project64/Source/Project64-rsp-core/Recompiler/RspRecompilerOps.cpp

8293 lines
267 KiB
C++

#include "Project64-rsp-core/Recompiler/RspRecompilerCPU.h"
#include "RspProfiling.h"
#include "RspRecompilerCPU.h"
#include "X86.h"
#include <Common/StdString.h>
#include <Project64-rsp-core/RSPInfo.h>
#include <Project64-rsp-core/Recompiler/RspRecompilerOps.h>
#include <Project64-rsp-core/cpu/RSPCpu.h>
#include <Project64-rsp-core/cpu/RSPInstruction.h>
#include <Project64-rsp-core/cpu/RSPInterpreterOps.h>
#include <Project64-rsp-core/cpu/RSPRegisters.h>
#include <Project64-rsp-core/cpu/RspLog.h>
#include <Project64-rsp-core/cpu/RspMemory.h>
#include <Project64-rsp-core/cpu/RspSystem.h>
#include <Project64-rsp-core/cpu/RspTypes.h>
#pragma warning(disable : 4152) // Non-standard extension, function/data pointer conversion in expression
extern bool AudioHle, GraphicsHle;
UWORD32 Recp, RecpResult, SQroot, SQrootResult;
uint32_t ESP_RegSave = 0, EBP_RegSave = 0;
uint32_t BranchCompare = 0;
// Align option affects: SW, LH, SH
// Align option affects: LRV, SSV, LSV
#define Compile_Immediates // ADDI, ADDIU, ANDI, ORI, XORI, LUI
#define Compile_GPRLoads // LB, LH, LW, LBU, LHU
#define Compile_GPRStores // SB, SH, SW
#define Compile_Special // SLL, SRL, SRA, SRLV \
// XOR, OR, AND, SUB, SUBU, ADDU, ADD, SLT
#define Compile_Cop0
#define Compile_Cop2
#define RSP_VectorMuls
#define RSP_VectorLoads
#define RSP_VectorMisc
#ifdef RSP_VectorMuls
//#define CompileVmulf
//#define CompileVmacf
#define CompileVmudm
//#define CompileVmudh
#define CompileVmudn
//#define CompileVmudl
//#define CompileVmadl
//#define CompileVmadm
#define CompileVmadh
#define CompileVmadn
#endif
#ifdef RSP_VectorMisc
//#define CompileVne
//#define CompileVeq
//#define CompileVge
//#define CompileVlt
//#define CompileVrcp
//#define CompileVrcpl
//#define CompileVrsqh
//#define CompileVrcph
//#define CompileVsaw
//#define CompileVabs
//#define CompileVmov
#define CompileVxor
#define CompileVor
#define CompileVand
#define CompileVsub
#define CompileVadd
#define CompileVaddc
#define CompileVsubc
//#define CompileVmrg
#define CompileVnxor
#define CompileVnor
#define CompileVnand
#endif
#ifdef RSP_VectorLoads
#define CompileLbv
//#define CompileLpv
//#define CompileLuv
//#define CompileLhv
#define CompileSqv
#define CompileSdv
#define CompileSsv
#define CompileLrv
#define CompileLqv
#define CompileLdv
#define CompileLsv
#define CompileLlv
#define CompileSlv
#endif
extern p_Recompfunc RSP_Recomp_Opcode[64];
extern p_Recompfunc RSP_Recomp_RegImm[32];
extern p_Recompfunc RSP_Recomp_Special[64];
extern p_Recompfunc RSP_Recomp_Cop0[32];
extern p_Recompfunc RSP_Recomp_Cop2[32];
extern p_Recompfunc RSP_Recomp_Vector[64];
extern p_Recompfunc RSP_Recomp_Lc2[32];
extern p_Recompfunc RSP_Recomp_Sc2[32];
void CRSPRecompilerOps::Cheat_r4300iOpcode(RSPOp::Func FunctAddress, const char * FunctName)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
MoveConstToVariable(m_OpCode.Value, &m_OpCode.Value, "m_OpCode.Value");
MoveConstToX86reg((uint32_t) & (RSPSystem.m_Op), x86_ECX);
Call_Direct(AddressOf(FunctAddress), FunctName);
}
void CRSPRecompilerOps::Cheat_r4300iOpcodeNoMessage(RSPOp::Func FunctAddress, const char * FunctName)
{
MoveConstToVariable(m_OpCode.Value, &m_OpCode.Value, "m_OpCode.Value");
MoveConstToX86reg((uint32_t) & (RSPSystem.m_Op), x86_ECX);
Call_Direct(AddressOf(FunctAddress), FunctName);
}
void BreakPoint()
{
CPU_Message(" int 3");
*(RecompPos++) = 0xCC;
}
void CRSPRecompilerOps::CompileBranchExit(uint32_t TargetPC, uint32_t ContinuePC)
{
uint32_t * X86Loc = NULL;
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
CompConstToVariable(true, &BranchCompare, "BranchCompare");
JeLabel32("BranchEqual", 0);
X86Loc = (uint32_t *)(RecompPos - 4);
MoveConstToVariable(ContinuePC, m_System.m_SP_PC_REG, "RSP PC");
Ret();
CPU_Message("BranchEqual:");
x86_SetBranch32b(X86Loc, RecompPos);
MoveConstToVariable(TargetPC, m_System.m_SP_PC_REG, "RSP PC");
Ret();
}
CRSPRecompilerOps::CRSPRecompilerOps(CRSPSystem & System, CRSPRecompiler & Recompiler) :
m_System(System),
m_RSPRegisterHandler(System.m_RSPRegisterHandler),
m_Recompiler(Recompiler),
m_NextInstruction(Recompiler.m_NextInstruction),
m_OpCode(System.m_OpCode),
m_CompilePC(Recompiler.m_CompilePC),
m_Reg(System.m_Reg),
m_GPR(System.m_Reg.m_GPR),
m_ACCUM(System.m_Reg.m_ACCUM),
m_Flags(System.m_Reg.m_Flags),
m_Vect(System.m_Reg.m_Vect)
{
}
// Opcode functions
void CRSPRecompilerOps::SPECIAL(void)
{
(this->*RSP_Recomp_Special[m_OpCode.funct])();
}
void CRSPRecompilerOps::REGIMM(void)
{
(this->*RSP_Recomp_RegImm[m_OpCode.rt])();
}
void CRSPRecompilerOps::J(void)
{
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
if (CRSPSettings::CPUMethod() == RSPCpuMethod::RecompilerTasks && m_OpCode.Value == EndHleTaskOp::J_0x1118)
{
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT_TASK_EXIT;
}
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE)
{
JmpLabel32("BranchToJump", 0);
m_Recompiler.Branch_AddRef((m_OpCode.target << 2) & 0xFFC, (uint32_t *)(RecompPos - 4));
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE || m_NextInstruction == RSPPIPELINE_DELAY_SLOT_TASK_EXIT_DONE)
{
MoveConstToVariable((m_OpCode.target << 2) & 0xFFC, m_System.m_SP_PC_REG, "RSP PC");
m_NextInstruction = m_NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE ? RSPPIPELINE_FINISH_SUB_BLOCK : RSPPIPELINE_FINISH_TASK_SUB_BLOCK;
Ret();
}
else
{
CompilerWarning(stdstr_f("J error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", m_NextInstruction).c_str());
BreakPoint();
}
}
void CRSPRecompilerOps::JAL(void)
{
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
MoveConstToVariable((m_CompilePC + 8) & 0xFFC, &m_GPR[31].UW, "RA.W");
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE)
{
// Before we branch quickly update our stats
if (Profiling && IndvidualBlock)
{
char Str[40];
sprintf(Str, "%03X", (m_OpCode.target << 2) & 0xFFC);
Push(x86_EAX);
PushImm32(Str, *m_System.m_SP_PC_REG);
Call_Direct((void *)StartTimer, "StartTimer");
AddConstToX86Reg(x86_ESP, 4);
Pop(x86_EAX);
}
JmpLabel32("BranchToJump", 0);
m_Recompiler.Branch_AddRef((m_OpCode.target << 2) & 0xFFC, (uint32_t *)(RecompPos - 4));
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE)
{
MoveConstToVariable((m_OpCode.target << 2) & 0xFFC, m_System.m_SP_PC_REG, "RSP PC");
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
Ret();
}
else
{
CompilerWarning(stdstr_f("J error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", m_NextInstruction).c_str());
BreakPoint();
}
}
void CRSPRecompilerOps::BEQ(void)
{
static bool bDelayAffect;
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rs == 0 && m_OpCode.rt == 0)
{
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
MoveConstByteToVariable(1, &BranchCompare, "BranchCompare");
return;
}
bDelayAffect = DelaySlotAffectBranch(m_CompilePC);
if (!bDelayAffect)
{
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
return;
}
if (m_OpCode.rt == 0)
{
CompConstToVariable(0, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
}
else if (m_OpCode.rs == 0)
{
CompConstToVariable(0, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
CompX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
}
SetzVariable(&BranchCompare, "BranchCompare");
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
if (m_OpCode.rs == 0 && m_OpCode.rt == 0)
{
JmpLabel32("BranchToJump", 0);
m_Recompiler.Branch_AddRef(Target, (uint32_t *)(RecompPos - 4));
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
return;
}
if (!bDelayAffect)
{
if (m_OpCode.rt == 0)
{
CompConstToVariable(0, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
}
else if (m_OpCode.rs == 0)
{
CompConstToVariable(0, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
CompX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
}
JeLabel32("BranchEqual", 0);
}
else
{
// Take a look at the branch compare variable
CompConstToVariable(true, &BranchCompare, "BranchCompare");
JeLabel32("BranchEqual", 0);
}
m_Recompiler.Branch_AddRef(Target, (uint32_t *)(RecompPos - 4));
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
CompileBranchExit(Target, m_CompilePC + 8);
}
else
{
CompilerWarning(stdstr_f("BEQ error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", m_NextInstruction).c_str());
BreakPoint();
}
}
void CRSPRecompilerOps::BNE(void)
{
static bool bDelayAffect;
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rs == 0 && m_OpCode.rt == 0)
{
MoveConstByteToVariable(0, &BranchCompare, "BranchCompare");
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
return;
}
bDelayAffect = DelaySlotAffectBranch(m_CompilePC);
if (!bDelayAffect)
{
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
return;
}
if (m_OpCode.rt == 0)
{
CompConstToVariable(0, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
}
else if (m_OpCode.rs == 0)
{
CompConstToVariable(0, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
CompX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
}
SetnzVariable(&BranchCompare, "BranchCompare");
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
if (m_OpCode.rs == 0 && m_OpCode.rt == 0)
{
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
return;
}
if (!bDelayAffect)
{
if (m_OpCode.rt == 0)
{
CompConstToVariable(0, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
}
else if (m_OpCode.rs == 0)
{
CompConstToVariable(0, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
CompX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
}
JneLabel32("BranchNotEqual", 0);
}
else
{
// Take a look at the branch compare variable
CompConstToVariable(true, &BranchCompare, "BranchCompare");
JeLabel32("BranchNotEqual", 0);
}
m_Recompiler.Branch_AddRef(Target, (uint32_t *)(RecompPos - 4));
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
CompileBranchExit(Target, m_CompilePC + 8);
}
else
{
CompilerWarning(stdstr_f("BNE error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", m_NextInstruction).c_str());
BreakPoint();
}
}
void CRSPRecompilerOps::BLEZ(void)
{
static bool bDelayAffect;
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rs == 0)
{
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
return;
}
bDelayAffect = DelaySlotAffectBranch(m_CompilePC);
if (!bDelayAffect)
{
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
return;
}
CompConstToVariable(0, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
SetleVariable(&BranchCompare, "BranchCompare");
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
if (m_OpCode.rs == 0)
{
JmpLabel32("BranchToJump", 0);
m_Recompiler.Branch_AddRef(Target, (uint32_t *)(RecompPos - 4));
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
return;
}
if (!bDelayAffect)
{
CompConstToVariable(0, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
JleLabel32("BranchLessEqual", 0);
}
else
{
// Take a look at the branch compare variable
CompConstToVariable(true, &BranchCompare, "BranchCompare");
JeLabel32("BranchLessEqual", 0);
}
m_Recompiler.Branch_AddRef(Target, (uint32_t *)(RecompPos - 4));
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
CompileBranchExit(Target, m_CompilePC + 8);
}
else
{
CompilerWarning(stdstr_f("BLEZ error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", m_NextInstruction).c_str());
BreakPoint();
}
}
void CRSPRecompilerOps::BGTZ(void)
{
static bool bDelayAffect;
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rs == 0)
{
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
return;
}
bDelayAffect = DelaySlotAffectBranch(m_CompilePC);
if (!bDelayAffect)
{
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
return;
}
CompConstToVariable(0, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
SetgVariable(&BranchCompare, "BranchCompare");
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
if (m_OpCode.rs == 0)
{
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
return;
}
if (!bDelayAffect)
{
CompConstToVariable(0, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
JgLabel32("BranchGreater", 0);
}
else
{
// Take a look at the branch compare variable
CompConstToVariable(true, &BranchCompare, "BranchCompare");
JeLabel32("BranchGreater", 0);
}
m_Recompiler.Branch_AddRef(Target, (uint32_t *)(RecompPos - 4));
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
CompileBranchExit(Target, m_CompilePC + 8);
}
else
{
CompilerWarning(stdstr_f("BGTZ error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", m_NextInstruction).c_str());
BreakPoint();
}
}
void CRSPRecompilerOps::ADDI(void)
{
if (m_OpCode.rt == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Immediates
Cheat_r4300iOpcode(&RSPOp::ADDI, "RSPOp::ADDI");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
int Immediate = (short)m_OpCode.immediate;
if (m_OpCode.rt == m_OpCode.rs)
{
if (Immediate != 0)
{
AddConstToVariable(Immediate, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
}
else if (m_OpCode.rs == 0)
{
MoveConstToVariable(Immediate, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
else if ((IsRegConst(m_OpCode.rs) & 1) != 0)
{
MoveConstToVariable(MipsRegConst(m_OpCode.rs) + Immediate, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].UW, GPR_Name(m_OpCode.rs), x86_EAX);
if (Immediate != 0)
{
