1] || TargetSection[0] == NULL)
{
for (i = 0; i < 2; i++)
{
if (JumpInfo[i]->LinkLocation == NULL && JumpInfo[i]->FallThrough == false)
{
if (TargetSection[i])
{
TargetSection[i]->UnlinkParent(this, i == 0);
TargetSection[i] = NULL;
}
}
else if (TargetSection[i] == NULL && JumpInfo[i]->FallThrough)
{
if (JumpInfo[i]->LinkLocation != NULL)
{
SetJump32(JumpInfo[i]->LinkLocation, (uint32_t *)m_RecompPos);
JumpInfo[i]->LinkLocation = NULL;
if (JumpInfo[i]->LinkLocation2 != NULL)
{
SetJump32(JumpInfo[i]->LinkLocation2, (uint32_t *)m_RecompPos);
JumpInfo[i]->LinkLocation2 = NULL;
}
}
CompileExit(JumpInfo[i]->JumpPC, JumpInfo[i]->TargetPC, JumpInfo[i]->RegSet, JumpInfo[i]->ExitReason, true, NULL);
JumpInfo[i]->FallThrough = false;
}
else if (TargetSection[i] != NULL && JumpInfo[i] != NULL)
{
if (!JumpInfo[i]->FallThrough) { continue; }
if (JumpInfo[i]->TargetPC == TargetSection[i]->m_EnterPC) { continue; }
if (JumpInfo[i]->LinkLocation != NULL)
{
SetJump32(JumpInfo[i]->LinkLocation, (uint32_t *)m_RecompPos);
JumpInfo[i]->LinkLocation = NULL;
if (JumpInfo[i]->LinkLocation2 != NULL)
{
SetJump32(JumpInfo[i]->LinkLocation2, (uint32_t *)m_RecompPos);
JumpInfo[i]->LinkLocation2 = NULL;
}
}
CompileExit(JumpInfo[i]->JumpPC, JumpInfo[i]->TargetPC, JumpInfo[i]->RegSet, JumpInfo[i]->ExitReason, true, NULL);
//FreeSection(TargetSection[i],Section);
}
}
}
else
{
if (m_Cont.LinkLocation == NULL && m_Cont.FallThrough == false) { m_ContinueSection = NULL; }
if (m_Jump.LinkLocation == NULL && m_Jump.FallThrough == false) { m_JumpSection = NULL; }
if (m_JumpSection == NULL && m_ContinueSection == NULL)
{
//FreeSection(TargetSection[0],Section);
}
}
TargetSection[0] = m_ContinueSection;
TargetSection[1] = m_JumpSection;
for (i = 0; i < 2; i++) {
if (TargetSection[i] == NULL) { continue; }
if (!JumpInfo[i]->FallThrough) { continue; }
if (TargetSection[i]->m_CompiledLocation != NULL)
{
char Label[100];
sprintf(Label, "Section_%d", TargetSection[i]->m_SectionID);
JumpInfo[i]->FallThrough = false;
if (JumpInfo[i]->LinkLocation != NULL)
{
SetJump32(JumpInfo[i]->LinkLocation, (uint32_t *)m_RecompPos);
JumpInfo[i]->LinkLocation = NULL;
if (JumpInfo[i]->LinkLocation2 != NULL)
{
SetJump32(JumpInfo[i]->LinkLocation2, (uint32_t *)m_RecompPos);
JumpInfo[i]->LinkLocation2 = NULL;
}
}
if (JumpInfo[i]->TargetPC <= CompilePC())
{
if (JumpInfo[i]->PermLoop)
{
CPU_Message("PermLoop *** 1");
MoveConstToVariable(JumpInfo[i]->TargetPC, _PROGRAM_COUNTER, "PROGRAM_COUNTER");
UpdateCounters(JumpInfo[i]->RegSet, false, true);
if (g_SyncSystem)
{
MoveConstToX86reg((uint32_t)g_BaseSystem, x86_ECX);
Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem");
}
//JumpInfo[i]->RegSet.BlockCycleCount() -= g_System->CountPerOp();
Call_Direct(AddressOf(CInterpreterCPU::InPermLoop), "CInterpreterCPU::InPermLoop");
//JumpInfo[i]->RegSet.BlockCycleCount() += g_System->CountPerOp();
UpdateCounters(JumpInfo[i]->RegSet, true, true);
CPU_Message("CompileSystemCheck 4");
CompileSystemCheck((uint32_t)-1, JumpInfo[i]->RegSet);
}
else
{
UpdateCounters(JumpInfo[i]->RegSet, true, true);
CPU_Message("CompileSystemCheck 5");
CompileSystemCheck(JumpInfo[i]->TargetPC, JumpInfo[i]->RegSet);
}
}
else
{
UpdateCounters(JumpInfo[i]->RegSet, false, true);
}
JumpInfo[i]->RegSet.SetBlockCycleCount(0);
m_RegWorkingSet = JumpInfo[i]->RegSet;
SyncRegState(TargetSection[i]->m_RegEnter);
JmpLabel32(Label, 0);
SetJump32((uint32_t *)m_RecompPos - 1, (uint32_t *)(TargetSection[i]->m_CompiledLocation));
}
}
for (i = 0; i < 2; i++)
{
if (TargetSection[i] == NULL) { continue; }
if (TargetSection[i]->m_ParentSection.empty()) { continue; }
for (SECTION_LIST::iterator iter = TargetSection[i]->m_ParentSection.begin(); iter != TargetSection[i]->m_ParentSection.end(); iter++)
{
CCodeSection * Parent = *iter;
if (Parent->m_CompiledLocation != NULL) { continue; }
if (Parent->m_InLoop) { continue; }
if (JumpInfo[i]->PermLoop)
{
CPU_Message("PermLoop *** 2");
MoveConstToVariable(JumpInfo[i]->TargetPC, _PROGRAM_COUNTER, "PROGRAM_COUNTER");
UpdateCounters(JumpInfo[i]->RegSet, false, true);
Call_Direct(AddressOf(CInterpreterCPU::InPermLoop), "CInterpreterCPU::InPermLoop");
UpdateCounters(JumpInfo[i]->RegSet, true, true);
CPU_Message("CompileSystemCheck 6");
CompileSystemCheck((uint32_t)-1, JumpInfo[i]->RegSet);
}
if (JumpInfo[i]->FallThrough)
{
JumpInfo[i]->FallThrough = false;
JmpLabel32(JumpInfo[i]->BranchLabel.c_str(), 0);
JumpInfo[i]->LinkLocation = (uint32_t*)(m_RecompPos - 4);
}
}
}
for (i = 0; i < 2; i++)
{
if (JumpInfo[i]->FallThrough)
{
if (JumpInfo[i]->TargetPC < CompilePC())
{
UpdateCounters(JumpInfo[i]->RegSet, true, true);
CPU_Message("CompileSystemCheck 7");
CompileSystemCheck(JumpInfo[i]->TargetPC, JumpInfo[i]->RegSet);
}
}
}
CPU_Message("====== End of Section %d ======", m_SectionID);
for (i = 0; i < 2; i++)
{
if (JumpInfo[i]->FallThrough && !TargetSection[i]->GenerateX86Code(m_BlockInfo->NextTest()))
{
JumpInfo[i]->FallThrough = false;
JmpLabel32(JumpInfo[i]->BranchLabel.c_str(), 0);
JumpInfo[i]->LinkLocation = (uint32_t *)(m_RecompPos - 4);
}
}
//CPU_Message("Section %d",m_SectionID);
for (i = 0; i < 2; i++)
{
if (JumpInfo[i]->LinkLocation == NULL) { continue; }
if (TargetSection[i] == NULL)
{
CPU_Message("ExitBlock (from %d):", m_SectionID);
SetJump32(JumpInfo[i]->LinkLocation, (uint32_t *)m_RecompPos);
JumpInfo[i]->LinkLocation = NULL;
if (JumpInfo[i]->LinkLocation2 != NULL)
{
SetJump32(JumpInfo[i]->LinkLocation2, (uint32_t *)m_RecompPos);
JumpInfo[i]->LinkLocation2 = NULL;
}
CompileExit(JumpInfo[i]->JumpPC, JumpInfo[i]->TargetPC, JumpInfo[i]->RegSet, JumpInfo[i]->ExitReason, true, NULL);
continue;
}
if (JumpInfo[i]->TargetPC != TargetSection[i]->m_EnterPC)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
if (TargetSection[i]->m_CompiledLocation == NULL)
{
TargetSection[i]->GenerateX86Code(m_BlockInfo->NextTest());
}
else
{
stdstr_f Label("Section_%d (from %d):", TargetSection[i]->m_SectionID, m_SectionID);
CPU_Message(Label.c_str());
SetJump32(JumpInfo[i]->LinkLocation, (uint32_t *)m_RecompPos);
JumpInfo[i]->LinkLocation = NULL;
if (JumpInfo[i]->LinkLocation2 != NULL)
{
SetJump32(JumpInfo[i]->LinkLocation2, (uint32_t *)m_RecompPos);
JumpInfo[i]->LinkLocation2 = NULL;
}
m_RegWorkingSet = JumpInfo[i]->RegSet;
if (JumpInfo[i]->TargetPC <= JumpInfo[i]->JumpPC)
{
UpdateCounters(JumpInfo[i]->RegSet, true, true);
if (JumpInfo[i]->PermLoop)
{
CPU_Message("PermLoop *** 3");
MoveConstToVariable(JumpInfo[i]->TargetPC, _PROGRAM_COUNTER, "PROGRAM_COUNTER");
Call_Direct(AddressOf(CInterpreterCPU::InPermLoop), "CInterpreterCPU::InPermLoop");
CPU_Message("CompileSystemCheck 8");
CompileSystemCheck((uint32_t)-1, JumpInfo[i]->RegSet);
}
else
{
CPU_Message("CompileSystemCheck 9");
CompileSystemCheck(JumpInfo[i]->TargetPC, JumpInfo[i]->RegSet);
}
}
else
{
UpdateCounters(m_RegWorkingSet, false, true);
}
m_RegWorkingSet = JumpInfo[i]->RegSet;
SyncRegState(TargetSection[i]->m_RegEnter);
JmpLabel32(Label.c_str(), 0);
SetJump32((uint32_t *)m_RecompPos - 1, (uint32_t *)(TargetSection[i]->m_CompiledLocation));
}
}
}
void CCodeSection::SyncRegState(const CRegInfo & SyncTo)
{
ResetX86Protection();
bool changed = false;
UnMap_AllFPRs();
if (m_RegWorkingSet.GetRoundingModel() != SyncTo.GetRoundingModel()) { m_RegWorkingSet.SetRoundingModel(CRegInfo::RoundUnknown); }
x86Reg MemStackReg = Get_MemoryStack();
x86Reg TargetStackReg = SyncTo.Get_MemoryStack();
//CPU_Message("MemoryStack for Original State = %s",MemStackReg > 0?x86_Name(MemStackReg):"Not Mapped");
if (MemStackReg != TargetStackReg)
{
if (TargetStackReg == x86_Unknown)
{
UnMap_X86reg(MemStackReg);
}
else if (MemStackReg == x86_Unknown)
{
UnMap_X86reg(TargetStackReg);
CPU_Message(" regcache: allocate %s as Memory Stack", x86_Name(TargetStackReg));
m_RegWorkingSet.SetX86Mapped(TargetStackReg, CRegInfo::Stack_Mapped);
MoveVariableToX86reg(&g_Recompiler->MemoryStackPos(), "MemoryStack", TargetStackReg);
}
else
{
UnMap_X86reg(TargetStackReg);
CPU_Message(" regcache: change allocation of Memory Stack from %s to %s", x86_Name(MemStackReg), x86_Name(TargetStackReg));
m_RegWorkingSet.SetX86Mapped(TargetStackReg, CRegInfo::Stack_Mapped);
m_RegWorkingSet.SetX86Mapped(MemStackReg, CRegInfo::NotMapped);
MoveX86RegToX86Reg(MemStackReg, TargetStackReg);
}
}
for (int i = 1; i < 32; i++)
{
if (GetMipsRegState(i) == SyncTo.GetMipsRegState(i) ||
(g_System->b32BitCore() && GetMipsRegState(i) == CRegInfo::STATE_MAPPED_32_ZERO && SyncTo.GetMipsRegState(i) == CRegInfo::STATE_MAPPED_32_SIGN) ||
(g_System->b32BitCore() && GetMipsRegState(i) == CRegInfo::STATE_MAPPED_32_SIGN && SyncTo.GetMipsRegState(i) == CRegInfo::STATE_MAPPED_32_ZERO))
{
switch (GetMipsRegState(i)) {
case CRegInfo::STATE_UNKNOWN: continue;
case CRegInfo::STATE_MAPPED_64:
if (GetMipsRegMapHi(i) == SyncTo.GetMipsRegMapHi(i) &&
GetMipsRegMapLo(i) == SyncTo.GetMipsRegMapLo(i))
{
continue;
}
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
case CRegInfo::STATE_MAPPED_32_SIGN:
if (GetMipsRegMapLo(i) == SyncTo.GetMipsRegMapLo(i))
{
continue;
}
break;
case CRegInfo::STATE_CONST_64:
if (GetMipsReg(i) != SyncTo.GetMipsReg(i))
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
continue;
case CRegInfo::STATE_CONST_32_SIGN:
if (GetMipsRegLo(i) != SyncTo.GetMipsRegLo(i))
{
CPU_Message("Value of const is different Reg %d (%s) Value: 0x%08X to 0x%08X", i, CRegName::GPR[i], GetMipsRegLo(i), SyncTo.GetMipsRegLo(i));
g_Notify->BreakPoint(__FILE__, __LINE__);
}
continue;
default:
CPU_Message("Unhandled Reg state %d\nin SyncRegState", GetMipsRegState(i));
g_Notify->BreakPoint(__FILE__, __LINE__);
}
}
changed = true;
switch (SyncTo.GetMipsRegState(i))
{
case CRegInfo::STATE_UNKNOWN: UnMap_GPR(i, true); break;
case CRegInfo::STATE_MAPPED_64:
{
x86Reg Reg = SyncTo.GetMipsRegMapLo(i);
x86Reg x86RegHi = SyncTo.GetMipsRegMapHi(i);
UnMap_X86reg(Reg);
UnMap_X86reg(x86RegHi);
switch (GetMipsRegState(i))
{
case CRegInfo::STATE_UNKNOWN:
MoveVariableToX86reg(&_GPR[i].UW[0], CRegName::GPR_Lo[i], Reg);
MoveVariableToX86reg(&_GPR[i].UW[1], CRegName::GPR_Hi[i], x86RegHi);
break;
case CRegInfo::STATE_MAPPED_64:
MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg);
m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped);
MoveX86RegToX86Reg(GetMipsRegMapHi(i), x86RegHi);
m_RegWorkingSet.SetX86Mapped(GetMipsRegMapHi(i), CRegInfo::NotMapped);
break;
case CRegInfo::STATE_MAPPED_32_SIGN:
MoveX86RegToX86Reg(GetMipsRegMapLo(i), x86RegHi);
ShiftRightSignImmed(x86RegHi, 31);
MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg);
m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped);
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
XorX86RegToX86Reg(x86RegHi, x86RegHi);
MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg);
m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped);
break;
case CRegInfo::STATE_CONST_64:
MoveConstToX86reg(GetMipsRegHi(i), x86RegHi);
MoveConstToX86reg(GetMipsRegLo(i), Reg);
break;
case CRegInfo::STATE_CONST_32_SIGN:
MoveConstToX86reg(GetMipsRegLo_S(i) >> 31, x86RegHi);
MoveConstToX86reg(GetMipsRegLo(i), Reg);
break;
default:
CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_64\n%d", GetMipsRegState(i));
g_Notify->BreakPoint(__FILE__, __LINE__);
continue;
}
m_RegWorkingSet.SetMipsRegMapLo(i, Reg);
m_RegWorkingSet.SetMipsRegMapHi(i, x86RegHi);
m_RegWorkingSet.SetMipsRegState(i, CRegInfo::STATE_MAPPED_64);
m_RegWorkingSet.SetX86Mapped(Reg, CRegInfo::GPR_Mapped);
m_RegWorkingSet.SetX86Mapped(x86RegHi, CRegInfo::GPR_Mapped);
m_RegWorkingSet.SetX86MapOrder(Reg, 1);
m_RegWorkingSet.SetX86MapOrder(x86RegHi, 1);
}
break;
case CRegInfo::STATE_MAPPED_32_SIGN:
{
x86Reg Reg = SyncTo.GetMipsRegMapLo(i);
UnMap_X86reg(Reg);
switch (GetMipsRegState(i))
{
case CRegInfo::STATE_UNKNOWN: MoveVariableToX86reg(&_GPR[i].UW[0], CRegName::GPR_Lo[i], Reg); break;
case CRegInfo::STATE_CONST_32_SIGN: MoveConstToX86reg(GetMipsRegLo(i), Reg); break;
case CRegInfo::STATE_MAPPED_32_SIGN:
MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg);
m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped);
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
if (GetMipsRegMapLo(i) != Reg)
{
MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg);
m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped);
}
break;
case CRegInfo::STATE_MAPPED_64:
MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg);
m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped);