AddConstToX86Reg(x86_EAX, Immediate);
}
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
#endif
}
void CRSPRecompilerOps::ADDIU(void)
{
if (m_OpCode.rt == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Immediates
Cheat_r4300iOpcode(&RSPOp::ADDIU, "RSPOp::ADDIU");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
int Immediate = (short)m_OpCode.immediate;
if (m_OpCode.rt == m_OpCode.rs)
{
if (Immediate != 0)
{
AddConstToVariable(Immediate, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
}
else if (m_OpCode.rs == 0)
{
MoveConstToVariable(Immediate, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].UW, GPR_Name(m_OpCode.rs), x86_EAX);
if (Immediate != 0)
{
AddConstToX86Reg(x86_EAX, Immediate);
}
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
#endif
}
void CRSPRecompilerOps::SLTI(void)
{
if (m_OpCode.rt == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Immediates
Cheat_r4300iOpcode(&RSPOp::SLTI, "&RSPOp::SLTI");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
int Immediate = (short)m_OpCode.immediate;
if (Immediate == 0)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].UW, GPR_Name(m_OpCode.rs), x86_ECX);
ShiftRightUnsignImmed(x86_ECX, 31);
}
else
{
XorX86RegToX86Reg(x86_ECX, x86_ECX);
CompConstToVariable(Immediate, &m_GPR[m_OpCode.rs].UW, GPR_Name(m_OpCode.rs));
Setl(x86_ECX);
}
MoveX86regToVariable(x86_ECX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
#endif
}
void CRSPRecompilerOps::SLTIU(void)
{
if (m_OpCode.rt == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Immediates
Cheat_r4300iOpcode(&RSPOp::SLTIU, "RSPOp::SLTIU");
#else
int Immediate;
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
Immediate = (short)m_OpCode.immediate;
XorX86RegToX86Reg(x86_ECX, x86_ECX);
CompConstToVariable(Immediate, &m_GPR[m_OpCode.rs].UW, GPR_Name(m_OpCode.rs));
Setb(x86_ECX);
MoveX86regToVariable(x86_ECX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
#endif
}
void CRSPRecompilerOps::ANDI(void)
{
if (m_OpCode.rt == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Immediates
Cheat_r4300iOpcode(&RSPOp::ANDI, "RSPOp::ANDI");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
int Immediate = (unsigned short)m_OpCode.immediate;
if (m_OpCode.rt == m_OpCode.rs)
{
AndConstToVariable(Immediate, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
else if (m_OpCode.rs == 0)
{
MoveConstToVariable(0, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
else if (Immediate == 0xFFFF)
{
MoveZxVariableToX86regHalf(&m_GPR[m_OpCode.rs].UW, GPR_Name(m_OpCode.rs), x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].UW, GPR_Name(m_OpCode.rs), x86_EAX);
AndConstToX86Reg(x86_EAX, Immediate);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
#endif
}
void CRSPRecompilerOps::ORI(void)
{
if (m_OpCode.rt == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Immediates
Cheat_r4300iOpcode(&RSPOp::ORI, "RSPOp::ORI");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
int Immediate = (unsigned short)m_OpCode.immediate;
if (m_OpCode.rt == m_OpCode.rs)
{
OrConstToVariable(Immediate, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
else if (m_OpCode.rs == 0)
{
MoveConstToVariable(Immediate, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].UW, GPR_Name(m_OpCode.rs), x86_EAX);
if (Immediate != 0)
{
OrConstToX86Reg(Immediate, x86_EAX);
}
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
#endif
}
void CRSPRecompilerOps::XORI(void)
{
if (m_OpCode.rt == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Immediates
Cheat_r4300iOpcode(&RSPOp::XORI, "RSPOp::XORI");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
int Immediate = (unsigned short)m_OpCode.immediate;
if (m_OpCode.rt == m_OpCode.rs)
{
XorConstToVariable(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), Immediate);
}
else if (m_OpCode.rs == 0)
{
MoveConstToVariable(Immediate, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].UW, GPR_Name(m_OpCode.rs), x86_EAX);
if (Immediate != 0)
{
XorConstToX86Reg(x86_EAX, Immediate);
}
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
#endif
}
void CRSPRecompilerOps::LUI(void)
{
if (m_OpCode.rt == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Immediates
Cheat_r4300iOpcode(&RSPOp::LUI, "RSPOp::LUI");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
int constant = (short)m_OpCode.offset << 16;
MoveConstToVariable(constant, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
#endif
}
void CRSPRecompilerOps::COP0(void)
{
(this->*RSP_Recomp_Cop0[m_OpCode.rs])();
}
void CRSPRecompilerOps::COP2(void)
{
(this->*RSP_Recomp_Cop2[m_OpCode.rs])();
}
void CRSPRecompilerOps::LB(void)
{
if (m_OpCode.rt == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_GPRLoads
Cheat_r4300iOpcode(&RSPOp::LB, "RSPOp::LB");
#else
int Offset = (short)m_OpCode.offset;
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (IsRegConst(m_OpCode.base))
{
char Address[32];
uint32_t Addr = (MipsRegConst(m_OpCode.base) + Offset) ^ 3;
Addr &= 0xfff;
sprintf(Address, "Dmem + %Xh", Addr);
MoveSxVariableToX86regByte(RSPInfo.DMEM + Addr, Address, x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
return;
}
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (Offset != 0) AddConstToX86Reg(x86_EBX, Offset);
XorConstToX86Reg(x86_EBX, 3);
AndConstToX86Reg(x86_EBX, 0x0fff);
MoveSxN64MemToX86regByte(x86_EAX, x86_EBX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
#endif
}
void CRSPRecompilerOps::LH(void)
{
if (m_OpCode.rt == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_GPRLoads
Cheat_r4300iOpcode(&RSPOp::LH, "RSPOp::LH");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
int Offset = (short)m_OpCode.offset;
uint8_t * Jump[2];
if (IsRegConst(m_OpCode.base))
{
uint32_t Addr = (MipsRegConst(m_OpCode.base) + Offset) ^ 2;
Addr &= 0xfff;
if ((Addr & 1) != 0)
{
if ((Addr & 2) == 0)
{
CompilerWarning(stdstr_f("Unaligned LH at constant address PC = %04X", m_CompilePC).c_str());
Cheat_r4300iOpcodeNoMessage(&RSPOp::LH, "RSPOp::LH");
}
else
{
char Address[32];
sprintf(Address, "DMEM + %Xh", Addr);
MoveSxVariableToX86regHalf(RSPInfo.DMEM + (Addr ^ 2), Address, x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
}
else
{
char Address[32];
sprintf(Address, "DMEM + %Xh", Addr);
MoveSxVariableToX86regHalf(RSPInfo.DMEM + Addr, Address, x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
return;
}
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (Offset != 0) AddConstToX86Reg(x86_EBX, Offset);
AndConstToX86Reg(x86_EBX, 0x0fff);
TestConstToX86Reg(1, x86_EBX);
JneLabel32("Unaligned", 0);
Jump[0] = RecompPos - 4;
CompilerToggleBuffer();
CPU_Message(" Unaligned:");
x86_SetBranch32b(Jump[0], RecompPos);
Cheat_r4300iOpcodeNoMessage(&RSPOp::LH, "RSPOp::LH");
JmpLabel32("Done", 0);
Jump[1] = RecompPos - 4;
CompilerToggleBuffer();
XorConstToX86Reg(x86_EBX, 2);
MoveSxN64MemToX86regHalf(x86_EAX, x86_EBX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
CPU_Message(" Done:");
x86_SetBranch32b(Jump[1], RecompPos);
#endif
}
void CRSPRecompilerOps::LW(void)
{
if (m_OpCode.rt == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_GPRLoads
Cheat_r4300iOpcode(&RSPOp::LW, "RSPOp::LW");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
int Offset = (short)m_OpCode.offset;
uint8_t * Jump[2];
if (IsRegConst(m_OpCode.base))
{
uint32_t Addr = (MipsRegConst(m_OpCode.base) + Offset) & 0xfff;
if ((Addr & 1) != 0)
{
CompilerWarning(stdstr_f("Unaligned LW at constant address PC = %04X", m_CompilePC).c_str());
Cheat_r4300iOpcodeNoMessage(&RSPOp::LW, "RSPOp::LW");
}
else if ((Addr & 2) != 0)
{
char Address[32];
sprintf(Address, "DMEM + %Xh", Addr - 2);
MoveVariableToX86regHalf(RSPInfo.DMEM + ((Addr - 2) & 0xFFF), Address, x86_EAX);
sprintf(Address, "DMEM + %Xh", Addr);
MoveVariableToX86regHalf(RSPInfo.DMEM + ((Addr + 4) & 0xFFF), Address, x86_ECX);
MoveX86regHalfToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UHW[1], GPR_Name(m_OpCode.rt));
MoveX86regHalfToVariable(x86_ECX, &m_GPR[m_OpCode.rt].UHW[0], GPR_Name(m_OpCode.rt));
}
else
{
char Address[32];
sprintf(Address, "DMEM + %Xh", Addr);
MoveVariableToX86reg(RSPInfo.DMEM + Addr, Address, x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
return;
}
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (Offset != 0)
{
AddConstToX86Reg(x86_EBX, Offset);
}
AndConstToX86Reg(x86_EBX, 0x0fff);
TestConstToX86Reg(3, x86_EBX);
JneLabel32("Unaligned", 0);
Jump[0] = RecompPos - 4;
CompilerToggleBuffer();
x86_SetBranch32b(Jump[0], RecompPos);
CPU_Message(" Unaligned:");
LeaSourceAndOffset(x86_ECX, x86_EBX, 2);
LeaSourceAndOffset(x86_EDX, x86_EBX, 3);
MoveX86RegToX86Reg(x86_EBX, x86_EAX);
AddConstToX86Reg(x86_EBX, 1);
XorConstToX86Reg(x86_EAX, 3);
XorConstToX86Reg(x86_EBX, 3);
XorConstToX86Reg(x86_ECX, 3);
XorConstToX86Reg(x86_EDX, 3);
MoveN64MemToX86regByte(x86_EAX, x86_EAX);
MoveN64MemToX86regByte(x86_EBX, x86_EBX);
MoveN64MemToX86regByte(x86_ECX, x86_ECX);
MoveN64MemToX86regByte(x86_EDX, x86_EDX);
MoveX86regByteToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UB[3], GPR_Name(m_OpCode.rt));
MoveX86regByteToVariable(x86_EBX, &m_GPR[m_OpCode.rt].UB[2], GPR_Name(m_OpCode.rt));
MoveX86regByteToVariable(x86_ECX, &m_GPR[m_OpCode.rt].UB[1], GPR_Name(m_OpCode.rt));
MoveX86regByteToVariable(x86_EDX, &m_GPR[m_OpCode.rt].UB[0], GPR_Name(m_OpCode.rt));
JmpLabel32("Done", 0);
Jump[1] = RecompPos - 4;
CompilerToggleBuffer();
MoveN64MemToX86reg(x86_EAX, x86_EBX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
CPU_Message(" Done:");
x86_SetBranch32b(Jump[1], RecompPos);
#endif
}
void CRSPRecompilerOps::LBU(void)
{
if (m_OpCode.rt == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_GPRLoads
Cheat_r4300iOpcode(&RSPOp::LBU, "RSPOp::LBU");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
int Offset = (short)m_OpCode.offset;
if (IsRegConst(m_OpCode.base))
{
char Address[32];
uint32_t Addr = (MipsRegConst(m_OpCode.base) + Offset) ^ 3;
Addr &= 0xfff;
sprintf(Address, "DMEM + %Xh", Addr);
MoveZxVariableToX86regByte(RSPInfo.DMEM + Addr, Address, x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
return;
}
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
XorX86RegToX86Reg(x86_EAX, x86_EAX);
if (Offset != 0) AddConstToX86Reg(x86_EBX, Offset);
XorConstToX86Reg(x86_EBX, 3);
AndConstToX86Reg(x86_EBX, 0x0fff);
MoveN64MemToX86regByte(x86_EAX, x86_EBX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
#endif
}
void CRSPRecompilerOps::LHU(void)
{
if (m_OpCode.rt == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_GPRLoads
Cheat_r4300iOpcode(&RSPOp::LHU, "RSPOp::LHU");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
int Offset = (short)m_OpCode.offset;
uint8_t * Jump[2];
if (IsRegConst(m_OpCode.base))
{
uint32_t Addr = (MipsRegConst(m_OpCode.base) + Offset) ^ 2;
Addr &= 0xfff;
if ((Addr & 1) != 0)
{
if ((Addr & 2) == 0)
{
CompilerWarning(stdstr_f("Unaligned LHU at constant address PC = %04X", m_CompilePC).c_str());
Cheat_r4300iOpcodeNoMessage(&RSPOp::LHU, "RSPOp::LHU");
}
else
{
char Address[32];
sprintf(Address, "DMEM + %Xh", Addr);
MoveZxVariableToX86regHalf(RSPInfo.DMEM + (Addr ^ 2), Address, x86_ECX);
MoveX86regToVariable(x86_ECX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
}
return;
}
else
{
char Address[32];
sprintf(Address, "DMEM + %Xh", Addr);
MoveZxVariableToX86regHalf(RSPInfo.DMEM + Addr, Address, x86_ECX);
MoveX86regToVariable(x86_ECX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
return;
}
}
// TODO: Should really just do it by bytes but whatever for now
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (Offset != 0)
{
AddConstToX86Reg(x86_EBX, Offset);
}
TestConstToX86Reg(1, x86_EBX);
JneLabel32("Unaligned", 0);
Jump[0] = RecompPos - 4;
CompilerToggleBuffer();
CPU_Message(" Unaligned:");
x86_SetBranch32b(Jump[0], RecompPos);
Cheat_r4300iOpcodeNoMessage(&RSPOp::LHU, "RSPOp::LHU");
JmpLabel32("Done", 0);
Jump[1] = RecompPos - 4;
CompilerToggleBuffer();
XorConstToX86Reg(x86_EBX, 2);
AndConstToX86Reg(x86_EBX, 0x0fff);
MoveZxN64MemToX86regHalf(x86_EAX, x86_EBX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
CPU_Message(" Done:");
x86_SetBranch32b(Jump[1], RecompPos);
#endif
}
void CRSPRecompilerOps::LWU(void)
{
if (m_OpCode.rt == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
Cheat_r4300iOpcode(&RSPOp::LWU, "RSPOp::LWU");
}
void CRSPRecompilerOps::SB(void)
{
#ifndef Compile_GPRStores
Cheat_r4300iOpcode(&RSPOp::SB, "RSPOp::SB");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
int Offset = (short)m_OpCode.offset;
if (IsRegConst(m_OpCode.base))
{
char Address[32];
uint32_t Addr = (MipsRegConst(m_OpCode.base) + Offset) ^ 3;
Addr &= 0xfff;
sprintf(Address, "DMEM + %Xh", Addr);
if (IsRegConst(m_OpCode.rt))
{
MoveConstByteToVariable((uint8_t)MipsRegConst(m_OpCode.rt), RSPInfo.DMEM + Addr, Address);
return;
}
else
{
MoveVariableToX86regByte(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regByteToVariable(x86_EAX, RSPInfo.DMEM + Addr, Address);
return;
}
}
if (IsRegConst(m_OpCode.rt))
{
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (Offset != 0) AddConstToX86Reg(x86_EBX, Offset);
XorConstToX86Reg(x86_EBX, 3);
AndConstToX86Reg(x86_EBX, 0x0fff);
MoveConstByteToN64Mem((uint8_t)MipsRegConst(m_OpCode.rt), x86_EBX);
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