m_RegWorkingSet.SetX86Mapped(GetMipsRegMapHi(i), CRegInfo::NotMapped);
break;
case CRegInfo::STATE_CONST_64:
CPU_Message("hi %X\nLo %X", GetMipsRegHi(i), GetMipsRegLo(i));
default:
CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_SIGN\n%d", GetMipsRegState(i));
g_Notify->BreakPoint(__FILE__, __LINE__);
}
m_RegWorkingSet.SetMipsRegMapLo(i, Reg);
m_RegWorkingSet.SetMipsRegState(i, CRegInfo::STATE_MAPPED_32_SIGN);
m_RegWorkingSet.SetX86Mapped(Reg, CRegInfo::GPR_Mapped);
m_RegWorkingSet.SetX86MapOrder(Reg, 1);
}
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
{
x86Reg Reg = SyncTo.GetMipsRegMapLo(i);
UnMap_X86reg(Reg);
switch (GetMipsRegState(i))
{
case CRegInfo::STATE_MAPPED_64:
case CRegInfo::STATE_UNKNOWN:
MoveVariableToX86reg(&_GPR[i].UW[0], CRegName::GPR_Lo[i], Reg);
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg);
m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped);
break;
case CRegInfo::STATE_MAPPED_32_SIGN:
if (g_System->b32BitCore())
{
MoveX86RegToX86Reg(GetMipsRegMapLo(i), Reg);
m_RegWorkingSet.SetX86Mapped(GetMipsRegMapLo(i), CRegInfo::NotMapped);
}
else
{
CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_ZERO\n%d", GetMipsRegState(i));
g_Notify->BreakPoint(__FILE__, __LINE__);
}
break;
case CRegInfo::STATE_CONST_32_SIGN:
if (!g_System->b32BitCore() && GetMipsRegLo_S(i) < 0)
{
CPU_Message("Sign Problems in SyncRegState\nSTATE_MAPPED_32_ZERO");
CPU_Message("%s: %X", CRegName::GPR[i], GetMipsRegLo_S(i));
g_Notify->BreakPoint(__FILE__, __LINE__);
}
MoveConstToX86reg(GetMipsRegLo(i), Reg);
break;
default:
CPU_Message("Do something with states in SyncRegState\nSTATE_MAPPED_32_ZERO\n%d", GetMipsRegState(i));
g_Notify->BreakPoint(__FILE__, __LINE__);
}
m_RegWorkingSet.SetMipsRegMapLo(i, Reg);
m_RegWorkingSet.SetMipsRegState(i, SyncTo.GetMipsRegState(i));
m_RegWorkingSet.SetX86Mapped(Reg, CRegInfo::GPR_Mapped);
m_RegWorkingSet.SetX86MapOrder(Reg, 1);
}
break;
default:
CPU_Message("%d - %d reg: %s (%d)", SyncTo.GetMipsRegState(i), GetMipsRegState(i), CRegName::GPR[i], i);
g_Notify->BreakPoint(__FILE__, __LINE__);
changed = false;
}
}
}
void CCodeSection::SetDelaySlot()
{
m_DelaySlot = true;
}
void CCodeSection::SetJumpAddress(uint32_t JumpPC, uint32_t TargetPC, bool PermLoop)
{
m_Jump.JumpPC = JumpPC;
m_Jump.TargetPC = TargetPC;
m_Jump.BranchLabel.Format("0x%08X", TargetPC);
m_Jump.PermLoop = PermLoop;
}
void CCodeSection::SetContinueAddress(uint32_t JumpPC, uint32_t TargetPC)
{
m_Cont.JumpPC = JumpPC;
m_Cont.TargetPC = TargetPC;
m_Cont.BranchLabel.Format("0x%08X", TargetPC);
}
void CCodeSection::CompileCop1Test()
{
if (m_RegWorkingSet.FpuBeenUsed())
return;
TestVariable(STATUS_CU1, &g_Reg->STATUS_REGISTER, "STATUS_REGISTER");
CompileExit(m_CompilePC, m_CompilePC, m_RegWorkingSet, CExitInfo::COP1_Unuseable, false, JeLabel32);
m_RegWorkingSet.FpuBeenUsed() = true;
}
bool CCodeSection::ParentContinue()
{
if (m_ParentSection.size() > 0)
{
for (SECTION_LIST::iterator iter = m_ParentSection.begin(); iter != m_ParentSection.end(); iter++)
{
CCodeSection * Parent = *iter;
if (Parent->m_CompiledLocation != NULL) { continue; }
if (IsAllParentLoops(Parent, true, m_BlockInfo->NextTest())) { continue; }
return false;
}
if (!InheritParentInfo())
{
return false;
}
}
return true;
}
/*int TestValue = 0;
void TestFunc()
{
TestValue += 1;
if (TestValue >= 4)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
}*/
bool CCodeSection::GenerateX86Code(uint32_t Test)
{
if (this == NULL) { return false; }
if (m_CompiledLocation != NULL)
{
if (m_Test == Test)
{
return false;
}
m_Test = Test;
if (m_ContinueSection->GenerateX86Code(Test)) { return true; }
if (m_JumpSection->GenerateX86Code(Test)) { return true; }
return false;
}
if (!ParentContinue())
{
return false;
}
m_CompiledLocation = m_RecompPos;
m_RegWorkingSet = m_RegEnter;
m_CompilePC = m_EnterPC;
m_NextInstruction = m_DelaySlot ? JUMP : NORMAL;
m_Section = this;
if (m_CompilePC < m_BlockInfo->VAddrFirst())
{
m_BlockInfo->SetVAddrFirst(m_CompilePC);
}
uint32_t ContinueSectionPC = m_ContinueSection ? m_ContinueSection->m_EnterPC : (uint32_t)-1;
do
{
__except_try()
{
if (!g_MMU->LW_VAddr(m_CompilePC, m_Opcode.Hex))
{
g_Notify->FatalError(GS(MSG_FAIL_LOAD_WORD));
}
}
__except_catch()
{
g_Notify->FatalError(GS(MSG_UNKNOWN_MEM_ACTION));
}
if (m_CompilePC > m_BlockInfo->VAddrLast())
{
m_BlockInfo->SetVAddrLast(m_CompilePC);
}
/*if (m_CompilePC == 0x803245C4)
{
X86BreakPoint(__FILEW__,__LINE__);
//m_RegWorkingSet.UnMap_AllFPRs();
}*/
/*if (m_CompilePC >= 0x80000000 && m_CompilePC <= 0x80400000 && m_NextInstruction == NORMAL)
{
m_RegWorkingSet.WriteBackRegisters();
UpdateCounters(m_RegWorkingSet,false,true);
MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER");
if (g_SyncSystem) {
MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX);
Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem");
}
}*/
/*if ((m_CompilePC == 0x8031C0E4 || m_CompilePC == 0x8031C118 ||
m_CompilePC == 0x8031CD88 || m_CompilePC == 0x8031CE24 ||
m_CompilePC == 0x8031CE30 || m_CompilePC == 0x8031CE40) && m_NextInstruction == NORMAL)
{
m_RegWorkingSet.WriteBackRegisters();
UpdateCounters(m_RegWorkingSet,false,true);
MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER");
if (g_SyncSystem) {
MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX);
Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem");
}
}*/
/*if (m_CompilePC == 0x801C1B88)
{
BeforeCallDirect(m_RegWorkingSet);
Call_Direct(AddressOf(TestFunc), "TestFunc");
AfterCallDirect(m_RegWorkingSet);
}*/
/*if (m_CompilePC >= 0x801C1AF8 && m_CompilePC <= 0x801C1C00 && m_NextInstruction == NORMAL)
{
UpdateCounters(m_RegWorkingSet,false,true);
MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER");
if (g_SyncSystem) {
BeforeCallDirect(m_RegWorkingSet);
MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX);
Call_Direct(AddressOf(&CN64System::SyncSystemPC), "CN64System::SyncSystemPC");
AfterCallDirect(m_RegWorkingSet);
}
}*/
/*if ((m_CompilePC == 0x80263900) && m_NextInstruction == NORMAL)
{
X86BreakPoint(__FILEW__,__LINE__);
}*/
/*if ((m_CompilePC >= 0x80325D80 && m_CompilePC <= 0x80325DF0) && m_NextInstruction == NORMAL)
{
m_RegWorkingSet.WriteBackRegisters();
UpdateCounters(m_RegWorkingSet,false,true);
MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER");
if (g_SyncSystem) {
MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX);
Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem");
}
}*/
/*if ((m_CompilePC == 0x80324E14) && m_NextInstruction == NORMAL)
{
X86BreakPoint(__FILEW__,__LINE__);
}*/
/*if (m_CompilePC == 0x80324E18 && m_NextInstruction == NORMAL)
{
m_RegWorkingSet.WriteBackRegisters();
UpdateCounters(m_RegWorkingSet,false,true);
MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER");
if (g_SyncSystem) {
MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX);
Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem");
}
}*/
/*if (m_CompilePC >= 0x80324E00 && m_CompilePC <= 0x80324E18 && m_NextInstruction == NORMAL)
{
m_RegWorkingSet.WriteBackRegisters();
UpdateCounters(m_RegWorkingSet,false,true);
MoveConstToVariable(m_CompilePC,&g_Reg->m_PROGRAM_COUNTER,"PROGRAM_COUNTER");
if (g_SyncSystem) {
MoveConstToX86reg((uint32_t)g_BaseSystem,x86_ECX);
Call_Direct(AddressOf(&CN64System::SyncSystem), "CN64System::SyncSystem");
}
}*/
/* if (m_CompilePC == 0x803245CC && m_NextInstruction == NORMAL)
{
//m_RegWorkingSet.UnMap_AllFPRs();
g_Notify->BreakPoint(__FILE__, __LINE__);
//X86HardBreakPoint();
//X86BreakPoint(__FILEW__,__LINE__);
//m_RegWorkingSet.UnMap_AllFPRs();
}*/
/*if (m_CompilePC >= 0x80179DC4 && m_CompilePC <= 0x80179DF0 && m_NextInstruction == NORMAL)
{
m_RegWorkingSet.UnMap_AllFPRs();
}*/
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() + g_System->CountPerOp());
m_RegWorkingSet.ResetX86Protection();
switch (m_Opcode.op)
{
case R4300i_SPECIAL:
switch (m_Opcode.funct)
{
case R4300i_SPECIAL_SLL: SPECIAL_SLL(); break;
case R4300i_SPECIAL_SRL: SPECIAL_SRL(); break;
case R4300i_SPECIAL_SRA: SPECIAL_SRA(); break;
case R4300i_SPECIAL_SLLV: SPECIAL_SLLV(); break;
case R4300i_SPECIAL_SRLV: SPECIAL_SRLV(); break;
case R4300i_SPECIAL_SRAV: SPECIAL_SRAV(); break;
case R4300i_SPECIAL_JR: SPECIAL_JR(); break;
case R4300i_SPECIAL_JALR: SPECIAL_JALR(); break;
case R4300i_SPECIAL_MFLO: SPECIAL_MFLO(); break;
case R4300i_SPECIAL_SYSCALL: SPECIAL_SYSCALL(); break;
case R4300i_SPECIAL_MTLO: SPECIAL_MTLO(); break;
case R4300i_SPECIAL_MFHI: SPECIAL_MFHI(); break;
case R4300i_SPECIAL_MTHI: SPECIAL_MTHI(); break;
case R4300i_SPECIAL_DSLLV: SPECIAL_DSLLV(); break;
case R4300i_SPECIAL_DSRLV: SPECIAL_DSRLV(); break;
case R4300i_SPECIAL_DSRAV: SPECIAL_DSRAV(); break;
case R4300i_SPECIAL_MULT: SPECIAL_MULT(); break;
case R4300i_SPECIAL_DIV: SPECIAL_DIV(); break;
case R4300i_SPECIAL_DIVU: SPECIAL_DIVU(); break;
case R4300i_SPECIAL_MULTU: SPECIAL_MULTU(); break;
case R4300i_SPECIAL_DMULT: SPECIAL_DMULT(); break;
case R4300i_SPECIAL_DMULTU: SPECIAL_DMULTU(); break;
case R4300i_SPECIAL_DDIV: SPECIAL_DDIV(); break;
case R4300i_SPECIAL_DDIVU: SPECIAL_DDIVU(); break;
case R4300i_SPECIAL_ADD: SPECIAL_ADD(); break;
case R4300i_SPECIAL_ADDU: SPECIAL_ADDU(); break;
case R4300i_SPECIAL_SUB: SPECIAL_SUB(); break;
case R4300i_SPECIAL_SUBU: SPECIAL_SUBU(); break;
case R4300i_SPECIAL_AND: SPECIAL_AND(); break;
case R4300i_SPECIAL_OR: SPECIAL_OR(); break;
case R4300i_SPECIAL_XOR: SPECIAL_XOR(); break;
case R4300i_SPECIAL_NOR: SPECIAL_NOR(); break;
case R4300i_SPECIAL_SLT: SPECIAL_SLT(); break;
case R4300i_SPECIAL_SLTU: SPECIAL_SLTU(); break;
case R4300i_SPECIAL_DADD: SPECIAL_DADD(); break;
case R4300i_SPECIAL_DADDU: SPECIAL_DADDU(); break;
case R4300i_SPECIAL_DSUB: SPECIAL_DSUB(); break;
case R4300i_SPECIAL_DSUBU: SPECIAL_DSUBU(); break;
case R4300i_SPECIAL_DSLL: SPECIAL_DSLL(); break;
case R4300i_SPECIAL_DSRL: SPECIAL_DSRL(); break;
case R4300i_SPECIAL_DSRA: SPECIAL_DSRA(); break;
case R4300i_SPECIAL_DSLL32: SPECIAL_DSLL32(); break;
case R4300i_SPECIAL_DSRL32: SPECIAL_DSRL32(); break;
case R4300i_SPECIAL_DSRA32: SPECIAL_DSRA32(); break;
default:
UnknownOpcode(); break;
}
break;
case R4300i_REGIMM:
switch (m_Opcode.rt)
{
case R4300i_REGIMM_BLTZ:Compile_Branch(BLTZ_Compare, BranchTypeRs, false); break;
case R4300i_REGIMM_BGEZ:Compile_Branch(BGEZ_Compare, BranchTypeRs, false); break;
case R4300i_REGIMM_BLTZL:Compile_BranchLikely(BLTZ_Compare, false); break;
case R4300i_REGIMM_BGEZL:Compile_BranchLikely(BGEZ_Compare, false); break;
case R4300i_REGIMM_BLTZAL:Compile_Branch(BLTZ_Compare, BranchTypeRs, true); break;
case R4300i_REGIMM_BGEZAL:Compile_Branch(BGEZ_Compare, BranchTypeRs, true); break;
default:
UnknownOpcode(); break;
}
break;
case R4300i_BEQ: Compile_Branch(BEQ_Compare, BranchTypeRsRt, false); break;
case R4300i_BNE: Compile_Branch(BNE_Compare, BranchTypeRsRt, false); break;
case R4300i_BGTZ:Compile_Branch(BGTZ_Compare, BranchTypeRs, false); break;
case R4300i_BLEZ:Compile_Branch(BLEZ_Compare, BranchTypeRs, false); break;
case R4300i_J: J(); break;
case R4300i_JAL: JAL(); break;
case R4300i_ADDI: ADDI(); break;
case R4300i_ADDIU: ADDIU(); break;
case R4300i_SLTI: SLTI(); break;
case R4300i_SLTIU: SLTIU(); break;
case R4300i_ANDI: ANDI(); break;
case R4300i_ORI: ORI(); break;
case R4300i_XORI: XORI(); break;
case R4300i_LUI: LUI(); break;
case R4300i_CP0:
switch (m_Opcode.rs)
{
case R4300i_COP0_MF: COP0_MF(); break;
case R4300i_COP0_MT: COP0_MT(); break;
default:
if ((m_Opcode.rs & 0x10) != 0)
{
switch (m_Opcode.funct)
{
case R4300i_COP0_CO_TLBR: COP0_CO_TLBR(); break;
case R4300i_COP0_CO_TLBWI: COP0_CO_TLBWI(); break;
case R4300i_COP0_CO_TLBWR: COP0_CO_TLBWR(); break;
case R4300i_COP0_CO_TLBP: COP0_CO_TLBP(); break;
case R4300i_COP0_CO_ERET: COP0_CO_ERET(); break;
default: UnknownOpcode(); break;
}
}
else
{
UnknownOpcode();
}
}
break;
case R4300i_CP1:
switch (m_Opcode.rs)
{
case R4300i_COP1_MF: COP1_MF(); break;
case R4300i_COP1_DMF: COP1_DMF(); break;
case R4300i_COP1_CF: COP1_CF(); break;
case R4300i_COP1_MT: COP1_MT(); break;
case R4300i_COP1_DMT: COP1_DMT(); break;
case R4300i_COP1_CT: COP1_CT(); break;
case R4300i_COP1_BC:
switch (m_Opcode.ft)
{
case R4300i_COP1_BC_BCF: Compile_Branch(COP1_BCF_Compare, BranchTypeCop1, false); break;
case R4300i_COP1_BC_BCT: Compile_Branch(COP1_BCT_Compare, BranchTypeCop1, false); break;
case R4300i_COP1_BC_BCFL: Compile_BranchLikely(COP1_BCF_Compare, false); break;