MoveVariableToX86regByte(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
if (Offset != 0) AddConstToX86Reg(x86_EBX, Offset);
XorConstToX86Reg(x86_EBX, 3);
AndConstToX86Reg(x86_EBX, 0x0fff);
MoveX86regByteToN64Mem(x86_EAX, x86_EBX);
}
#endif
}
void CRSPRecompilerOps::SH(void)
{
#ifndef Compile_GPRStores
Cheat_r4300iOpcode(&RSPOp::SH, "&RSPOp::SH");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
int Offset = (short)m_OpCode.offset;
uint8_t * Jump[2];
if (IsRegConst(m_OpCode.base))
{
uint32_t Addr = (MipsRegConst(m_OpCode.base) + Offset) ^ 2;
Addr &= 0xfff;
if ((Offset & 1) != 0)
{
CompilerWarning(stdstr_f("Unaligned SH at constant address PC = %04X", m_CompilePC).c_str());
Cheat_r4300iOpcodeNoMessage(&RSPOp::SH, "RSPOp::SH");
return;
}
else
{
char Address[32];
sprintf(Address, "DMEM + %Xh", Addr);
if (IsRegConst(m_OpCode.rt))
{
MoveConstHalfToVariable((uint16_t)MipsRegConst(m_OpCode.rt), RSPInfo.DMEM + Addr, Address);
}
else
{
MoveVariableToX86regHalf(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regHalfToVariable(x86_EAX, RSPInfo.DMEM + Addr, Address);
}
return;
}
}
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (Offset != 0) AddConstToX86Reg(x86_EBX, Offset);
TestConstToX86Reg(1, x86_EBX);
JneLabel32("Unaligned", 0);
Jump[0] = RecompPos - 4;
CompilerToggleBuffer();
CPU_Message(" Unaligned:");
x86_SetBranch32b(Jump[0], RecompPos);
X86BreakPoint(__FILE__, __LINE__);
JmpLabel32("Done", 0);
Jump[1] = RecompPos - 4;
CompilerToggleBuffer();
XorConstToX86Reg(x86_EBX, 2);
AndConstToX86Reg(x86_EBX, 0x0fff);
if (IsRegConst(m_OpCode.rt))
{
MoveConstHalfToN64Mem((uint16_t)MipsRegConst(m_OpCode.rt), x86_EBX);
}
else
{
MoveVariableToX86regHalf(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regHalfToN64Mem(x86_EAX, x86_EBX);
}
CPU_Message(" Done:");
x86_SetBranch32b(Jump[1], RecompPos);
#endif
}
void CRSPRecompilerOps::SW(void)
{
#ifndef Compile_GPRStores
Cheat_r4300iOpcode(&RSPOp::SW, "&RSPOp::SW");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
int Offset = (short)m_OpCode.offset;
uint8_t * Jump[2];
if (IsRegConst(m_OpCode.base))
{
char Address[32];
uint32_t Addr = (MipsRegConst(m_OpCode.base) + Offset) & 0xfff;
if ((Addr & 3) != 0)
{
if (IsRegConst(m_OpCode.rt))
{
if (Addr > 0xFFC)
{
g_Notify->DisplayError("There is a problem with:\nRSP_SW_DMEM");
return;
}
uint32_t Value = MipsRegConst(m_OpCode.rt);
sprintf(Address, "DMEM + %Xh", ((Addr + 0) ^ 3) & 0xFFF);
MoveConstByteToVariable((Value >> 24) & 0xFF, RSPInfo.DMEM + (((Addr + 0) ^ 3) & 0xFFF), Address);
sprintf(Address, "DMEM + %Xh", ((Addr + 1) ^ 3) & 0xFFF);
MoveConstByteToVariable((Value >> 16) & 0xFF, RSPInfo.DMEM + (((Addr + 1) ^ 3) & 0xFFF), Address);
sprintf(Address, "DMEM + %Xh", ((Addr + 2) ^ 3) & 0xFFF);
MoveConstByteToVariable((Value >> 8) & 0xFF, RSPInfo.DMEM + (((Addr + 2) ^ 3) & 0xFFF), Address);
sprintf(Address, "DMEM + %Xh", ((Addr + 3) ^ 3) & 0xFFF);
MoveConstByteToVariable((Value >> 0) & 0xFF, RSPInfo.DMEM + (((Addr + 3) ^ 3) & 0xFFF), Address);
}
else
{
CompilerWarning(stdstr_f("Unaligned SW at constant address PC = %04X", m_CompilePC).c_str());
Cheat_r4300iOpcodeNoMessage(&RSPOp::SW, "RSPOp::SW");
}
return;
}
else
{
sprintf(Address, "DMEM + %Xh", Addr);
if (IsRegConst(m_OpCode.rt))
{
MoveConstToVariable(MipsRegConst(m_OpCode.rt), RSPInfo.DMEM + Addr, Address);
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regToVariable(x86_EAX, RSPInfo.DMEM + Addr, Address);
}
return;
}
}
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (Offset != 0) AddConstToX86Reg(x86_EBX, Offset);
AndConstToX86Reg(x86_EBX, 0x0fff);
TestConstToX86Reg(3, x86_EBX);
JneLabel32("Unaligned", 0);
Jump[0] = RecompPos - 4;
CompilerToggleBuffer();
CPU_Message(" Unaligned:");
x86_SetBranch32b(Jump[0], RecompPos);
// X86BreakPoint(__FILE__,__LINE__);
Push(x86_EBX);
LeaSourceAndOffset(x86_ECX, x86_EBX, 2);
LeaSourceAndOffset(x86_EDX, x86_EBX, 3);
XorConstToX86Reg(x86_ECX, 3);
XorConstToX86Reg(x86_EDX, 3);
MoveVariableToX86regByte(&m_GPR[m_OpCode.rt].UB[1], GPR_Name(m_OpCode.rt), x86_EAX); // CX
MoveVariableToX86regByte(&m_GPR[m_OpCode.rt].UB[0], GPR_Name(m_OpCode.rt), x86_EBX); // DX
MoveX86regByteToN64Mem(x86_EAX, x86_ECX);
MoveX86regByteToN64Mem(x86_EBX, x86_EDX);
Pop(x86_EBX);
MoveX86RegToX86Reg(x86_EBX, x86_EAX);
AddConstToX86Reg(x86_EBX, 1);
XorConstToX86Reg(x86_EAX, 3);
XorConstToX86Reg(x86_EBX, 3);
MoveVariableToX86regByte(&m_GPR[m_OpCode.rt].UB[3], GPR_Name(m_OpCode.rt), x86_ECX); // AX
MoveVariableToX86regByte(&m_GPR[m_OpCode.rt].UB[2], GPR_Name(m_OpCode.rt), x86_EDX); // BX
MoveX86regByteToN64Mem(x86_ECX, x86_EAX);
MoveX86regByteToN64Mem(x86_EDX, x86_EBX);
JmpLabel32("Done", 0);
Jump[1] = RecompPos - 4;
CompilerToggleBuffer();
if (IsRegConst(m_OpCode.rt))
{
MoveConstToN64Mem(MipsRegConst(m_OpCode.rt), x86_EBX);
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regToN64Mem(x86_EAX, x86_EBX);
}
CPU_Message(" Done:");
x86_SetBranch32b(Jump[1], RecompPos);
#endif
}
void CRSPRecompilerOps::LC2(void)
{
(this->*RSP_Recomp_Lc2[m_OpCode.rd])();
}
void CRSPRecompilerOps::SC2(void)
{
(this->*RSP_Recomp_Sc2[m_OpCode.rd])();
}
// R4300i Opcodes: Special
void CRSPRecompilerOps::Special_SLL(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Special
Cheat_r4300iOpcode(&RSPOp::Special_SLL, "RSPOp::Special_SLL");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rd == m_OpCode.rt)
{
ShiftLeftSignVariableImmed(&m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd), (uint8_t)m_OpCode.sa);
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
ShiftLeftSignImmed(x86_EAX, (uint8_t)m_OpCode.sa);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
#endif
}
void CRSPRecompilerOps::Special_SRL(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Special
Cheat_r4300iOpcode(&RSPOp::Special_SRL, "RSPOp::Special_SRL");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rd == m_OpCode.rt)
{
ShiftRightUnsignVariableImmed(&m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd), (uint8_t)m_OpCode.sa);
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
ShiftRightUnsignImmed(x86_EAX, (uint8_t)m_OpCode.sa);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
#endif
}
void CRSPRecompilerOps::Special_SRA(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Special
Cheat_r4300iOpcode(&RSPOp::Special_SRA, "RSPOp::Special_SRA");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rd == m_OpCode.rt)
{
ShiftRightSignVariableImmed(&m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd), (uint8_t)m_OpCode.sa);
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
ShiftRightSignImmed(x86_EAX, (uint8_t)m_OpCode.sa);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
#endif
}
void CRSPRecompilerOps::Special_SLLV(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
Cheat_r4300iOpcode(&RSPOp::Special_SLLV, "RSPOp::Special_SLLV");
}
void CRSPRecompilerOps::Special_SRLV(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Special
Cheat_r4300iOpcode(&RSPOp::Special_SRLV, "RSPOp::Special_SRLV");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_ECX);
AndConstToX86Reg(x86_ECX, 0x1F);
ShiftRightUnsign(x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
#endif
}
void CRSPRecompilerOps::Special_SRAV(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
Cheat_r4300iOpcode(&RSPOp::Special_SRAV, "RSPOp::Special_SRAV");
}
void UpdateAudioTimer()
{
/* char Label[100];
sprintf(Label,"COMMAND: %02X (PC = %08X)",m_GPR[1].UW >> 1, *m_System.m_SP_PC_REG);
StartTimer(Label);*/
}
void CRSPRecompilerOps::Special_JR(void)
{
uint8_t * Jump;
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
// Transfer destination to location pointed to by m_System.m_SP_PC_REG
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
AndConstToX86Reg(x86_EAX, 0xFFC);
MoveX86regToVariable(x86_EAX, m_System.m_SP_PC_REG, "RSP PC");
ChangedPC = true;
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE)
{
MoveVariableToX86reg(m_System.m_SP_PC_REG, "RSP PC", x86_EAX);
if (Profiling && IndvidualBlock)
{
Push(x86_EAX);
Push(x86_EAX);
Call_Direct((void *)StartTimer, "StartTimer");
AddConstToX86Reg(x86_ESP, 4);
Pop(x86_EAX);
}
AddVariableToX86reg(x86_EAX, &JumpTable, "JumpTable");
MoveX86regPointerToX86reg(x86_EAX, x86_EAX);
TestX86RegToX86Reg(x86_EAX, x86_EAX);
JeLabel8("Null", 0);
Jump = RecompPos - 1;
JumpX86Reg(x86_EAX);
x86_SetBranch8b(Jump, RecompPos);
CPU_Message(" Null:");
if (CRSPSettings::CPUMethod() == RSPCpuMethod::HighLevelEmulation)
{
BreakPoint();
}
Ret();
ChangedPC = false;
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE)
{
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
Ret();
}
else
{
CompilerWarning(stdstr_f("WTF\n\nJR\nNextInstruction = %X", m_NextInstruction).c_str());
BreakPoint();
}
}
void CRSPRecompilerOps::Special_JALR(void)
{
uint8_t * Jump;
uint32_t Const = (m_CompilePC + 8) & 0xFFC;
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
AndConstToX86Reg(x86_EAX, 0xFFC);
MoveX86regToVariable(x86_EAX, m_System.m_SP_PC_REG, "RSP PC");
MoveConstToVariable(Const, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE)
{
MoveVariableToX86reg(m_System.m_SP_PC_REG, "RSP PC", x86_EAX);
AddVariableToX86reg(x86_EAX, &JumpTable, "JumpTable");
MoveX86regPointerToX86reg(x86_EAX, x86_EAX);
TestX86RegToX86Reg(x86_EAX, x86_EAX);
JeLabel8("Null", 0);
Jump = RecompPos - 1;
JumpX86Reg(x86_EAX);
x86_SetBranch8b(Jump, RecompPos);
CPU_Message(" Null:");
Ret();
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE)
{
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
Ret();
}
else
{
CompilerWarning(stdstr_f("WTF\n\nJALR\nNextInstruction = %X", m_NextInstruction).c_str());
BreakPoint();
}
}
void CRSPRecompilerOps::Special_BREAK(void)
{
Cheat_r4300iOpcode(&RSPOp::Special_BREAK, "RSPOp::Special_BREAK");
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
MoveConstToVariable(m_CompilePC + 4, m_System.m_SP_PC_REG, "RSP PC");
Ret();
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT)
{
m_NextInstruction = RSPPIPELINE_DELAY_SLOT_EXIT;
}
else
{
CompilerWarning(stdstr_f("WTF\n\nBREAK\nNextInstruction = %X", m_NextInstruction).c_str());
BreakPoint();
}
}
void CRSPRecompilerOps::Special_ADD(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Special
Cheat_r4300iOpcode(&RSPOp::Special_ADD, "RSPOp::Special_ADD");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rd == m_OpCode.rs)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
AddX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else if (m_OpCode.rd == m_OpCode.rt)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
AddX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else if (m_OpCode.rs == m_OpCode.rt)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
AddX86RegToX86Reg(x86_EAX, x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else if (m_OpCode.rs == 0)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else if (m_OpCode.rt == 0)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
AddVariableToX86reg(x86_EAX, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
#endif
}
void CRSPRecompilerOps::Special_ADDU(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Special
Cheat_r4300iOpcode(&RSPOp::Special_ADDU, "RSPOp::Special_ADDU");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rd == m_OpCode.rs)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
AddX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else if (m_OpCode.rd == m_OpCode.rt)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
AddX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else if (m_OpCode.rs == m_OpCode.rt)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
AddX86RegToX86Reg(x86_EAX, x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else if (m_OpCode.rs == 0)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else if (m_OpCode.rt == 0)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
AddVariableToX86reg(x86_EAX, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
#endif
}
void CRSPRecompilerOps::Special_SUB(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Special
Cheat_r4300iOpcode(&RSPOp::Special_SUB, "RSPOp::Special_SUB");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rd == m_OpCode.rs)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
SubX86regFromVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, "m_GPR[m_OpCode.rd].W");
}
else if (m_OpCode.rs == m_OpCode.rt)
{
MoveConstToVariable(0, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
SubVariableFromX86reg(x86_EAX, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
#endif
}
void CRSPRecompilerOps::Special_SUBU(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Special
Cheat_r4300iOpcode(&RSPOp::Special_SUBU, "RSPOp::Special_SUBU");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rd == m_OpCode.rs)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
SubX86regFromVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else if (m_OpCode.rs == m_OpCode.rt)
{
MoveConstToVariable(0, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
SubVariableFromX86reg(x86_EAX, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
#endif
}
void CRSPRecompilerOps::Special_AND(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Special