case R4300i_COP1_BC_BCTL: Compile_BranchLikely(COP1_BCT_Compare, false); break;
default:
UnknownOpcode(); break;
}
break;
case R4300i_COP1_S:
switch (m_Opcode.funct)
{
case R4300i_COP1_FUNCT_ADD: COP1_S_ADD(); break;
case R4300i_COP1_FUNCT_SUB: COP1_S_SUB(); break;
case R4300i_COP1_FUNCT_MUL: COP1_S_MUL(); break;
case R4300i_COP1_FUNCT_DIV: COP1_S_DIV(); break;
case R4300i_COP1_FUNCT_ABS: COP1_S_ABS(); break;
case R4300i_COP1_FUNCT_NEG: COP1_S_NEG(); break;
case R4300i_COP1_FUNCT_SQRT: COP1_S_SQRT(); break;
case R4300i_COP1_FUNCT_MOV: COP1_S_MOV(); break;
case R4300i_COP1_FUNCT_TRUNC_L: COP1_S_TRUNC_L(); break;
case R4300i_COP1_FUNCT_CEIL_L: COP1_S_CEIL_L(); break; //added by Witten
case R4300i_COP1_FUNCT_FLOOR_L: COP1_S_FLOOR_L(); break; //added by Witten
case R4300i_COP1_FUNCT_ROUND_W: COP1_S_ROUND_W(); break;
case R4300i_COP1_FUNCT_TRUNC_W: COP1_S_TRUNC_W(); break;
case R4300i_COP1_FUNCT_CEIL_W: COP1_S_CEIL_W(); break; //added by Witten
case R4300i_COP1_FUNCT_FLOOR_W: COP1_S_FLOOR_W(); break;
case R4300i_COP1_FUNCT_CVT_D: COP1_S_CVT_D(); break;
case R4300i_COP1_FUNCT_CVT_W: COP1_S_CVT_W(); break;
case R4300i_COP1_FUNCT_CVT_L: COP1_S_CVT_L(); break;
case R4300i_COP1_FUNCT_C_F: case R4300i_COP1_FUNCT_C_UN:
case R4300i_COP1_FUNCT_C_EQ: case R4300i_COP1_FUNCT_C_UEQ:
case R4300i_COP1_FUNCT_C_OLT: case R4300i_COP1_FUNCT_C_ULT:
case R4300i_COP1_FUNCT_C_OLE: case R4300i_COP1_FUNCT_C_ULE:
case R4300i_COP1_FUNCT_C_SF: case R4300i_COP1_FUNCT_C_NGLE:
case R4300i_COP1_FUNCT_C_SEQ: case R4300i_COP1_FUNCT_C_NGL:
case R4300i_COP1_FUNCT_C_LT: case R4300i_COP1_FUNCT_C_NGE:
case R4300i_COP1_FUNCT_C_LE: case R4300i_COP1_FUNCT_C_NGT:
COP1_S_CMP(); break;
default:
UnknownOpcode(); break;
}
break;
case R4300i_COP1_D:
switch (m_Opcode.funct)
{
case R4300i_COP1_FUNCT_ADD: COP1_D_ADD(); break;
case R4300i_COP1_FUNCT_SUB: COP1_D_SUB(); break;
case R4300i_COP1_FUNCT_MUL: COP1_D_MUL(); break;
case R4300i_COP1_FUNCT_DIV: COP1_D_DIV(); break;
case R4300i_COP1_FUNCT_ABS: COP1_D_ABS(); break;
case R4300i_COP1_FUNCT_NEG: COP1_D_NEG(); break;
case R4300i_COP1_FUNCT_SQRT: COP1_D_SQRT(); break;
case R4300i_COP1_FUNCT_MOV: COP1_D_MOV(); break;
case R4300i_COP1_FUNCT_TRUNC_L: COP1_D_TRUNC_L(); break; //added by Witten
case R4300i_COP1_FUNCT_CEIL_L: COP1_D_CEIL_L(); break; //added by Witten
case R4300i_COP1_FUNCT_FLOOR_L: COP1_D_FLOOR_L(); break; //added by Witten
case R4300i_COP1_FUNCT_ROUND_W: COP1_D_ROUND_W(); break;
case R4300i_COP1_FUNCT_TRUNC_W: COP1_D_TRUNC_W(); break;
case R4300i_COP1_FUNCT_CEIL_W: COP1_D_CEIL_W(); break; //added by Witten
case R4300i_COP1_FUNCT_FLOOR_W: COP1_D_FLOOR_W(); break; //added by Witten
case R4300i_COP1_FUNCT_CVT_S: COP1_D_CVT_S(); break;
case R4300i_COP1_FUNCT_CVT_W: COP1_D_CVT_W(); break;
case R4300i_COP1_FUNCT_CVT_L: COP1_D_CVT_L(); break;
case R4300i_COP1_FUNCT_C_F: case R4300i_COP1_FUNCT_C_UN:
case R4300i_COP1_FUNCT_C_EQ: case R4300i_COP1_FUNCT_C_UEQ:
case R4300i_COP1_FUNCT_C_OLT: case R4300i_COP1_FUNCT_C_ULT:
case R4300i_COP1_FUNCT_C_OLE: case R4300i_COP1_FUNCT_C_ULE:
case R4300i_COP1_FUNCT_C_SF: case R4300i_COP1_FUNCT_C_NGLE:
case R4300i_COP1_FUNCT_C_SEQ: case R4300i_COP1_FUNCT_C_NGL:
case R4300i_COP1_FUNCT_C_LT: case R4300i_COP1_FUNCT_C_NGE:
case R4300i_COP1_FUNCT_C_LE: case R4300i_COP1_FUNCT_C_NGT:
COP1_D_CMP(); break;
default:
UnknownOpcode(); break;
}
break;
case R4300i_COP1_W:
switch (m_Opcode.funct)
{
case R4300i_COP1_FUNCT_CVT_S: COP1_W_CVT_S(); break;
case R4300i_COP1_FUNCT_CVT_D: COP1_W_CVT_D(); break;
default:
UnknownOpcode(); break;
}
break;
case R4300i_COP1_L:
switch (m_Opcode.funct)
{
case R4300i_COP1_FUNCT_CVT_S: COP1_L_CVT_S(); break;
case R4300i_COP1_FUNCT_CVT_D: COP1_L_CVT_D(); break;
default:
UnknownOpcode(); break;
}
break;
default:
UnknownOpcode(); break;
}
break;
case R4300i_BEQL: Compile_BranchLikely(BEQ_Compare, false); break;
case R4300i_BNEL: Compile_BranchLikely(BNE_Compare, false); break;
case R4300i_BGTZL:Compile_BranchLikely(BGTZ_Compare, false); break;
case R4300i_BLEZL:Compile_BranchLikely(BLEZ_Compare, false); break;
case R4300i_DADDIU: DADDIU(); break;
case R4300i_LDL: g_MMU->Compile_LDL(); break;
case R4300i_LDR: g_MMU->Compile_LDR(); break;
case R4300i_LB: g_MMU->Compile_LB(); break;
case R4300i_LH: g_MMU->Compile_LH(); break;
case R4300i_LWL: g_MMU->Compile_LWL(); break;
case R4300i_LW: g_MMU->Compile_LW(); break;
case R4300i_LBU: g_MMU->Compile_LBU(); break;
case R4300i_LHU: g_MMU->Compile_LHU(); break;
case R4300i_LWR: g_MMU->Compile_LWR(); break;
case R4300i_LWU: g_MMU->Compile_LWU(); break; //added by Witten
case R4300i_SB: g_MMU->Compile_SB(); break;
case R4300i_SH: g_MMU->Compile_SH(); break;
case R4300i_SWL: g_MMU->Compile_SWL(); break;
case R4300i_SW: g_MMU->Compile_SW(); break;
case R4300i_SWR: g_MMU->Compile_SWR(); break;
case R4300i_SDL: g_MMU->Compile_SDL(); break;
case R4300i_SDR: g_MMU->Compile_SDR(); break;
case R4300i_CACHE: CACHE(); break;
case R4300i_LL: g_MMU->Compile_LL(); break;
case R4300i_LWC1: g_MMU->Compile_LWC1(); break;
case R4300i_LDC1: g_MMU->Compile_LDC1(); break;
case R4300i_SC: g_MMU->Compile_SC(); break;
case R4300i_LD: g_MMU->Compile_LD(); break;
case R4300i_SWC1: g_MMU->Compile_SWC1(); break;
case R4300i_SDC1: g_MMU->Compile_SDC1(); break;
case R4300i_SD: g_MMU->Compile_SD(); break;
default:
UnknownOpcode(); break;
}
if (!g_System->bRegCaching()) { m_RegWorkingSet.WriteBackRegisters(); }
m_RegWorkingSet.UnMap_AllFPRs();
if ((m_CompilePC & 0xFFC) == 0xFFC)
{
if (m_NextInstruction == DO_DELAY_SLOT)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
if (m_NextInstruction == NORMAL)
{
if (m_DelaySlot)
{
CompileExit(m_CompilePC, m_Jump.TargetPC, m_RegWorkingSet, CExitInfo::Normal, true, NULL);
}
else
{
CompileExit(m_CompilePC, m_CompilePC + 4, m_RegWorkingSet, CExitInfo::Normal, true, NULL);
}
m_NextInstruction = END_BLOCK;
}
}
switch (m_NextInstruction)
{
case NORMAL:
m_CompilePC += 4;
break;
case DO_DELAY_SLOT:
m_NextInstruction = DELAY_SLOT;
m_CompilePC += 4;
break;
case DELAY_SLOT:
m_NextInstruction = DELAY_SLOT_DONE;
m_RegWorkingSet.SetBlockCycleCount(m_RegWorkingSet.GetBlockCycleCount() - g_System->CountPerOp());
m_CompilePC -= 4;
break;
}
if (m_DelaySlot)
{