Cheat_r4300iOpcode(&RSPOp::Special_AND, "RSPOp::Special_AND");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rd == m_OpCode.rs)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
AndX86RegToVariable(&m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd), x86_EAX);
}
else if (m_OpCode.rd == m_OpCode.rt)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
AndX86RegToVariable(&m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd), x86_EAX);
}
else if (m_OpCode.rs == m_OpCode.rt)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
AndVariableToX86Reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
#endif
}
void CRSPRecompilerOps::Special_OR(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Special
Cheat_r4300iOpcode(RSPOp::Special_OR, "RSPOp::Special_OR");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rd == m_OpCode.rs)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
OrX86RegToVariable(&m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd), x86_EAX);
}
else if (m_OpCode.rd == m_OpCode.rt)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
OrX86RegToVariable(&m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd), x86_EAX);
}
else if (m_OpCode.rs == 0)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else if (m_OpCode.rt == 0)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
OrVariableToX86Reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
#endif
}
void CRSPRecompilerOps::Special_XOR(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Special
Cheat_r4300iOpcode(&RSPOp::Special_XOR, "RSPOp::Special_XOR");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rd == m_OpCode.rs)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
XorX86RegToVariable(&m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd), x86_EAX);
}
else if (m_OpCode.rd == m_OpCode.rt)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
XorX86RegToVariable(&m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd), x86_EAX);
}
else if (m_OpCode.rs == m_OpCode.rt)
{
MoveConstToVariable(0, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs), x86_EAX);
XorVariableToX86reg(&m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rd].W, GPR_Name(m_OpCode.rd));
}
#endif
}
void CRSPRecompilerOps::Special_NOR(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
Cheat_r4300iOpcode(&RSPOp::Special_NOR, "RSPOp::Special_NOR");
}
void CRSPRecompilerOps::Special_SLT(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Special
Cheat_r4300iOpcode(&RSPOp::Special_SLT, "RSPOp::Special_SLT");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rt == m_OpCode.rs)
{
MoveConstToVariable(0, &m_GPR[m_OpCode.rd].UW, GPR_Name(m_OpCode.rd));
}
else
{
if (m_OpCode.rs == 0)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
XorX86RegToX86Reg(x86_ECX, x86_ECX);
CompConstToX86reg(x86_EAX, 0);
Setg(x86_ECX);
}
else if (m_OpCode.rt == 0)
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].UW, GPR_Name(m_OpCode.rs), x86_ECX);
ShiftRightUnsignImmed(x86_ECX, 31);
}
else
{
MoveVariableToX86reg(&m_GPR[m_OpCode.rs].UW, GPR_Name(m_OpCode.rs), x86_EAX);
XorX86RegToX86Reg(x86_ECX, x86_ECX);
CompX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
Setl(x86_ECX);
}
MoveX86regToVariable(x86_ECX, &m_GPR[m_OpCode.rd].UW, GPR_Name(m_OpCode.rd));
}
#endif
}
void CRSPRecompilerOps::Special_SLTU(void)
{
if (m_OpCode.rd == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
Cheat_r4300iOpcode(&RSPOp::Special_SLTU, "RSPOp::Special_SLTU");
}
// R4300i Opcodes: RegImm
void CRSPRecompilerOps::RegImm_BLTZ(void)
{
static bool bDelayAffect;
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rs == 0)
{
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
return;
}
bDelayAffect = DelaySlotAffectBranch(m_CompilePC);
if (!bDelayAffect)
{
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
return;
}
CompConstToVariable(0, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
SetlVariable(&BranchCompare, "BranchCompare");
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
if (m_OpCode.rs == 0)
{
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
return;
}
if (!bDelayAffect)
{
CompConstToVariable(0, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
JlLabel32("BranchLess", 0);
}
else
{
// Take a look at the branch compare variable
CompConstToVariable(true, &BranchCompare, "BranchCompare");
JeLabel32("BranchLess", 0);
}
m_Recompiler.Branch_AddRef(Target, (uint32_t *)(RecompPos - 4));
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
CompileBranchExit(Target, m_CompilePC + 8);
}
else
{
CompilerWarning(stdstr_f("BLTZ error\nWeird Delay Slot.\n\nNextInstruction = %X\nPC = %X\nEmulation will now stop", m_NextInstruction, m_CompilePC).c_str());
BreakPoint();
}
}
void CRSPRecompilerOps::RegImm_BGEZ(void)
{
static bool bDelayAffect;
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rs == 0)
{
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
return;
}
bDelayAffect = DelaySlotAffectBranch(m_CompilePC);
if (!bDelayAffect)
{
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
return;
}
CompConstToVariable(0, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
SetgeVariable(&BranchCompare, "BranchCompare");
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
if (m_OpCode.rs == 0)
{
JmpLabel32("BranchToJump", 0);
m_Recompiler.Branch_AddRef(Target, (uint32_t *)(RecompPos - 4));
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
return;
}
if (!bDelayAffect)
{
CompConstToVariable(0, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
JgeLabel32("BranchGreaterEqual", 0);
}
else
{
// Take a look at the branch compare variable
CompConstToVariable(true, &BranchCompare, "BranchCompare");
JeLabel32("BranchGreaterEqual", 0);
}
m_Recompiler.Branch_AddRef(Target, (uint32_t *)(RecompPos - 4));
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
CompileBranchExit(Target, m_CompilePC + 8);
}
else
{
CompilerWarning(stdstr_f("BGEZ error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", m_NextInstruction).c_str());
BreakPoint();
}
}
void CRSPRecompilerOps::RegImm_BLTZAL(void)
{
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rs == 0)
{
MoveConstToVariable((m_CompilePC + 8) & 0xFFC, &m_GPR[31].UW, "RA.W");
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
return;
}
CompConstToVariable(0, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
SetlVariable(&BranchCompare, "BranchCompare");
MoveConstToVariable((m_CompilePC + 8) & 0xFFC, &m_GPR[31].UW, "RA.W");
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
if (m_OpCode.rs == 0)
{
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
return;
}
// Take a look at the branch compare variable
CompConstToVariable(true, &BranchCompare, "BranchCompare");
JeLabel32("BranchLessEqual", 0);
m_Recompiler.Branch_AddRef(Target, (uint32_t *)(RecompPos - 4));
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
CompileBranchExit(Target, m_CompilePC + 8);
}
else
{
CompilerWarning(stdstr_f("BLTZAL error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", m_NextInstruction).c_str());
BreakPoint();
}
}
void CRSPRecompilerOps::RegImm_BGEZAL(void)
{
static bool bDelayAffect;
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rs == 0)
{
MoveConstToVariable((m_CompilePC + 8) & 0xFFC, &m_GPR[31].UW, "RA.W");
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
return;
}
bDelayAffect = DelaySlotAffectBranch(m_CompilePC);
if (!bDelayAffect)
{
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
return;
}
CompConstToVariable(0, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
SetgeVariable(&BranchCompare, "BranchCompare");
MoveConstToVariable((m_CompilePC + 8) & 0xFFC, &m_GPR[31].UW, "RA.W");
m_NextInstruction = RSPPIPELINE_DO_DELAY_SLOT;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
if (m_OpCode.rs == 0)
{
JmpLabel32("BranchToJump", 0);
m_Recompiler.Branch_AddRef(Target, (uint32_t *)(RecompPos - 4));
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
return;
}
if (!bDelayAffect)
{
CompConstToVariable(0, &m_GPR[m_OpCode.rs].W, GPR_Name(m_OpCode.rs));
MoveConstToVariable((m_CompilePC + 8) & 0xFFC, &m_GPR[31].UW, "RA.W");
JgeLabel32("BranchGreaterEqual", 0);
}
else
{
// Take a look at the branch compare variable
CompConstToVariable(true, &BranchCompare, "BranchCompare");
JeLabel32("BranchGreaterEqual", 0);
}
m_Recompiler.Branch_AddRef(Target, (uint32_t *)(RecompPos - 4));
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT_EXIT_DONE)
{
uint32_t Target = (m_CompilePC + ((short)m_OpCode.offset << 2) + 4) & 0xFFC;
CompileBranchExit(Target, m_CompilePC + 8);
}
else
{
CompilerWarning(stdstr_f("BGEZAL error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", m_NextInstruction).c_str());
BreakPoint();
}
}
// COP0 functions
void CRSPRecompilerOps::Cop0_MF(void)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (LogRDP)
{
char str[40];
sprintf(str, "%d", m_OpCode.rd);
PushImm32(str, m_OpCode.rd);
sprintf(str, "%X", m_CompilePC);
PushImm32(str, m_CompilePC);
MoveConstToX86reg((uint32_t)(&RDPLog), x86_ECX);
Call_Direct(AddressOf(&CRDPLog::LogMF0), "CRDPLog::LogMF0");
}
#ifndef Compile_Cop0
Cheat_r4300iOpcode(RSP_Cop0_MF, "RSP_Cop0_MF");
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
MoveConstToVariable(m_CompilePC + 4, m_System.m_SP_PC_REG, "RSP PC");
Ret();
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT)
{
m_NextInstruction = RSPPIPELINE_DELAY_SLOT_EXIT;
}
else
{
CompilerWarning(stdstr_f("MF error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", m_NextInstruction).c_str());
BreakPoint();
}
return;
#elif defined(_M_IX86) && defined(_MSC_VER)
switch (m_OpCode.rd)
{
case 0:
MoveConstToX86reg((uint32_t)m_RSPRegisterHandler, x86_ECX);
PushImm32("RSPRegister_MEM_ADDR", RSPRegister_MEM_ADDR);
Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::ReadReg), "RSPRegisterHandlerPlugin::ReadReg");
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
break;
case 1:
MoveConstToX86reg((uint32_t)m_RSPRegisterHandler, x86_ECX);
PushImm32("RSPRegister_DRAM_ADDR", RSPRegister_DRAM_ADDR);
Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::ReadReg), "RSPRegisterHandlerPlugin::ReadReg");
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
break;
case 2:
MoveConstToX86reg((uint32_t)m_RSPRegisterHandler, x86_ECX);
PushImm32("RSPRegister_RD_LEN", RSPRegister_RD_LEN);
Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::ReadReg), "RSPRegisterHandlerPlugin::ReadReg");
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
break;
case 3:
MoveConstToX86reg((uint32_t)m_RSPRegisterHandler, x86_ECX);
PushImm32("RSPRegister_WR_LEN", RSPRegister_WR_LEN);
Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::ReadReg), "RSPRegisterHandlerPlugin::ReadReg");
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
break;
case 4:
MoveConstToX86reg((uint32_t)m_RSPRegisterHandler, x86_ECX);
PushImm32("RSPRegister_STATUS", RSPRegister_STATUS);
Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::ReadReg), "RSPRegisterHandlerPlugin::ReadReg");
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
break;
case 5:
MoveVariableToX86reg(RSPInfo.SP_DMA_FULL_REG, "SP_DMA_FULL_REG", x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
break;
case 6:
MoveVariableToX86reg(RSPInfo.SP_DMA_BUSY_REG, "SP_DMA_BUSY_REG", x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
break;
case 7:
if (AudioHle || GraphicsHle || SemaphoreExit == 0)
{
MoveConstToVariable(0, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
}
else
{
MoveVariableToX86reg(RSPInfo.SP_SEMAPHORE_REG, "SP_SEMAPHORE_REG", x86_EAX);
MoveConstToVariable(0, &RSP_Running, "RSP_Running");
MoveConstToVariable(1, RSPInfo.SP_SEMAPHORE_REG, "SP_SEMAPHORE_REG");
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
MoveConstToVariable(m_CompilePC + 4, m_System.m_SP_PC_REG, "RSP PC");
Ret();
m_NextInstruction = RSPPIPELINE_FINISH_SUB_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT)
{
m_NextInstruction = RSPPIPELINE_DELAY_SLOT_EXIT;
}
else
{
CompilerWarning(stdstr_f("MF error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", m_NextInstruction).c_str());
BreakPoint();
}
}
break;
case 8:
MoveVariableToX86reg(RSPInfo.DPC_START_REG, "DPC_START_REG", x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
break;
case 9:
MoveVariableToX86reg(RSPInfo.DPC_END_REG, "DPC_END_REG", x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
break;
case 10:
MoveVariableToX86reg(RSPInfo.DPC_CURRENT_REG, "DPC_CURRENT_REG", x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
break;
case 11:
MoveVariableToX86reg(RSPInfo.DPC_STATUS_REG, "DPC_STATUS_REG", x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
break;
case 12:
MoveVariableToX86reg(RSPInfo.DPC_CLOCK_REG, "DPC_CLOCK_REG", x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt));
break;
default:
g_Notify->DisplayError(stdstr_f("We have not implemented RSP MF CP0 reg %s (%d)", COP0_Name(m_OpCode.rd), m_OpCode.rd).c_str());
}
#else
g_Notify->BreakPoint(__FILE__, __LINE__);
#endif
}
void CRSPRecompilerOps::Cop0_MT(void)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (LogRDP)
{
char str[40];
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
Push(x86_EAX);
sprintf(str, "%d", m_OpCode.rd);
PushImm32(str, m_OpCode.rd);