if ((CompilePC() & 0xFFC) != 0xFFC && m_Jump.JumpPC != (uint32_t)-1)
{
m_CompilePC = m_Jump.JumpPC;
m_Jump.RegSet = m_RegWorkingSet;
m_Jump.FallThrough = true;
GenerateSectionLinkage();
}
else
{
CompileExit(m_Jump.JumpPC, m_Jump.TargetPC, m_RegWorkingSet, CExitInfo::Normal, true, NULL);
}
m_NextInstruction = END_BLOCK;
}
else if (m_NextInstruction != END_BLOCK && m_CompilePC == ContinueSectionPC)
{
if (m_NextInstruction != NORMAL)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
m_CompilePC -= 4;
m_Cont.RegSet = m_RegWorkingSet;
m_Cont.FallThrough = true;
m_Cont.JumpPC = m_CompilePC;
GenerateSectionLinkage();
m_NextInstruction = END_BLOCK;
}
} while (m_NextInstruction != END_BLOCK);
return true;
}
void CCodeSection::AddParent(CCodeSection * Parent)
{
if (this == NULL) { return; }
if (Parent == NULL)
{
m_RegWorkingSet = m_RegEnter;
return;
}
// check to see if we already have the parent in the list
for (SECTION_LIST::iterator iter = m_ParentSection.begin(); iter != m_ParentSection.end(); iter++)
{
if (*iter == Parent)
{
return;
}
}
m_ParentSection.push_back(Parent);
if (m_ParentSection.size() == 1)
{
if (Parent->m_ContinueSection == this)
{
m_RegEnter = Parent->m_Cont.RegSet;
}
else if (Parent->m_JumpSection == this)
{
m_RegEnter = Parent->m_Jump.RegSet;
}
else
{
g_Notify->DisplayError("How are these sections joined?????");
}
m_RegWorkingSet = m_RegEnter;
}
else {
if (Parent->m_ContinueSection == this)
{
TestRegConstantStates(Parent->m_Cont.RegSet, m_RegEnter);
}
if (Parent->m_JumpSection == this)
{
TestRegConstantStates(Parent->m_Jump.RegSet, m_RegEnter);
}
m_RegWorkingSet = m_RegEnter;
}
}
void CCodeSection::SwitchParent(CCodeSection * OldParent, CCodeSection * NewParent)
{
if (this == NULL) { return; }
bool bFoundOldParent = false;
for (SECTION_LIST::iterator iter = m_ParentSection.begin(); iter != m_ParentSection.end(); iter++)
{
if (*iter != OldParent)
{
continue;
}
bFoundOldParent = true;
m_ParentSection.erase(iter);
break;
}
if (!bFoundOldParent)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
m_ParentSection.push_back(NewParent);
}
void CCodeSection::TestRegConstantStates(CRegInfo & Base, CRegInfo & Reg)
{
for (int i = 0; i < 32; i++)
{
if (Reg.GetMipsRegState(i) != Base.GetMipsRegState(i))
{
Reg.SetMipsRegState(i, CRegInfo::STATE_UNKNOWN);
}
if (Reg.IsConst(i))
{
if (Reg.Is32Bit(i))
{
if (Reg.GetMipsRegLo(i) != Base.GetMipsRegLo(i))
{
Reg.SetMipsRegState(i, CRegInfo::STATE_UNKNOWN);
}
}
else
{
if (Reg.GetMipsReg(i) != Base.GetMipsReg(i))
{
Reg.SetMipsRegState(i, CRegInfo::STATE_UNKNOWN);
}
}
}
}
}
void CCodeSection::DetermineLoop(uint32_t Test, uint32_t Test2, uint32_t TestID)
{
if (this == NULL) { return; }
if (m_SectionID == TestID)
{
if (m_Test2 != Test2)
{
m_Test2 = Test2;
m_ContinueSection->DetermineLoop(Test, Test2, TestID);
m_JumpSection->DetermineLoop(Test, Test2, TestID);
if (m_Test != Test)
{
m_Test = Test;
if (m_ContinueSection != NULL)
{
m_ContinueSection->DetermineLoop(Test, m_BlockInfo->NextTest(), m_ContinueSection->m_SectionID);
}
if (m_JumpSection != NULL)
{
m_JumpSection->DetermineLoop(Test, m_BlockInfo->NextTest(), m_JumpSection->m_SectionID);
}
}
}
else
{
m_InLoop = true;
}
}
else
{
if (m_Test2 != Test2)
{
m_Test2 = Test2;
m_ContinueSection->DetermineLoop(Test, Test2, TestID);
m_JumpSection->DetermineLoop(Test, Test2, TestID);
}
}
}
CCodeSection * CCodeSection::ExistingSection(uint32_t Addr, uint32_t Test)
{
if (this == NULL) { return NULL; }
if (m_EnterPC == Addr && m_LinkAllowed)
{
return this;
}
if (m_Test == Test) { return NULL; }
m_Test = Test;
CCodeSection * Section = m_JumpSection->ExistingSection(Addr, Test);
if (Section != NULL) { return Section; }
Section = m_ContinueSection->ExistingSection(Addr, Test);
if (Section != NULL) { return Section; }
return NULL;
}
bool CCodeSection::SectionAccessible(uint32_t SectionId, uint32_t Test)
{
if (this == NULL) { return false; }
if (m_SectionID == SectionId)
{
return true;
}
if (m_Test == Test) { return false; }
m_Test = Test;
if (m_ContinueSection->SectionAccessible(SectionId, Test))
{
return true;
}
return m_JumpSection->SectionAccessible(SectionId, Test);
}
void CCodeSection::UnlinkParent(CCodeSection * Parent, bool ContinueSection)
{
if (this == NULL)
{
return;
}
CPU_Message("%s: Section %d Parent: %d ContinueSection = %s", __FUNCTION__, m_SectionID, Parent->m_SectionID, ContinueSection ? "Yes" : "No");
if (Parent->m_ContinueSection == this && Parent->m_JumpSection == this)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
SECTION_LIST::iterator iter = m_ParentSection.begin();
while (iter != m_ParentSection.end())
{
CCodeSection * ParentIter = *iter;
if (ParentIter == Parent && (Parent->m_ContinueSection != this || Parent->m_JumpSection != this))
{
m_ParentSection.erase(iter);
iter = m_ParentSection.begin();
}
else
{
iter++;
}
}
if (ContinueSection && Parent->m_ContinueSection == this)
{
Parent->m_ContinueSection = NULL;
}
if (!ContinueSection && Parent->m_JumpSection == this)
{
Parent->m_JumpSection = NULL;
}
bool bRemove = false;
if (m_ParentSection.size() > 0)
{
if (!m_BlockInfo->SectionAccessible(m_SectionID))
{
for (SECTION_LIST::iterator iter = m_ParentSection.begin(); iter != m_ParentSection.end(); iter++)
{
CCodeSection * ParentIter = *iter;
if (ParentIter->m_ContinueSection == this)
{
if (ParentIter->m_CompiledLocation)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
ParentIter->m_ContinueSection = NULL;
}
if (ParentIter->m_JumpSection == this)
{
if (ParentIter->m_CompiledLocation)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
ParentIter->m_JumpSection = NULL;
}
}
bRemove = true;
}
}
else
{
bRemove = true;
}
if (bRemove)
{
if (m_JumpSection != NULL)
{
m_JumpSection->UnlinkParent(this, false);
}
if (m_ContinueSection != NULL)
{
m_ContinueSection->UnlinkParent(this, true);
}
}
}
bool CCodeSection::IsAllParentLoops(CCodeSection * Parent, bool IgnoreIfCompiled, uint32_t Test)
{
if (IgnoreIfCompiled && Parent->m_CompiledLocation != NULL) { return true; }
if (!m_InLoop) { return false; }
if (!Parent->m_InLoop) { return false; }
if (Parent->m_ParentSection.empty()) { return false; }
if (this == Parent) { return true; }
if (Parent->m_Test == Test) { return true; }
Parent->m_Test = Test;