sprintf(str, "%X", m_CompilePC);
PushImm32(str, m_CompilePC);
MoveConstToX86reg((uint32_t)(&RDPLog), x86_ECX);
Call_Direct(AddressOf(&CRDPLog::LogMT0), "CRDPLog::LogMT0");
}
#ifndef Compile_Cop0
Cheat_r4300iOpcode(RSP_Cop0_MT, "RSP_Cop0_MT");
if (m_OpCode.rd == 4)
{
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
MoveConstToVariable(m_CompilePC + 4, m_System.m_SP_PC_REG, "RSP PC");
Ret();
m_NextInstruction = RSPPIPELINE_FINISH_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT)
{
m_NextInstruction = RSPPIPELINE_DELAY_SLOT_EXIT;
}
else
{
CompilerWarning(stdstr_f("MF error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", m_NextInstruction).c_str());
BreakPoint();
}
}
#elif defined(_M_IX86) && defined(_MSC_VER)
switch (m_OpCode.rd)
{
case 0:
MoveConstToX86reg((uint32_t)m_RSPRegisterHandler, x86_ECX);
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
Push(x86_EAX);
PushImm32("RSPRegister_MEM_ADDR", RSPRegister_MEM_ADDR);
Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::WriteReg), "RSPRegisterHandlerPlugin::WriteReg");
break;
case 1:
MoveConstToX86reg((uint32_t)m_RSPRegisterHandler, x86_ECX);
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
Push(x86_EAX);
PushImm32("RSPRegister_DRAM_ADDR", RSPRegister_DRAM_ADDR);
Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::WriteReg), "RSPRegisterHandlerPlugin::WriteReg");
break;
case 2:
MoveConstToX86reg((uint32_t)m_RSPRegisterHandler, x86_ECX);
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
Push(x86_EAX);
PushImm32("RSPRegister_RD_LEN", RSPRegister_RD_LEN);
Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::WriteReg), "RSPRegisterHandlerPlugin::WriteReg");
break;
case 3:
MoveConstToX86reg((uint32_t)m_RSPRegisterHandler, x86_ECX);
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
Push(x86_EAX);
PushImm32("RSPRegister_WR_LEN", RSPRegister_WR_LEN);
Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::WriteReg), "RSPRegisterHandlerPlugin::WriteReg");
break;
case 4:
MoveConstToX86reg((uint32_t)m_RSPRegisterHandler, x86_ECX);
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
Push(x86_EAX);
PushImm32("RSPRegister_STATUS", RSPRegister_STATUS);
Call_Direct(AddressOf(&RSPRegisterHandlerPlugin::WriteReg), "RSPRegisterHandlerPlugin::WriteReg");
if (m_NextInstruction == RSPPIPELINE_NORMAL)
{
MoveConstToVariable(m_CompilePC + 4, m_System.m_SP_PC_REG, "RSP PC");
Ret();
m_NextInstruction = RSPPIPELINE_FINISH_BLOCK;
}
else if (m_NextInstruction == RSPPIPELINE_DELAY_SLOT)
{
m_NextInstruction = RSPPIPELINE_DELAY_SLOT_EXIT;
}
else
{
CompilerWarning(stdstr_f("MF error\nWeird Delay Slot.\n\nNextInstruction = %X\nEmulation will now stop", m_NextInstruction).c_str());
BreakPoint();
}
break;
case 7:
MoveConstToVariable(0, RSPInfo.SP_SEMAPHORE_REG, "SP_SEMAPHORE_REG");
break;
case 8:
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regToVariable(x86_EAX, RSPInfo.DPC_START_REG, "DPC_START_REG");
MoveX86regToVariable(x86_EAX, RSPInfo.DPC_CURRENT_REG, "DPC_CURRENT_REG");
break;
case 9:
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regToVariable(x86_EAX, RSPInfo.DPC_END_REG, "DPC_END_REG");
if (LogRDP)
{
MoveConstToX86reg((uint32_t)(&RDPLog), x86_ECX);
Call_Direct(AddressOf(&CRDPLog::LogDlist), "CRDPLog::LogDlist");
}
if (RSPInfo.ProcessRdpList != NULL)
{
if (Profiling)
{
PushImm32("Timer_RDP_Running", (uint32_t)Timer_RDP_Running);
Call_Direct((void *)StartTimer, "StartTimer");
AddConstToX86Reg(x86_ESP, 4);
Push(x86_EAX);
}
Call_Direct((void *)RSPInfo.ProcessRdpList, "ProcessRdpList");
if (Profiling)
{
Call_Direct((void *)StartTimer, "StartTimer");
AddConstToX86Reg(x86_ESP, 4);
}
}
break;
case 10:
MoveVariableToX86reg(&m_GPR[m_OpCode.rt].UW, GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regToVariable(x86_EAX, RSPInfo.DPC_CURRENT_REG, "DPC_CURRENT_REG");
break;
default:
Cheat_r4300iOpcode(&RSPOp::Cop0_MT, "RSPOp::Cop0_MT");
break;
}
#else
g_Notify->BreakPoint(__FILE__, __LINE__);
#endif
if (m_OpCode.rd == 2 && !ChangedPC)
{
uint8_t * Jump;
TestConstToVariable(0x1000, RSPInfo.SP_MEM_ADDR_REG, "RSPInfo.SP_MEM_ADDR_REG");
JeLabel8("DontExit", 0);
Jump = RecompPos - 1;
MoveConstToVariable(m_CompilePC + 4, m_System.m_SP_PC_REG, "RSP PC");
Ret();
CPU_Message("DontExit:");
x86_SetBranch8b(Jump, RecompPos);
}
}
// COP2 functions
void CRSPRecompilerOps::Cop2_MF(void)
{
if (m_OpCode.rt == 0)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
return;
}
#ifndef Compile_Cop2
Cheat_r4300iOpcode(RSP_Cop2_MF, "RSP_Cop2_MF");
#else
char Reg[256];
uint8_t element = (uint8_t)(m_OpCode.sa >> 1);
uint8_t element1 = 15 - element;
uint8_t element2 = 15 - ((element + 1) % 16);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (element2 != (element1 - 1))
{
XorX86RegToX86Reg(x86_EAX, x86_EAX);
XorX86RegToX86Reg(x86_EBX, x86_EBX);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rd, element1);
MoveVariableToX86regByte(&m_Vect[m_OpCode.vs].s8(element1), Reg, x86_EAX);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rd, element2);
MoveVariableToX86regByte(&m_Vect[m_OpCode.vs].s8(element2), Reg, x86_EBX);
ShiftLeftSignImmed(x86_EAX, 8);
OrX86RegToX86Reg(x86_EAX, x86_EBX);
Cwde();
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
}
else
{
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rd, element2);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s8(element2), Reg, x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
}
#endif
}
void CRSPRecompilerOps::Cop2_CF(void)
{
#ifndef Compile_Cop2
Cheat_r4300iOpcode(RSP_Cop2_CF, "RSP_Cop2_CF");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
switch ((m_OpCode.rd & 0x03))
{
case 0:
MoveSxVariableToX86regHalf(&m_Flags[0].HW[0], "m_Flags[0].HW[0]", x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
break;
case 1:
MoveSxVariableToX86regHalf(&m_Flags[1].HW[0], "m_Flags[1].HW[0]", x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
break;
case 2:
case 3:
MoveSxVariableToX86regHalf(&m_Flags[2].HW[0], "m_Flags[2].HW[0]", x86_EAX);
MoveX86regToVariable(x86_EAX, &m_GPR[m_OpCode.rt].W, GPR_Name(m_OpCode.rt));
break;
}
#endif
}
void CRSPRecompilerOps::Cop2_MT(void)
{
#ifndef Compile_Cop2
Cheat_r4300iOpcode(RSP_Cop2_MT, "RSP_Cop2_MT");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
char Reg[256];
uint8_t element = (uint8_t)(15 - (m_OpCode.sa >> 1));
if (element == 0)
{
sprintf(Reg, "m_GPR[%i].B[1]", m_OpCode.rt);
MoveVariableToX86regByte(&m_GPR[m_OpCode.rt].B[1], Reg, x86_EAX);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rd, element);
MoveX86regByteToVariable(x86_EAX, &m_Vect[m_OpCode.vs].s8(element), Reg);
}
else
{
sprintf(Reg, "m_GPR[%i].B[0]", m_OpCode.rt);
MoveVariableToX86regHalf(&m_GPR[m_OpCode.rt].B[0], Reg, x86_EAX);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rd, element - 1);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vs].s8(element - 1), Reg);
}
#endif
}
void CRSPRecompilerOps::Cop2_CT(void)
{
#ifndef Compile_Cop2
Cheat_r4300iOpcode(RSP_Cop2_CT, "RSP_Cop2_CT");
#else
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.rt == 0)
{
switch ((m_OpCode.rd & 0x03))
{
case 0:
MoveConstHalfToVariable(0, &m_Flags[0].HW[0], "m_Flags[0].HW[0]");
break;
case 1:
MoveConstHalfToVariable(0, &m_Flags[1].HW[0], "m_Flags[1].HW[0]");
break;
case 2:
case 3:
MoveConstByteToVariable(0, &m_Flags[2].B[0], "m_Flags[2].B[0]");
break;
}
}
else
{
switch ((m_OpCode.rd & 0x03))
{
case 0:
MoveVariableToX86regHalf(&m_GPR[m_OpCode.rt].HW[0], GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regHalfToVariable(x86_EAX, &m_Flags[0].HW[0], "m_Flags[0].HW[0]");
break;
case 1:
MoveVariableToX86regHalf(&m_GPR[m_OpCode.rt].HW[0], GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regHalfToVariable(x86_EAX, &m_Flags[1].HW[0], "m_Flags[1].HW[0]");
break;
case 2:
case 3:
MoveVariableToX86regByte(&m_GPR[m_OpCode.rt].B[0], GPR_Name(m_OpCode.rt), x86_EAX);
MoveX86regByteToVariable(x86_EAX, &m_Flags[2].B[0], "m_Flags[2].B[0]");
break;
}
}
#endif
}
void CRSPRecompilerOps::COP2_VECTOR(void)
{
(this->*RSP_Recomp_Vector[m_OpCode.funct])();
}
// Vector functions
UDWORD MMX_Scratch;
bool CRSPRecompilerOps::IsNextInstructionMmx(uint32_t PC)
{
RSPOpcode RspOp;
if (!IsMmxEnabled)
{
return false;
}
PC += 4;
if (PC >= 0x1000) return false;
RspOp.Value = *(uint32_t *)(RSPInfo.IMEM + (PC & 0xFFC));
if (RspOp.op != RSP_CP2)
{
return false;
}
if ((RspOp.rs & 0x10) != 0)
{
switch (RspOp.funct)
{
case RSP_VECTOR_VMULF:
case RSP_VECTOR_VMUDL: // Warning: Not all handled?
case RSP_VECTOR_VMUDM:
case RSP_VECTOR_VMUDN:
case RSP_VECTOR_VMUDH:
if (true == WriteToAccum(7, PC))
{
return false;
}
else if ((RspOp.rs & 0x0f) >= 2 && (RspOp.rs & 0x0f) <= 7 && IsMmx2Enabled == false)
{
return false;
}
else
return true;
case RSP_VECTOR_VABS:
case RSP_VECTOR_VAND:
case RSP_VECTOR_VOR:
case RSP_VECTOR_VXOR:
case RSP_VECTOR_VNAND:
case RSP_VECTOR_VNOR:
case RSP_VECTOR_VNXOR:
if (true == WriteToAccum(Low16BitAccum, PC))
{
return false;
}
else if ((RspOp.rs & 0x0f) >= 2 && (RspOp.rs & 0x0f) <= 7 && IsMmx2Enabled == false)
{
return false;
}
else
return true;
case RSP_VECTOR_VADD:
case RSP_VECTOR_VSUB:
// Requires no accumulator write, and no flags!
if (WriteToAccum(Low16BitAccum, PC) == true)
{
return false;
}
else if (UseRspFlags(PC) == true)
{
return false;
}
else if ((RspOp.rs & 0x0f) >= 2 && (RspOp.rs & 0x0f) <= 7 && IsMmx2Enabled == false)
{
return false;
}
else
return true;
default:
return false;
}
}
else
{
return false;
}
}
bool CRSPRecompilerOps::UseRspFlags(int PC)
{
RSPOpcode RspOp;
int Instruction_State = m_NextInstruction;
if (Compiler.bFlags == false) return true;
if (Instruction_State == RSPPIPELINE_DELAY_SLOT)
{
return true;
}
do
{
PC -= 4;
if (PC < 0)
{
return true;
}
RspOp.Value = *(uint32_t *)(RSPInfo.IMEM + (PC & 0xFFC));
switch (RspOp.op)
{
case RSP_REGIMM:
switch (RspOp.rt)
{
case RSP_REGIMM_BLTZ:
case RSP_REGIMM_BGEZ:
case RSP_REGIMM_BLTZAL:
case RSP_REGIMM_BGEZAL:
Instruction_State = RSPPIPELINE_DO_DELAY_SLOT;
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in UseRspFlags\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
break;
case RSP_SPECIAL:
switch (RspOp.funct)
{
case RSP_SPECIAL_SLL:
case RSP_SPECIAL_SRL:
case RSP_SPECIAL_SRA:
case RSP_SPECIAL_SLLV:
case RSP_SPECIAL_SRLV:
case RSP_SPECIAL_SRAV:
case RSP_SPECIAL_ADD:
case RSP_SPECIAL_ADDU:
case RSP_SPECIAL_SUB:
case RSP_SPECIAL_SUBU:
case RSP_SPECIAL_AND:
case RSP_SPECIAL_OR:
case RSP_SPECIAL_XOR:
case RSP_SPECIAL_NOR:
case RSP_SPECIAL_SLT:
case RSP_SPECIAL_SLTU:
case RSP_SPECIAL_BREAK:
break;
case RSP_SPECIAL_JR:
Instruction_State = RSPPIPELINE_DO_DELAY_SLOT;
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in WriteToVectorDest\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
break;
case RSP_J:
case RSP_JAL:
case RSP_BEQ:
case RSP_BNE:
case RSP_BLEZ:
case RSP_BGTZ:
Instruction_State = RSPPIPELINE_DO_DELAY_SLOT;
break;
case RSP_ADDI:
case RSP_ADDIU:
case RSP_SLTI:
case RSP_SLTIU:
case RSP_ANDI:
case RSP_ORI:
case RSP_XORI:
case RSP_LUI:
case RSP_CP0:
break;
case RSP_CP2:
if ((RspOp.rs & 0x10) != 0)
{
switch (RspOp.funct)
{
case RSP_VECTOR_VMULF:
case RSP_VECTOR_VMULU:
case RSP_VECTOR_VMUDL:
case RSP_VECTOR_VMUDM:
case RSP_VECTOR_VMUDN:
case RSP_VECTOR_VMUDH:
break;
case RSP_VECTOR_VMACF:
case RSP_VECTOR_VMACU:
case RSP_VECTOR_VMADL:
case RSP_VECTOR_VMADM:
case RSP_VECTOR_VMADN:
case RSP_VECTOR_VMADH:
break;
case RSP_VECTOR_VSUB:
case RSP_VECTOR_VADD:
return false;
case RSP_VECTOR_VSUBC:
case RSP_VECTOR_VADDC:
return true;
case RSP_VECTOR_VABS:
case RSP_VECTOR_VAND:
case RSP_VECTOR_VOR:
case RSP_VECTOR_VXOR:
case RSP_VECTOR_VNAND:
case RSP_VECTOR_VNOR:
case RSP_VECTOR_VNXOR:
case RSP_VECTOR_VRCPH:
case RSP_VECTOR_VRSQL:
case RSP_VECTOR_VRSQH:
case RSP_VECTOR_VRCPL:
case RSP_VECTOR_VRCP:
break;
case RSP_VECTOR_VCR:
case RSP_VECTOR_VCH:
case RSP_VECTOR_VCL:
case RSP_VECTOR_VLT:
case RSP_VECTOR_VEQ:
case RSP_VECTOR_VGE:
case RSP_VECTOR_VNE:
case RSP_VECTOR_VMRG:
return true;
case RSP_VECTOR_VSAW:
case RSP_VECTOR_VMOV:
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in UseRspFlags\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
}
else
{
switch (RspOp.rs)
{
case RSP_COP2_CT:
return true;
case RSP_COP2_CF:
case RSP_COP2_MT:
case RSP_COP2_MF:
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in UseRspFlags\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
}
break;
case RSP_LB:
case RSP_LH:
case RSP_LW:
case RSP_LBU:
case RSP_LHU:
case RSP_SB:
case RSP_SH:
case RSP_SW:
break;
case RSP_LC2:
switch (RspOp.rd)
{
case RSP_LSC2_BV:
case RSP_LSC2_SV:
case RSP_LSC2_DV:
case RSP_LSC2_RV:
case RSP_LSC2_QV:
case RSP_LSC2_LV:
case RSP_LSC2_UV:
case RSP_LSC2_PV:
case RSP_LSC2_TV:
case RSP_LSC2_HV:
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in UseRspFlags\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
break;
case RSP_SC2:
switch (RspOp.rd)
{
case RSP_LSC2_BV:
case RSP_LSC2_SV:
case RSP_LSC2_LV:
case RSP_LSC2_DV:
case RSP_LSC2_QV:
case RSP_LSC2_RV:
case RSP_LSC2_PV:
case RSP_LSC2_UV:
case RSP_LSC2_HV:
case RSP_LSC2_FV:
case RSP_LSC2_WV:
case RSP_LSC2_TV:
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in UseRspFlags\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in UseRspFlags\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
switch (Instruction_State)
{
case RSPPIPELINE_NORMAL: break;
case RSPPIPELINE_DO_DELAY_SLOT:
Instruction_State = RSPPIPELINE_DELAY_SLOT;
break;
case RSPPIPELINE_DELAY_SLOT:
Instruction_State = RSPPIPELINE_FINISH_BLOCK;
break;
}
} while (Instruction_State != RSPPIPELINE_FINISH_BLOCK);
return true;
}
bool CRSPRecompilerOps::WriteToAccum(int Location, int PC)
{
uint32_t value = WriteToAccum2(Location, PC, false);
if (value == HIT_BRANCH)
{
return true; /* ??? */
}
else
return value != 0;
}
uint32_t CRSPRecompilerOps::WriteToAccum2(int Location, int PC, bool RecursiveCall)
{
RSPOpcode RspOp;
uint32_t BranchTarget = 0;
signed int BranchImmed = 0;
int Instruction_State = m_NextInstruction;
if (Compiler.bAccum == false) return true;
if (Instruction_State == RSPPIPELINE_DELAY_SLOT)
{
return true;
}
do
{
PC += 4;
if (PC >= 0x1000)
{
return true;
}
RspOp.Value = *(uint32_t *)(RSPInfo.IMEM + (PC & 0xFFC));
switch (RspOp.op)
{
case RSP_REGIMM:
switch (RspOp.rt)
{
case RSP_REGIMM_BLTZ:
case RSP_REGIMM_BGEZ:
case RSP_REGIMM_BLTZAL:
case RSP_REGIMM_BGEZAL:
Instruction_State = RSPPIPELINE_DO_DELAY_SLOT;
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in WriteToAccum\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
break;
case RSP_SPECIAL:
switch (RspOp.funct)
{
case RSP_SPECIAL_SLL:
case RSP_SPECIAL_SRL:
case RSP_SPECIAL_SRA:
case RSP_SPECIAL_SLLV:
case RSP_SPECIAL_SRLV:
case RSP_SPECIAL_SRAV:
case RSP_SPECIAL_ADD:
case RSP_SPECIAL_ADDU:
case RSP_SPECIAL_SUB:
case RSP_SPECIAL_SUBU:
case RSP_SPECIAL_AND:
case RSP_SPECIAL_OR:
case RSP_SPECIAL_XOR:
case RSP_SPECIAL_NOR:
case RSP_SPECIAL_SLT:
case RSP_SPECIAL_SLTU:
case RSP_SPECIAL_BREAK:
break;
case RSP_SPECIAL_JALR:
return true;
case RSP_SPECIAL_JR:
Instruction_State = RSPPIPELINE_DO_DELAY_SLOT;
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in WriteToAccum\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
break;
case RSP_J:
// There is no way a loopback is going to use accumulator
if (Compiler.bAudioUcode && (((int)(RspOp.target << 2) & 0xFFC) < PC))
{
return false;
}
// Rarely occurs, so we let them have their way
else
{
Instruction_State = RSPPIPELINE_DO_DELAY_SLOT;
break;
}
case RSP_JAL:
// There is no way calling a subroutine is going to use an accumulator
// or come back and continue an existing calculation
if (Compiler.bAudioUcode)
{
break;
}
else
{
Instruction_State = RSPPIPELINE_DO_DELAY_SLOT;
break;
}
case RSP_BEQ:
case RSP_BNE:
case RSP_BLEZ:
case RSP_BGTZ:
BranchImmed = (short)RspOp.offset;
if (Compiler.bAudioUcode)
{
RSPOpcode NextOp;
// Ignore backward branches and pretend it's a NOP
if (BranchImmed <= 0)
{
break;
}
// If the opcode (which is 8 bytes before the destination and also a J backward) then ignore this
BranchImmed = (PC + ((short)RspOp.offset << 2) + 4) & 0xFFC;
NextOp.Value = *(uint32_t *)(RSPInfo.IMEM + ((BranchImmed - 8) & 0xFFC));
if (RspOp.op == RSP_J && (int)(RspOp.target << 2) < PC)
{
break;
}
}
BranchTarget = (PC + ((short)RspOp.offset << 2) + 4) & 0xFFC;
Instruction_State = RSPPIPELINE_DO_DELAY_SLOT;
break;
case RSP_ADDI:
case RSP_ADDIU:
case RSP_SLTI:
case RSP_SLTIU:
case RSP_ANDI:
case RSP_ORI:
case RSP_XORI:
case RSP_LUI:
case RSP_CP0:
break;
case RSP_CP2:
if ((RspOp.rs & 0x10) != 0)
{
switch (RspOp.funct)
{
case RSP_VECTOR_VMULF:
case RSP_VECTOR_VMULU:
case RSP_VECTOR_VMUDL:
case RSP_VECTOR_VMUDM:
case RSP_VECTOR_VMUDN:
case RSP_VECTOR_VMUDH:
return false;
case RSP_VECTOR_VMACF:
case RSP_VECTOR_VMACU:
case RSP_VECTOR_VMADL:
case RSP_VECTOR_VMADM:
case RSP_VECTOR_VMADN:
return true;
case RSP_VECTOR_VMADH:
if (Location == Low16BitAccum)
{
break;
}
return true;
case RSP_VECTOR_VABS:
case RSP_VECTOR_VADD:
case RSP_VECTOR_VADDC:
case RSP_VECTOR_VSUB:
case RSP_VECTOR_VSUBC:
case RSP_VECTOR_VAND:
case RSP_VECTOR_VNAND:
case RSP_VECTOR_VOR:
case RSP_VECTOR_VNOR:
case RSP_VECTOR_VXOR:
case RSP_VECTOR_VNXOR:
// Since these modify the accumulator lower-16 bits we can
// safely assume these 'reset' the accumulator no matter what
// return false;
case RSP_VECTOR_VCR:
case RSP_VECTOR_VCH:
case RSP_VECTOR_VCL:
case RSP_VECTOR_VRCP:
case RSP_VECTOR_VRCPL:
case RSP_VECTOR_VRCPH:
case RSP_VECTOR_VRSQL:
case RSP_VECTOR_VRSQH:
case RSP_VECTOR_VLT:
case RSP_VECTOR_VEQ:
case RSP_VECTOR_VGE:
case RSP_VECTOR_VNE:
case RSP_VECTOR_VMRG:
case RSP_VECTOR_VMOV:
if (Location == Low16BitAccum)
{
return false;
}
break;
case RSP_VECTOR_VSAW:
return true;
default:
CompilerWarning(stdstr_f("Unknown opcode in WriteToAccum\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
}
else
{
switch (RspOp.rs)
{
case RSP_COP2_CF:
case RSP_COP2_CT:
case RSP_COP2_MT:
case RSP_COP2_MF:
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in WriteToAccum\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
}
break;
case RSP_LB:
case RSP_LH:
case RSP_LW:
case RSP_LBU:
case RSP_LHU:
case RSP_SB:
case RSP_SH:
case RSP_SW:
break;
case RSP_LC2:
switch (RspOp.rd)
{
case RSP_LSC2_BV:
case RSP_LSC2_SV:
case RSP_LSC2_DV:
case RSP_LSC2_RV:
case RSP_LSC2_QV:
case RSP_LSC2_LV:
case RSP_LSC2_UV:
case RSP_LSC2_PV:
case RSP_LSC2_TV:
case RSP_LSC2_HV:
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in WriteToAccum\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
break;
case RSP_SC2:
switch (RspOp.rd)
{
case RSP_LSC2_BV:
case RSP_LSC2_SV:
case RSP_LSC2_LV:
case RSP_LSC2_DV:
case RSP_LSC2_QV:
case RSP_LSC2_RV:
case RSP_LSC2_PV:
case RSP_LSC2_UV:
case RSP_LSC2_HV:
case RSP_LSC2_FV:
case RSP_LSC2_WV:
case RSP_LSC2_TV:
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in WriteToAccum\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in WriteToAccum\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
switch (Instruction_State)
{
case RSPPIPELINE_NORMAL: break;
case RSPPIPELINE_DO_DELAY_SLOT:
Instruction_State = RSPPIPELINE_DELAY_SLOT;
break;
case RSPPIPELINE_DELAY_SLOT:
Instruction_State = RSPPIPELINE_FINISH_BLOCK;
break;
}
} while (Instruction_State != RSPPIPELINE_FINISH_BLOCK);
/*
This is a tricky situation because most of the
microcode does loops, so looping back and checking
can prove effective, but it's still a branch...
*/
if (BranchTarget != 0 && RecursiveCall == false)
{
uint32_t BranchTaken, BranchFall;
// Analysis of branch taken
BranchTaken = WriteToAccum2(Location, BranchTarget - 4, true);
// Analysis of branch as NOP
BranchFall = WriteToAccum2(Location, PC, true);
if (BranchImmed < 0)
{
if (BranchTaken != false)
{
// Took this back branch and found a place
// that needs this vector as a source
return true;
}
else if (BranchFall == HIT_BRANCH)
{
return true;
}
// Otherwise this is completely valid
return BranchFall;
}
else
{
if (BranchFall != false)
{
// Took this forward branch and found a place
// that needs this vector as a source
return true;
}
else if (BranchTaken == HIT_BRANCH)
{
return true;
}
// Otherwise this is completely valid
return BranchTaken;
}
}
return true;
}
bool CRSPRecompilerOps::WriteToVectorDest(uint32_t DestReg, int PC)
{
uint32_t value;
value = WriteToVectorDest2(DestReg, PC, false);
if (value == HIT_BRANCH)
{
return true; // TODO: ???
}
else
{
return value != 0;
}
}
bool CRSPRecompilerOps::WriteToVectorDest2(uint32_t DestReg, int PC, bool RecursiveCall)
{
RSPOpcode RspOp;
uint32_t BranchTarget = 0;
signed int BranchImmed = 0;
int Instruction_State = m_NextInstruction;
if (Compiler.bDest == false) return true;
if (Instruction_State == RSPPIPELINE_DELAY_SLOT)
{
return true;
}
do
{
PC += 4;
if (PC >= 0x1000)
{
return true;
}
RspOp.Value = *(uint32_t *)(RSPInfo.IMEM + (PC & 0xFFC));
switch (RspOp.op)
{
case RSP_REGIMM:
switch (RspOp.rt)
{
case RSP_REGIMM_BLTZ:
case RSP_REGIMM_BGEZ:
case RSP_REGIMM_BLTZAL:
case RSP_REGIMM_BGEZAL:
Instruction_State = RSPPIPELINE_DO_DELAY_SLOT;
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in WriteToVectorDest\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
break;
case RSP_SPECIAL:
switch (RspOp.funct)
{
case RSP_SPECIAL_SLL:
case RSP_SPECIAL_SRL:
case RSP_SPECIAL_SRA:
case RSP_SPECIAL_SLLV:
case RSP_SPECIAL_SRLV:
case RSP_SPECIAL_SRAV:
case RSP_SPECIAL_ADD:
case RSP_SPECIAL_ADDU:
case RSP_SPECIAL_SUB:
case RSP_SPECIAL_SUBU:
case RSP_SPECIAL_AND:
case RSP_SPECIAL_OR:
case RSP_SPECIAL_XOR:
case RSP_SPECIAL_NOR:
case RSP_SPECIAL_SLT:
case RSP_SPECIAL_SLTU:
case RSP_SPECIAL_BREAK:
break;
case RSP_SPECIAL_JALR:
return true;
case RSP_SPECIAL_JR:
Instruction_State = RSPPIPELINE_DO_DELAY_SLOT;
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in WriteToVectorDest\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
break;
case RSP_J:
// There is no way a loopback is going to use accumulator
if (Compiler.bAudioUcode && (int)(RspOp.target << 2) < PC)
{
return false;
}
// Rarely occurs, so we let them have their way
return true;
case RSP_JAL:
// Assume register is being passed to function or used after the function call
return true;
case RSP_BEQ:
case RSP_BNE:
case RSP_BLEZ:
case RSP_BGTZ:
BranchImmed = (short)RspOp.offset;
if (Compiler.bAudioUcode)
{
RSPOpcode NextOp;
// Ignore backward branches and pretend it's a NOP
if (BranchImmed <= 0)
{
break;
}
// If the opcode (which is 8 bytes before the destination and also a J backward) then ignore this
BranchImmed = (PC + ((short)RspOp.offset << 2) + 4) & 0xFFC;
RSP_LW_IMEM(BranchImmed - 8, &NextOp.Value);
if (RspOp.op == RSP_J && (int)(RspOp.target << 2) < PC)
{
break;
}
}
BranchTarget = (PC + ((short)RspOp.offset << 2) + 4) & 0xFFC;
Instruction_State = RSPPIPELINE_DO_DELAY_SLOT;
break;
case RSP_ADDI:
case RSP_ADDIU:
case RSP_SLTI:
case RSP_SLTIU:
case RSP_ANDI:
case RSP_ORI:
case RSP_XORI:
case RSP_LUI:
case RSP_CP0:
break;
case RSP_CP2:
if ((RspOp.rs & 0x10) != 0)
{
switch (RspOp.funct)
{
case RSP_VECTOR_VMULF:
case RSP_VECTOR_VMULU:
case RSP_VECTOR_VMUDL:
case RSP_VECTOR_VMUDM:
case RSP_VECTOR_VMUDN:
case RSP_VECTOR_VMUDH:
case RSP_VECTOR_VMACF:
case RSP_VECTOR_VMACU:
case RSP_VECTOR_VMADL:
case RSP_VECTOR_VMADM:
case RSP_VECTOR_VMADN:
case RSP_VECTOR_VMADH:
case RSP_VECTOR_VADD:
case RSP_VECTOR_VADDC:
case RSP_VECTOR_VSUB:
case RSP_VECTOR_VSUBC:
case RSP_VECTOR_VAND:
case RSP_VECTOR_VNAND:
case RSP_VECTOR_VOR:
case RSP_VECTOR_VNOR:
case RSP_VECTOR_VXOR:
case RSP_VECTOR_VNXOR:
case RSP_VECTOR_VABS:
if (DestReg == RspOp.rd)
{
return true;
}
if (DestReg == RspOp.rt)
{
return true;
}
if (DestReg == RspOp.sa)
{
return false;
}
break;
case RSP_VECTOR_VMOV:
case RSP_VECTOR_VRCP:
case RSP_VECTOR_VRCPL:
case RSP_VECTOR_VRCPH:
case RSP_VECTOR_VRSQL:
case RSP_VECTOR_VRSQH:
if (DestReg == RspOp.rt)
{
return true;
}
break;
case RSP_VECTOR_VCH:
case RSP_VECTOR_VCL:
case RSP_VECTOR_VCR:
case RSP_VECTOR_VMRG:
case RSP_VECTOR_VLT:
case RSP_VECTOR_VEQ:
case RSP_VECTOR_VGE:
case RSP_VECTOR_VNE:
if (DestReg == RspOp.rd)
{
return true;
}
if (DestReg == RspOp.rt)
{
return true;
}
if (DestReg == RspOp.sa)
{
return false;
}
break;
case RSP_VECTOR_VSAW:
if (DestReg == RspOp.sa)
{
return false;
}
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in WriteToVectorDest\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
}
else
{
switch (RspOp.rs)
{
case RSP_COP2_CF:
case RSP_COP2_CT:
break;
case RSP_COP2_MT:
/* if (DestReg == RspOp.rd) { return false; } */
break;
case RSP_COP2_MF:
if (DestReg == RspOp.rd)
{
return true;
}
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in WriteToVectorDest\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
}
break;
case RSP_LB:
case RSP_LH:
case RSP_LW:
case RSP_LBU:
case RSP_LHU:
case RSP_SB:
case RSP_SH:
case RSP_SW:
break;
case RSP_LC2:
switch (RspOp.rd)
{
case RSP_LSC2_SV:
case RSP_LSC2_DV:
case RSP_LSC2_RV:
break;
case RSP_LSC2_QV:
case RSP_LSC2_BV:
case RSP_LSC2_LV:
case RSP_LSC2_TV:
break;
case RSP_LSC2_PV:
case RSP_LSC2_UV:
case RSP_LSC2_HV:
if (DestReg == RspOp.rt)
{
return false;
}
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in WriteToVectorDest\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
break;
case RSP_SC2:
switch (RspOp.rd)
{
case RSP_LSC2_BV:
case RSP_LSC2_SV:
case RSP_LSC2_LV:
case RSP_LSC2_DV:
case RSP_LSC2_QV:
case RSP_LSC2_RV:
case RSP_LSC2_PV:
case RSP_LSC2_UV:
case RSP_LSC2_HV:
case RSP_LSC2_FV:
case RSP_LSC2_WV:
if (DestReg == RspOp.rt)
{
return true;
}
break;
case RSP_LSC2_TV:
if (8 <= 32 - RspOp.rt)
{
if (DestReg >= RspOp.rt && DestReg <= RspOp.rt + 7)
{
return true;
}
}
else
{
int length = 32 - RspOp.rt, count, del = RspOp.del >> 1, vect = RspOp.rt;
for (count = 0; count < length; count++)
{
if (DestReg == (uint32_t)(vect + del))
{
return true;
}
del = (del + 1) & 7;
}
}
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in WriteToVectorDest\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
break;
default:
CompilerWarning(stdstr_f("Unknown opcode in WriteToVectorDest\n%s", RSPInstruction(PC, RspOp.Value).NameAndParam().c_str()).c_str());
return true;
}
switch (Instruction_State)
{
case RSPPIPELINE_NORMAL: break;
case RSPPIPELINE_DO_DELAY_SLOT:
Instruction_State = RSPPIPELINE_DELAY_SLOT;
break;
case RSPPIPELINE_DELAY_SLOT:
Instruction_State = RSPPIPELINE_FINISH_BLOCK;
break;
}
} while (Instruction_State != RSPPIPELINE_FINISH_BLOCK);
/*
This is a tricky situation because most of the
microcode does loops, so looping back and checking
can prove effective, but it's still a branch...