for (SECTION_LIST::iterator iter = Parent->m_ParentSection.begin(); iter != Parent->m_ParentSection.end(); iter++)
{
CCodeSection * ParentSection = *iter;
if (!IsAllParentLoops(ParentSection, IgnoreIfCompiled, Test)) { return false; }
}
return true;
}
bool CCodeSection::SetupRegisterForLoop()
{
CRegInfo OriginalReg = m_RegWorkingSet;
if (!LoopAnalysis(m_BlockInfo, this).SetupRegisterForLoop())
{
return false;
}
for (int i = 1; i < 32; i++)
{
if (OriginalReg.GetMipsRegState(i) != m_RegEnter.GetMipsRegState(i))
{
UnMap_GPR(i, true);
}
}
return true;
}
bool CCodeSection::InheritParentInfo()
{
if (m_CompiledLocation == NULL)
{
m_CompiledLocation = m_RecompPos;
DisplaySectionInformation();
m_CompiledLocation = NULL;
}
else
{
DisplaySectionInformation();
}
if (m_ParentSection.empty())
{
m_RegWorkingSet = m_RegEnter;
return true;
}
if (m_ParentSection.size() == 1)
{
CCodeSection * Parent = *(m_ParentSection.begin());
if (Parent->m_CompiledLocation == NULL)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
CJumpInfo * JumpInfo = this == Parent->m_ContinueSection ? &Parent->m_Cont : &Parent->m_Jump;
m_RegEnter = JumpInfo->RegSet;
if (JumpInfo->LinkLocation != NULL)
{
CPU_Message(" Section_%d:", m_SectionID);
SetJump32(JumpInfo->LinkLocation, (uint32_t *)m_RecompPos);
if (JumpInfo->LinkLocation2 != NULL)
{
SetJump32(JumpInfo->LinkLocation2, (uint32_t *)m_RecompPos);
}
}
m_RegWorkingSet = m_RegEnter;
return true;
}
//Multiple Parents
BLOCK_PARENT_LIST ParentList;
SECTION_LIST::iterator iter;
for (iter = m_ParentSection.begin(); iter != m_ParentSection.end(); iter++)
{
CCodeSection * Parent = *iter;
BLOCK_PARENT BlockParent;
if (Parent->m_CompiledLocation == NULL) { continue; }
if (Parent->m_JumpSection != Parent->m_ContinueSection)
{
BlockParent.Parent = Parent;
BlockParent.JumpInfo = this == Parent->m_ContinueSection ? &Parent->m_Cont : &Parent->m_Jump;
ParentList.push_back(BlockParent);
}
else
{
BlockParent.Parent = Parent;
BlockParent.JumpInfo = &Parent->m_Cont;
ParentList.push_back(BlockParent);
BlockParent.Parent = Parent;
BlockParent.JumpInfo = &Parent->m_Jump;
ParentList.push_back(BlockParent);
}
}
size_t NoOfCompiledParents = ParentList.size();
if (NoOfCompiledParents == 0)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
return false;
}
// Add all the uncompiled blocks to the end of the list
for (iter = m_ParentSection.begin(); iter != m_ParentSection.end(); iter++)
{
CCodeSection * Parent = *iter;
BLOCK_PARENT BlockParent;
if (Parent->m_CompiledLocation != NULL) { continue; }
if (Parent->m_JumpSection != Parent->m_ContinueSection)
{
BlockParent.Parent = Parent;
BlockParent.JumpInfo = this == Parent->m_ContinueSection ? &Parent->m_Cont : &Parent->m_Jump;
ParentList.push_back(BlockParent);
}
else
{
BlockParent.Parent = Parent;
BlockParent.JumpInfo = &Parent->m_Cont;
ParentList.push_back(BlockParent);
BlockParent.Parent = Parent;
BlockParent.JumpInfo = &Parent->m_Jump;
ParentList.push_back(BlockParent);
}
}
int FirstParent = -1;
for (size_t i = 0; i < NoOfCompiledParents; i++)
{
if (!ParentList[i].JumpInfo->FallThrough)
{
continue;
}
if (FirstParent != -1)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
FirstParent = i;
}
if (FirstParent == -1)
{
FirstParent = 0;
}
//Link First Parent to start
CCodeSection * Parent = ParentList[FirstParent].Parent;
CJumpInfo * JumpInfo = ParentList[FirstParent].JumpInfo;
m_RegWorkingSet = JumpInfo->RegSet;
m_RegWorkingSet.ResetX86Protection();
if (JumpInfo->LinkLocation != NULL)
{
CPU_Message(" Section_%d (from %d):", m_SectionID, Parent->m_SectionID);
SetJump32(JumpInfo->LinkLocation, (uint32_t *)m_RecompPos);
JumpInfo->LinkLocation = NULL;
if (JumpInfo->LinkLocation2 != NULL)
{
SetJump32(JumpInfo->LinkLocation2, (uint32_t *)m_RecompPos);
JumpInfo->LinkLocation2 = NULL;
}
}
if (JumpInfo->ExitReason == CExitInfo::Normal_NoSysCheck)
{
if (JumpInfo->RegSet.GetBlockCycleCount() != 0)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
if (JumpInfo->JumpPC != (uint32_t)-1)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
}
else
{
UpdateCounters(m_RegWorkingSet, m_EnterPC < JumpInfo->JumpPC, true);
if (JumpInfo->JumpPC == (uint32_t)-1)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
if (m_EnterPC <= JumpInfo->JumpPC)
{
CPU_Message("CompileSystemCheck 10");
CompileSystemCheck(m_EnterPC, m_RegWorkingSet);
}
}
JumpInfo->FallThrough = false;
//Fix up initial state
UnMap_AllFPRs();
//determine loop reg usage
if (m_InLoop && ParentList.size() > 1)
{
if (!SetupRegisterForLoop()) { return false; }
m_RegWorkingSet.SetRoundingModel(CRegInfo::RoundUnknown);
}
for (size_t i = 0; i < ParentList.size(); i++)
{
x86Reg MemoryStackPos;
int i2;
if (i == (size_t)FirstParent) { continue; }
Parent = ParentList[i].Parent;
if (Parent->m_CompiledLocation == NULL)
{
continue;
}
CRegInfo * RegSet = &ParentList[i].JumpInfo->RegSet;
if (m_RegWorkingSet.GetRoundingModel() != RegSet->GetRoundingModel()) { m_RegWorkingSet.SetRoundingModel(CRegInfo::RoundUnknown); }
//Find Parent MapRegState
MemoryStackPos = x86_Unknown;
for (i2 = 0; i2 < sizeof(x86_Registers) / sizeof(x86_Registers[0]); i2++)
{
if (RegSet->GetX86Mapped(x86_Registers[i2]) == CRegInfo::Stack_Mapped)
{
MemoryStackPos = x86_Registers[i2];
break;
}
}
if (MemoryStackPos == x86_Unknown)
{
// if the memory stack position is not mapped then unmap it
x86Reg MemStackReg = Get_MemoryStack();
if (MemStackReg != x86_Unknown)
{
UnMap_X86reg(MemStackReg);
}
}
for (i2 = 1; i2 < 32; i2++)
{
if (Is32BitMapped(i2))
{
switch (RegSet->GetMipsRegState(i2))
{
case CRegInfo::STATE_MAPPED_64: Map_GPR_64bit(i2, i2); break;
case CRegInfo::STATE_MAPPED_32_ZERO: break;
case CRegInfo::STATE_MAPPED_32_SIGN:
if (IsUnsigned(i2))
{
m_RegWorkingSet.SetMipsRegState(i2, CRegInfo::STATE_MAPPED_32_SIGN);
}
break;
case CRegInfo::STATE_CONST_64: Map_GPR_64bit(i2, i2); break;
case CRegInfo::STATE_CONST_32_SIGN:
if ((RegSet->GetMipsRegLo_S(i2) < 0) && IsUnsigned(i2))
{
m_RegWorkingSet.SetMipsRegState(i2, CRegInfo::STATE_MAPPED_32_SIGN);
}
break;
case CRegInfo::STATE_UNKNOWN:
if (g_System->b32BitCore())
{
Map_GPR_32bit(i2, true, i2);
}
else
{
//Map_GPR_32bit(i2,true,i2);
Map_GPR_64bit(i2, i2); //??
//UnMap_GPR(Section,i2,true); ??
}
break;
default:
CPU_Message("Unknown CPU State(%d) in InheritParentInfo", GetMipsRegState(i2));
g_Notify->BreakPoint(__FILE__, __LINE__);
}
}
if (IsConst(i2)) {
if (GetMipsRegState(i2) != RegSet->GetMipsRegState(i2))
{
switch (RegSet->GetMipsRegState(i2))
{
case CRegInfo::STATE_MAPPED_64:
Map_GPR_64bit(i2, i2);
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
if (Is32Bit(i2))
{
Map_GPR_32bit(i2, (GetMipsRegLo(i2) & 0x80000000) != 0, i2);
}
else
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
break;
case CRegInfo::STATE_MAPPED_32_SIGN:
if (Is32Bit(i2))
{
Map_GPR_32bit(i2, true, i2);
}
else
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
break;
case CRegInfo::STATE_UNKNOWN:
if (g_System->b32BitCore())
{
Map_GPR_32bit(i2, true, i2);
}
else
{
Map_GPR_64bit(i2, i2);
}
break;
default:
CPU_Message("Unknown CPU State(%d) in InheritParentInfo", RegSet->GetMipsRegState(i2));
g_Notify->BreakPoint(__FILE__, __LINE__);
break;
}
}
else if (Is32Bit(i2) && GetMipsRegLo(i2) != RegSet->GetMipsRegLo(i2))
{
Map_GPR_32bit(i2, true, i2);
}
else if (Is64Bit(i2) && GetMipsReg(i2) != RegSet->GetMipsReg(i2))
{
Map_GPR_32bit(i2, true, i2);
}
}
ResetX86Protection();
}
if (MemoryStackPos > 0)
{
Map_MemoryStack(MemoryStackPos, true);
}
}
m_RegEnter = m_RegWorkingSet;
//Sync registers for different blocks
stdstr_f Label("Section_%d", m_SectionID);
int CurrentParent = FirstParent;
bool NeedSync = false;
for (size_t i = 0; i < NoOfCompiledParents; i++)
{
CRegInfo * RegSet;
int i2;
if (i == (size_t)FirstParent) { continue; }
Parent = ParentList[i].Parent;
JumpInfo = ParentList[i].JumpInfo;
RegSet = &ParentList[i].JumpInfo->RegSet;
if (JumpInfo->RegSet.GetBlockCycleCount() != 0) { NeedSync = true; }
for (i2 = 0; !NeedSync && i2 < 8; i2++)
{
if (m_RegWorkingSet.FpuMappedTo(i2) == (uint32_t)-1)
{
NeedSync = true;
}
}
for (i2 = 0; !NeedSync && i2 < sizeof(x86_Registers) / sizeof(x86_Registers[0]); i2++)
{
if (m_RegWorkingSet.GetX86Mapped(x86_Registers[i2]) == CRegInfo::Stack_Mapped)
{
if (m_RegWorkingSet.GetX86Mapped(x86_Registers[i2]) != RegSet->GetX86Mapped(x86_Registers[i2]))
{
NeedSync = true;
}
break;
}
}
for (i2 = 0; !NeedSync && i2 < 32; i2++)
{
if (NeedSync == true) { break; }
if (m_RegWorkingSet.GetMipsRegState(i2) != RegSet->GetMipsRegState(i2))
{
NeedSync = true;
continue;
}
switch (m_RegWorkingSet.GetMipsRegState(i2))
{
case CRegInfo::STATE_UNKNOWN: break;
case CRegInfo::STATE_MAPPED_64:
if (GetMipsRegMapHi(i2) != RegSet->GetMipsRegMapHi(i2) ||
GetMipsRegMapLo(i2) != RegSet->GetMipsRegMapLo(i2))
{
NeedSync = true;
}
break;
case CRegInfo::STATE_MAPPED_32_ZERO:
case CRegInfo::STATE_MAPPED_32_SIGN:
if (GetMipsRegMapLo(i2) != RegSet->GetMipsRegMapLo(i2))
{
//DisplayError(L"Parent: %d",Parent->SectionID);
NeedSync = true;
}
break;
case CRegInfo::STATE_CONST_32_SIGN:
if (GetMipsRegLo(i2) != RegSet->GetMipsRegLo(i2))
{
g_Notify->BreakPoint(__FILE__, __LINE__);
NeedSync = true;
}
break;
default:
WriteTrace(TraceRecompiler, TraceError, "Unhandled Reg state %d\nin InheritParentInfo", GetMipsRegState(i2));
g_Notify->BreakPoint(__FILE__, __LINE__);
}
}
if (NeedSync == false) { continue; }
Parent = ParentList[CurrentParent].Parent;
JumpInfo = ParentList[CurrentParent].JumpInfo;
JmpLabel32(Label.c_str(), 0);
JumpInfo->LinkLocation = (uint32_t *)(m_RecompPos - 4);
JumpInfo->LinkLocation2 = NULL;
CurrentParent = i;
Parent = ParentList[CurrentParent].Parent;
JumpInfo = ParentList[CurrentParent].JumpInfo;
CPU_Message(" Section_%d (from %d):", m_SectionID, Parent->m_SectionID);
if (JumpInfo->LinkLocation != NULL)
{
SetJump32(JumpInfo->LinkLocation, (uint32_t *)m_RecompPos);
JumpInfo->LinkLocation = NULL;
if (JumpInfo->LinkLocation2 != NULL)
{
SetJump32(JumpInfo->LinkLocation2, (uint32_t *)m_RecompPos);
JumpInfo->LinkLocation2 = NULL;
}
}
//if (m_EnterPC == 0x8031CE44 && m_SectionID == 6)
//{
// g_Notify->BreakPoint(__FILE__, __LINE__);
//}
m_RegWorkingSet = JumpInfo->RegSet;
if (m_EnterPC < JumpInfo->JumpPC)
{
UpdateCounters(m_RegWorkingSet, true, true);
CPU_Message("CompileSystemCheck 11");
CompileSystemCheck(m_EnterPC, m_RegWorkingSet);
}
else
{
UpdateCounters(m_RegWorkingSet, false, true);
}
SyncRegState(m_RegEnter); //Sync
m_RegEnter = m_RegWorkingSet;
}
for (size_t i = 0; i < NoOfCompiledParents; i++)
{
Parent = ParentList[i].Parent;
JumpInfo = ParentList[i].JumpInfo;
if (JumpInfo->LinkLocation != NULL)
{
SetJump32(JumpInfo->LinkLocation, (uint32_t *)m_RecompPos);
JumpInfo->LinkLocation = NULL;
if (JumpInfo->LinkLocation2 != NULL)
{
SetJump32(JumpInfo->LinkLocation2, (uint32_t *)m_RecompPos);
JumpInfo->LinkLocation2 = NULL;
}
}
}
CPU_Message(" Section_%d:", m_SectionID);
m_RegWorkingSet.SetBlockCycleCount(0);
return true;
}
bool CCodeSection::DisplaySectionInformation(uint32_t ID, uint32_t Test)
{
if (!bX86Logging)
{
return false;
}
if (this == NULL) { return false; }
if (m_Test == Test) { return false; }
m_Test = Test;
if (m_SectionID != ID)
{
if (m_ContinueSection->DisplaySectionInformation(ID, Test)) { return true; }
if (m_JumpSection->DisplaySectionInformation(ID, Test)) { return true; }
return false;
}
DisplaySectionInformation();
return true;
}
void CCodeSection::DisplaySectionInformation()
{
if (m_SectionID == 0)
{
return;
}
CPU_Message("====== Section %d ======", m_SectionID);
CPU_Message("Start PC: %X", m_EnterPC);
CPU_Message("End PC: %X", m_EndPC);
CPU_Message("CompiledLocation: %X", m_CompiledLocation);
if (!m_ParentSection.empty())
{
stdstr ParentList;
for (SECTION_LIST::iterator iter = m_ParentSection.begin(); iter != m_ParentSection.end(); iter++)
{
CCodeSection * Parent = *iter;
if (!ParentList.empty())
{
ParentList += ", ";
}
ParentList += stdstr_f("%d", Parent->m_SectionID);
}
CPU_Message("Number of parents: %d (%s)", m_ParentSection.size(), ParentList.c_str());
}
CPU_Message("Jump Address: 0x%08X", m_Jump.JumpPC);
CPU_Message("Jump Target Address: 0x%08X", m_Jump.TargetPC);
if (m_JumpSection != NULL)
{
CPU_Message("Jump Section: %d", m_JumpSection->m_SectionID);
}
else
{
CPU_Message("Jump Section: None");
}
CPU_Message("Continue Address: 0x%08X", m_Cont.JumpPC);
CPU_Message("Continue Target Address: 0x%08X", m_Cont.TargetPC);
if (m_ContinueSection != NULL) {
CPU_Message("Continue Section: %d", m_ContinueSection->m_SectionID);
}
else
{
CPU_Message("Continue Section: None");
}
CPU_Message("In Loop: %s", m_InLoop ? "Yes" : "No");
CPU_Message("=======================");
}