*/
if (BranchTarget != 0 && RecursiveCall == false)
{
uint32_t BranchTaken, BranchFall;
// Analysis of branch taken
BranchTaken = WriteToVectorDest2(DestReg, BranchTarget - 4, true);
// Analysis of branch as NOP
BranchFall = WriteToVectorDest2(DestReg, PC, true);
if (BranchImmed < 0)
{
if (BranchTaken != false)
{
/*
* Took this back branch and found a place
* that needs this vector as a source
*/
return true;
}
else if (BranchFall == HIT_BRANCH)
{
return true;
}
// Otherwise this is completely valid
return BranchFall != 0;
}
else
{
if (BranchFall != false)
{
/*
* Took this forward branch and found a place
* that needs this vector as a source
*/
return true;
}
else if (BranchTaken == HIT_BRANCH)
{
return true;
}
// Otherwise this is completely valid
return BranchTaken != 0;
}
}
return true;
}
void CRSPRecompilerOps::RSP_Element2Mmx(int MmxReg)
{
char Reg[256];
uint32_t Rs = m_OpCode.rs & 0x0f;
uint8_t el;
switch (Rs)
{
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
CompilerWarning("Unimplemented RSP_Element2Mmx");
break;
default:
/*
* Noticed the exclusive-or of seven to take into account
* the pseudo-swapping we have in the vector registers
*/
el = (m_OpCode.rs & 0x07) ^ 7;
if (!IsMmx2Enabled)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, el);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(el), Reg, x86_ECX);
MoveX86regHalfToVariable(x86_ECX, &MMX_Scratch.HW[0], "MMX_Scratch.HW[0]");
MoveX86regHalfToVariable(x86_ECX, &MMX_Scratch.HW[1], "MMX_Scratch.HW[1]");
MoveX86regHalfToVariable(x86_ECX, &MMX_Scratch.HW[2], "MMX_Scratch.HW[2]");
MoveX86regHalfToVariable(x86_ECX, &MMX_Scratch.HW[3], "MMX_Scratch.HW[3]");
MmxMoveQwordVariableToReg(MmxReg, &MMX_Scratch.HW[0], "MMX_Scratch.HW[0]");
}
else
{
uint8_t Qword = (el >> 2) & 0x1;
el &= 0x3;
sprintf(Reg, "m_Vect[%i].DW[%i]", m_OpCode.rt, Qword);
MmxShuffleMemoryToReg(MmxReg, &m_Vect[m_OpCode.vt].u64(Qword), Reg, _MMX_SHUFFLE(el, el, el, el));
}
break;
}
}
void CRSPRecompilerOps::RSP_MultiElement2Mmx(int MmxReg1, int MmxReg2)
{
char Reg[256];
uint32_t Rs = m_OpCode.rs & 0x0f;
/*
* OK, this is tricky, hopefully this clears it up:
*
* $vd[0] = $vd[0] + $vt[2]
* because of swapped registers becomes:
* $vd[7] = $vd[7] + $vt[5]
*
* We must perform this swap correctly, this involves the 3-bit
* exclusive or, 2-bits of which are done within a uint32_t boundary,
* the last bit, is ignored because we are loading the source linearly,
* so the exclusive or has transparently happened on that side.
*/
switch (Rs)
{
case 0:
case 1:
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rt);
MmxMoveQwordVariableToReg(MmxReg1, &m_Vect[m_OpCode.vt].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rt);
MmxMoveQwordVariableToReg(MmxReg2, &m_Vect[m_OpCode.vt].u16(4), Reg);
break;
case 2:
/* [0q] | 0 | 0 | 2 | 2 | 4 | 4 | 6 | 6 | */
sprintf(Reg, "m_Vect[%i].DW[0]", m_OpCode.rt);
MmxShuffleMemoryToReg(MmxReg1, &m_Vect[m_OpCode.vt].u64(0), Reg, 0xF5);
sprintf(Reg, "m_Vect[%i].DW[1]", m_OpCode.rt);
MmxShuffleMemoryToReg(MmxReg2, &m_Vect[m_OpCode.vt].u64(1), Reg, 0xF5);
break;
case 3:
/* [1q] | 1 | 1 | 3 | 3 | 5 | 5 | 7 | 7 | */
sprintf(Reg, "m_Vect[%i].DW[0]", m_OpCode.rt);
MmxShuffleMemoryToReg(MmxReg1, &m_Vect[m_OpCode.vt].u64(0), Reg, 0xA0);
//MmxShuffleMemoryToReg(MmxReg1, &m_Vect[m_OpCode.vt].s64(0), Reg, 0x0A);
sprintf(Reg, "m_Vect[%i].DW[1]", m_OpCode.rt);
MmxShuffleMemoryToReg(MmxReg2, &m_Vect[m_OpCode.vt].u64(1), Reg, 0xA0);
//MmxShuffleMemoryToReg(MmxReg2, &m_Vect[m_OpCode.vt].s64(1), Reg, 0x0A);
break;
case 4:
/* [0h] | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | */
sprintf(Reg, "m_Vect[%i].DW[0]", m_OpCode.rt);
MmxShuffleMemoryToReg(MmxReg1, &m_Vect[m_OpCode.vt].u64(0), Reg, 0xFF);
sprintf(Reg, "m_Vect[%i].DW[1]", m_OpCode.rt);
MmxShuffleMemoryToReg(MmxReg2, &m_Vect[m_OpCode.vt].u64(1), Reg, 0xFF);
break;
case 5:
/* [1h] | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | */
sprintf(Reg, "m_Vect[%i].DW[0]", m_OpCode.rt);
MmxShuffleMemoryToReg(MmxReg1, &m_Vect[m_OpCode.vt].u64(0), Reg, 0xAA);
sprintf(Reg, "m_Vect[%i].DW[1]", m_OpCode.rt);
MmxShuffleMemoryToReg(MmxReg2, &m_Vect[m_OpCode.vt].u64(1), Reg, 0xAA);
break;
case 6:
/* [2h] | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | */
sprintf(Reg, "m_Vect[%i].DW[0]", m_OpCode.rt);
MmxShuffleMemoryToReg(MmxReg1, &m_Vect[m_OpCode.vt].u64(0), Reg, 0x55);
sprintf(Reg, "m_Vect[%i].DW[1]", m_OpCode.rt);
MmxShuffleMemoryToReg(MmxReg2, &m_Vect[m_OpCode.vt].u64(1), Reg, 0x55);
break;
case 7:
/* [3h] | 3 | 3 | 3 | 3 | 7 | 7 | 7 | 7 | */
sprintf(Reg, "m_Vect[%i].DW[0]", m_OpCode.rt);
MmxShuffleMemoryToReg(MmxReg1, &m_Vect[m_OpCode.vt].u64(0), Reg, 0x00);
sprintf(Reg, "m_Vect[%i].DW[1]", m_OpCode.rt);
MmxShuffleMemoryToReg(MmxReg2, &m_Vect[m_OpCode.vt].u64(1), Reg, 0x00);
break;
default:
CompilerWarning("Unimplemented RSP_MultiElement2Mmx [?]");
break;
}
}
bool CRSPRecompilerOps::Compile_Vector_VMULF_MMX(void)
{
char Reg[256];
// Do our MMX checks here
if (!IsMmxEnabled)
return false;
if ((m_OpCode.rs & 0x0f) >= 2 && !(m_OpCode.rs & 8) && IsMmx2Enabled == false)
return false;
// NOTE: Problem here is the lack of +/- 0x8000 rounding
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM0, &m_Vect[m_OpCode.vs].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM1, &m_Vect[m_OpCode.vs].u16(4), Reg);
if ((m_OpCode.rs & 0xF) < 2)
{
if (m_OpCode.rd == m_OpCode.rt)
{
MmxPmulhwRegToReg(x86_MM0, x86_MM0);
MmxPmulhwRegToReg(x86_MM1, x86_MM1);
}
else
{
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rt);
MmxPmulhwRegToVariable(x86_MM0, &m_Vect[m_OpCode.vt].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rt);
MmxPmulhwRegToVariable(x86_MM1, &m_Vect[m_OpCode.vt].u16(4), Reg);
}
}
else if (m_OpCode.rs & 8)
{
RSP_Element2Mmx(x86_MM2);
MmxPmulhwRegToReg(x86_MM0, x86_MM2);
MmxPmulhwRegToReg(x86_MM1, x86_MM2);
}
else
{
RSP_MultiElement2Mmx(x86_MM2, x86_MM3);
MmxPmulhwRegToReg(x86_MM0, x86_MM2);
MmxPmulhwRegToReg(x86_MM1, x86_MM3);
}
MmxPsllwImmed(x86_MM0, 1);
MmxPsllwImmed(x86_MM1, 1);
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM0, &m_Vect[m_OpCode.vd].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM1, &m_Vect[m_OpCode.vd].u16(4), Reg);
if (!IsNextInstructionMmx(m_CompilePC))
MmxEmptyMultimediaState();
return true;
}
void CRSPRecompilerOps::Vector_VMULF(void)
{
#ifndef CompileVmulf
Cheat_r4300iOpcode(&RSPOp::Vector_VMULF, "&RSPOp::Vector_VMULF");
#else
char Reg[256];
uint8_t count, el, del;
bool bOptimize = (m_OpCode.rs & 8) ? true : false;
bool bWriteToAccum = WriteToAccum(EntireAccum, m_CompilePC);
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (!bWriteToAccum)
{
if (true == Compile_Vector_VMULF_MMX())
return;
}
if (bOptimize)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
if (bWriteToDest)
{
MoveConstToX86reg(0x7fff0000, x86_ESI);
}
if (bWriteToAccum)
{
XorX86RegToX86Reg(x86_EDI, x86_EDI);
}
for (count = 0; count < 8; count++)
{
CPU_Message(" Iteration: %i", count);
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);
if (m_OpCode.rt == m_OpCode.rd && !bOptimize)
{
imulX86reg(x86_EAX);
}
else
{
if (!bOptimize)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
imulX86reg(x86_EBX);
}
ShiftLeftSignImmed(x86_EAX, 1);
AddConstToX86Reg(x86_EAX, 0x8000);
if (bWriteToAccum)
{
MoveX86regToVariable(x86_EAX, &m_ACCUM[el].HW[1], "m_ACCUM[el].HW[1]");
// Calculate sign extension into EDX
MoveX86RegToX86Reg(x86_EAX, x86_EDX);
ShiftRightSignImmed(x86_EDX, 31);
}
CompConstToX86reg(x86_EAX, 0x80008000);
if (bWriteToAccum)
{
CondMoveEqual(x86_EDX, x86_EDI);
MoveX86regHalfToVariable(x86_EDX, &m_ACCUM[el].HW[3], "m_ACCUM[el].HW[3]");
}
if (bWriteToDest)
{
CondMoveEqual(x86_EAX, x86_ESI);
ShiftRightUnsignImmed(x86_EAX, 16);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), "m_Vect[m_OpCode.vd].s16(el)");
}
}
#endif
}
void CRSPRecompilerOps::Vector_VMULU(void)
{
Cheat_r4300iOpcode(&RSPOp::Vector_VMULU, "RSPOp::Vector_VMULU");
}
void CRSPRecompilerOps::Vector_VRNDN(void)
{
Cheat_r4300iOpcode(&RSPOp::Vector_VRNDN, "RSPOp::Vector_VRNDN");
}
void CRSPRecompilerOps::Vector_VRNDP(void)
{
Cheat_r4300iOpcode(&RSPOp::Vector_VRNDP, "RSPOp::Vector_VRNDP");
}
void CRSPRecompilerOps::Vector_VMULQ(void)
{
Cheat_r4300iOpcode(&RSPOp::Vector_VMULQ, "&RSPOp::Vector_VMULQ");
}
bool CRSPRecompilerOps::Compile_Vector_VMUDL_MMX(void)
{
char Reg[256];
// Do our MMX checks here
if (!IsMmxEnabled)
return false;
if (!IsMmx2Enabled)
return false;
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM0, &m_Vect[m_OpCode.vs].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM1, &m_Vect[m_OpCode.vs].u16(4), Reg);
if ((m_OpCode.rs & 0xF) < 2)
{
if (m_OpCode.rd == m_OpCode.rt)
{
MmxPmulhuwRegToReg(x86_MM0, x86_MM0);
MmxPmulhuwRegToReg(x86_MM1, x86_MM1);
}
else
{
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rt);
MmxMoveQwordVariableToReg(x86_MM2, &m_Vect[m_OpCode.vt].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rt);
MmxMoveQwordVariableToReg(x86_MM3, &m_Vect[m_OpCode.vt].u16(4), Reg);
MmxPmulhuwRegToReg(x86_MM0, x86_MM2);
MmxPmulhuwRegToReg(x86_MM1, x86_MM3);
}
}
else if (m_OpCode.rs & 8)
{
RSP_Element2Mmx(x86_MM2);
MmxPmulhuwRegToReg(x86_MM0, x86_MM2);
MmxPmulhuwRegToReg(x86_MM1, x86_MM2);
}
else
{
RSP_MultiElement2Mmx(x86_MM2, x86_MM3);
MmxPmulhuwRegToReg(x86_MM0, x86_MM2);
MmxPmulhuwRegToReg(x86_MM1, x86_MM3);
}
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM0, &m_Vect[m_OpCode.vd].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM1, &m_Vect[m_OpCode.vd].u16(4), Reg);
if (!IsNextInstructionMmx(m_CompilePC))
MmxEmptyMultimediaState();
return true;
}
void CRSPRecompilerOps::Vector_VMUDL(void)
{
#ifndef CompileVmudl
Cheat_r4300iOpcode(&RSPOp::Vector_VMUDL, "&RSPOp::Vector_VMUDL");
#else
char Reg[256];
uint8_t count, el, del;
bool bOptimize = (m_OpCode.rs & 8) ? true : false;
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
bool bWriteToAccum = WriteToAccum(EntireAccum, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (!bWriteToAccum)
{
if (true == Compile_Vector_VMUDL_MMX())
return;
}
if (bOptimize)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
if (bWriteToAccum)
XorX86RegToX86Reg(x86_EDI, x86_EDI);
for (count = 0; count < 8; count++)
{
CPU_Message(" Iteration: %i", count);
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.rd, el);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vs].u16(el), Reg, x86_EAX);
if (!bOptimize)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
imulX86reg(x86_EBX);
if (bWriteToAccum)
{
sprintf(Reg, "m_ACCUM[%i].UW[0]", el);
MoveX86regToVariable(x86_EAX, &m_ACCUM[el].UW[0], Reg);
sprintf(Reg, "m_ACCUM[%i].UW[1]", el);
MoveX86regToVariable(x86_EDI, &m_ACCUM[el].UW[1], Reg);
}
if (bWriteToDest)
{
ShiftRightUnsignImmed(x86_EAX, 16);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
}
#endif
}
bool CRSPRecompilerOps::Compile_Vector_VMUDM_MMX(void)
{
char Reg[256];
// Do our MMX checks here
if (!IsMmxEnabled)
return false;
if (!IsMmx2Enabled)
return false;
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM0, &m_Vect[m_OpCode.vs].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM1, &m_Vect[m_OpCode.vs].u16(4), Reg);
if ((m_OpCode.rs & 0xF) < 2)
{
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rt);
MmxMoveQwordVariableToReg(x86_MM4, &m_Vect[m_OpCode.vt].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rt);
MmxMoveQwordVariableToReg(x86_MM5, &m_Vect[m_OpCode.vt].u16(4), Reg);
// Copy the signed portion
MmxMoveRegToReg(x86_MM2, x86_MM0);
MmxMoveRegToReg(x86_MM3, x86_MM1);
// high((u16)a * b)
MmxPmulhuwRegToReg(x86_MM0, x86_MM4);
MmxPmulhuwRegToReg(x86_MM1, x86_MM5);
// low((a >> 15) * b)
MmxPsrawImmed(x86_MM2, 15);
MmxPsrawImmed(x86_MM3, 15);
MmxPmullwRegToReg(x86_MM2, x86_MM4);
MmxPmullwRegToReg(x86_MM3, x86_MM5);
}
else if (m_OpCode.rs & 8)
{
RSP_Element2Mmx(x86_MM4);
// Copy the signed portion
MmxMoveRegToReg(x86_MM2, x86_MM0);
MmxMoveRegToReg(x86_MM3, x86_MM1);
// high((u16)a * b)
MmxPmulhuwRegToReg(x86_MM0, x86_MM4);
MmxPmulhuwRegToReg(x86_MM1, x86_MM4);
// low((a >> 15) * b)
MmxPsrawImmed(x86_MM2, 15);
MmxPsrawImmed(x86_MM3, 15);
MmxPmullwRegToReg(x86_MM2, x86_MM4);
MmxPmullwRegToReg(x86_MM3, x86_MM4);
}
else
{
RSP_MultiElement2Mmx(x86_MM4, x86_MM5);
// Copy the signed portion
MmxMoveRegToReg(x86_MM2, x86_MM0);
MmxMoveRegToReg(x86_MM3, x86_MM1);
// high((u16)a * b)
MmxPmulhuwRegToReg(x86_MM0, x86_MM4);
MmxPmulhuwRegToReg(x86_MM1, x86_MM5);
// low((a >> 15) * b)
MmxPsrawImmed(x86_MM2, 15);
MmxPsrawImmed(x86_MM3, 15);
MmxPmullwRegToReg(x86_MM2, x86_MM4);
MmxPmullwRegToReg(x86_MM3, x86_MM5);
}
// Add them up
MmxPaddwRegToReg(x86_MM0, x86_MM2);
MmxPaddwRegToReg(x86_MM1, x86_MM3);
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM0, &m_Vect[m_OpCode.vd].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM1, &m_Vect[m_OpCode.vd].u16(4), Reg);
if (!IsNextInstructionMmx(m_CompilePC))
MmxEmptyMultimediaState();
return true;
}
void CRSPRecompilerOps::Vector_VMUDM(void)
{
#ifndef CompileVmudm
Cheat_r4300iOpcode(&RSPOp::Vector_VMUDM, "&RSPOp::Vector_VMUDM");
#else
char Reg[256];
uint8_t count, el, del;
bool bOptimize = (m_OpCode.rs & 8) ? true : false;
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
bool bWriteToAccum = WriteToAccum(EntireAccum, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (!bWriteToAccum)
{
if (true == Compile_Vector_VMUDM_MMX())
return;
}
if (bOptimize)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
Push(x86_EBP);
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rd);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vs].s16(0), Reg, x86_EBP);
if (bWriteToDest)
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.sa);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vd].s16(0), Reg, x86_ECX);
}
else if (!bOptimize)
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vt].s16(0), Reg, x86_ECX);
}
for (count = 0; count < 8; count++)
{
CPU_Message(" Iteration: %i", count);
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
/*sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);*/
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, (uint8_t)(el * 2), x86_EAX);
if (!bOptimize)
{
if (bWriteToDest)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
else
{
MoveZxX86RegPtrDispToX86RegHalf(x86_ECX, (uint8_t)(del * 2), x86_EBX);
}
}
imulX86reg(x86_EBX);
if (bWriteToAccum == false && bWriteToDest == true)
{
ShiftRightUnsignImmed(x86_EAX, 16);
/*sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);*/
MoveX86regHalfToX86regPointerDisp(x86_EAX, x86_ECX, (uint8_t)(el * 2));
}
else
{
MoveX86RegToX86Reg(x86_EAX, x86_EDX);
ShiftRightSignImmed(x86_EDX, 16);
ShiftLeftSignImmed(x86_EAX, 16);
if (bWriteToAccum)
{
sprintf(Reg, "m_ACCUM[%i].UW[0]", el);
MoveX86regToVariable(x86_EAX, &m_ACCUM[el].UW[0], Reg);
sprintf(Reg, "m_ACCUM[%i].UW[1]", el);
MoveX86regToVariable(x86_EDX, &m_ACCUM[el].UW[1], Reg);
}
if (bWriteToDest)
{
/*sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EDX, &m_Vect[m_OpCode.vd].s16(el), Reg);*/
MoveX86regHalfToX86regPointerDisp(x86_EDX, x86_ECX, (uint8_t)(el * 2));
}
}
}
Pop(x86_EBP);
#endif
}
bool CRSPRecompilerOps::Compile_Vector_VMUDN_MMX(void)
{
char Reg[256];
// Do our MMX checks here
if (!IsMmxEnabled)
return false;
if ((m_OpCode.rs & 0x0f) >= 2 && !(m_OpCode.rs & 8) && IsMmx2Enabled == false)
return false;
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM0, &m_Vect[m_OpCode.vs].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM1, &m_Vect[m_OpCode.vs].u16(4), Reg);
if ((m_OpCode.rs & 0xF) < 2)
{
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rt);
MmxPmullwVariableToReg(x86_MM0, &m_Vect[m_OpCode.vt].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rt);
MmxPmullwVariableToReg(x86_MM1, &m_Vect[m_OpCode.vt].u16(4), Reg);
}
else if (m_OpCode.rs & 8)
{
RSP_Element2Mmx(x86_MM2);
MmxPmullwRegToReg(x86_MM0, x86_MM2);
MmxPmullwRegToReg(x86_MM1, x86_MM2);
}
else
{
RSP_MultiElement2Mmx(x86_MM2, x86_MM3);
MmxPmullwRegToReg(x86_MM0, x86_MM2);
MmxPmullwRegToReg(x86_MM1, x86_MM3);
}
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM0, &m_Vect[m_OpCode.vd].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM1, &m_Vect[m_OpCode.vd].u16(4), Reg);
if (!IsNextInstructionMmx(m_CompilePC))
MmxEmptyMultimediaState();
return true;
}
void CRSPRecompilerOps::Vector_VMUDN(void)
{
#ifndef CompileVmudn
Cheat_r4300iOpcode(&RSPOp::Vector_VMUDN, "RSPOp::Vector_VMUDN");
#else
char Reg[256];
uint8_t count, el, del;
bool bOptimize = (m_OpCode.rs & 8) ? true : false;
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
bool bWriteToAccum = WriteToAccum(EntireAccum, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (!bWriteToAccum)
{
if (true == Compile_Vector_VMUDN_MMX())
return;
}
if (bOptimize)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
Push(x86_EBP);
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rd);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vs].s16(0), Reg, x86_EBP);
for (count = 0; count < 8; count++)
{
CPU_Message(" Iteration: %i", count);
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
/*sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.rd, el);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vs].u16(el), Reg, x86_EAX);*/
MoveZxX86RegPtrDispToX86RegHalf(x86_EBP, (uint8_t)(el * 2), x86_EAX);
if (!bOptimize)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
imulX86reg(x86_EBX);
if (bWriteToDest)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
if (bWriteToAccum)
{
MoveX86RegToX86Reg(x86_EAX, x86_EDX);
ShiftRightSignImmed(x86_EDX, 16);
ShiftLeftSignImmed(x86_EAX, 16);
sprintf(Reg, "m_ACCUM[%i].UW[0]", el);
MoveX86regToVariable(x86_EAX, &m_ACCUM[el].UW[0], Reg);
sprintf(Reg, "m_ACCUM[%i].UW[1]", el);
MoveX86regToVariable(x86_EDX, &m_ACCUM[el].UW[1], Reg);
}
}
Pop(x86_EBP);
#endif
}
bool CRSPRecompilerOps::Compile_Vector_VMUDH_MMX(void)
{
char Reg[256];
// Do our MMX checks here
if (!IsMmxEnabled)
return false;
if ((m_OpCode.rs & 0x0f) >= 2 && !(m_OpCode.rs & 8) && IsMmx2Enabled == false)
return false;
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM0, &m_Vect[m_OpCode.vs].s16(0), Reg);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM1, &m_Vect[m_OpCode.vs].s16(4), Reg);
// Registers 4 and 5 are high
MmxMoveRegToReg(x86_MM4, x86_MM0);
MmxMoveRegToReg(x86_MM5, x86_MM1);
if ((m_OpCode.rs & 0x0f) < 2)
{
if (m_OpCode.rd == m_OpCode.rt)
{
MmxPmullwRegToReg(x86_MM0, x86_MM0);
MmxPmulhwRegToReg(x86_MM4, x86_MM4);
MmxPmullwRegToReg(x86_MM1, x86_MM1);
MmxPmulhwRegToReg(x86_MM5, x86_MM5);
}
else
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MmxMoveQwordVariableToReg(x86_MM2, &m_Vect[m_OpCode.vt].s16(0), Reg);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rt);
MmxMoveQwordVariableToReg(x86_MM3, &m_Vect[m_OpCode.vt].s16(4), Reg);
MmxPmullwRegToReg(x86_MM0, x86_MM2);
MmxPmulhwRegToReg(x86_MM4, x86_MM2);
MmxPmullwRegToReg(x86_MM1, x86_MM3);
MmxPmulhwRegToReg(x86_MM5, x86_MM3);
}
}
else if (m_OpCode.rs & 8)
{
RSP_Element2Mmx(x86_MM2);
MmxPmullwRegToReg(x86_MM0, x86_MM2);
MmxPmulhwRegToReg(x86_MM4, x86_MM2);
MmxPmullwRegToReg(x86_MM1, x86_MM2);
MmxPmulhwRegToReg(x86_MM5, x86_MM2);
}
else
{
RSP_MultiElement2Mmx(x86_MM2, x86_MM3);
MmxPmullwRegToReg(x86_MM0, x86_MM2);
MmxPmulhwRegToReg(x86_MM4, x86_MM2);
MmxPmullwRegToReg(x86_MM1, x86_MM3);
MmxPmulhwRegToReg(x86_MM5, x86_MM3);
}
// 0 and 1 are low, 4 and 5 are high
MmxMoveRegToReg(x86_MM6, x86_MM0);
MmxMoveRegToReg(x86_MM7, x86_MM1);
MmxUnpackLowWord(x86_MM0, x86_MM4);
MmxUnpackHighWord(x86_MM6, x86_MM4);
MmxUnpackLowWord(x86_MM1, x86_MM5);
MmxUnpackHighWord(x86_MM7, x86_MM5);
// Integrate copies
MmxPackSignedDwords(x86_MM0, x86_MM6);
MmxPackSignedDwords(x86_MM1, x86_MM7);
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM0, &m_Vect[m_OpCode.vd].s16(0), Reg);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM1, &m_Vect[m_OpCode.vd].s16(4), Reg);
if (!IsNextInstructionMmx(m_CompilePC))
MmxEmptyMultimediaState();
return true;
}
void CRSPRecompilerOps::Vector_VMUDH(void)
{
#ifndef CompileVmudh
Cheat_r4300iOpcode(&RSPOp::Vector_VMUDH, "RSPOp::Vector_VMUDH");
#else
char Reg[256];
uint8_t count, el, del;
bool bOptimize = (m_OpCode.rs & 8) ? true : false;
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
bool bWriteToAccum = WriteToAccum(EntireAccum, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (!bWriteToAccum)
{
if (true == Compile_Vector_VMUDH_MMX())
return;
}
if (bWriteToDest == false && bOptimize == true)
{
Push(x86_EBP);
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rd);
// Load source
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
// Pipe lined segment 0
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rd);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vs].s16(0), Reg, x86_EBP);
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 0, x86_EAX);
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 2, x86_ECX);
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 4, x86_EDI);
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 6, x86_ESI);
ImulX86RegToX86Reg(x86_EAX, x86_EBX);
ImulX86RegToX86Reg(x86_ECX, x86_EBX);
ImulX86RegToX86Reg(x86_EDI, x86_EBX);
ImulX86RegToX86Reg(x86_ESI, x86_EBX);
XorX86RegToX86Reg(x86_EDX, x86_EDX);
MoveOffsetToX86reg((size_t)&m_ACCUM[0].W[0], "m_ACCUM[0].W[0]", x86_EBP);
MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 0);
MoveX86RegToX86regPointerDisp(x86_EAX, x86_EBP, 4);
MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 8);
MoveX86RegToX86regPointerDisp(x86_ECX, x86_EBP, 12);
MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 16);
MoveX86RegToX86regPointerDisp(x86_EDI, x86_EBP, 20);
MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 24);
MoveX86RegToX86regPointerDisp(x86_ESI, x86_EBP, 28);
// Pipe lined segment 1
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rd);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vs].s16(0), Reg, x86_EBP);
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 8, x86_EAX);
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 10, x86_ECX);
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 12, x86_EDI);
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 14, x86_ESI);
ImulX86RegToX86Reg(x86_EAX, x86_EBX);
ImulX86RegToX86Reg(x86_ECX, x86_EBX);
ImulX86RegToX86Reg(x86_EDI, x86_EBX);
ImulX86RegToX86Reg(x86_ESI, x86_EBX);
XorX86RegToX86Reg(x86_EDX, x86_EDX);
MoveOffsetToX86reg((size_t)&m_ACCUM[0].W[0], "m_ACCUM[0].W[0]", x86_EBP);
MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 32);
MoveX86RegToX86regPointerDisp(x86_EAX, x86_EBP, 36);
MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 40);
MoveX86RegToX86regPointerDisp(x86_ECX, x86_EBP, 44);
MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 48);
MoveX86RegToX86regPointerDisp(x86_EDI, x86_EBP, 52);
MoveX86RegToX86regPointerDisp(x86_EDX, x86_EBP, 56);
MoveX86RegToX86regPointerDisp(x86_ESI, x86_EBP, 60);
Pop(x86_EBP);
}
else
{
if (bOptimize)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
if (bWriteToDest)
{
// Prepare for conditional moves
MoveConstToX86reg(0x00007fff, x86_ESI);
MoveConstToX86reg(0xFFFF8000, x86_EDI);
}
for (count = 0; count < 8; count++)
{
CPU_Message(" Iteration: %i", count);
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);
if (!bOptimize)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
imulX86reg(x86_EBX);
if (bWriteToAccum)
{
MoveX86regToVariable(x86_EAX, &m_ACCUM[el].W[1], "m_ACCUM[el].W[1]");
MoveConstToVariable(0, &m_ACCUM[el].W[0], "m_ACCUM[el].W[0]");
}
if (bWriteToDest)
{
CompX86RegToX86Reg(x86_EAX, x86_ESI);
CondMoveGreater(x86_EAX, x86_ESI);
CompX86RegToX86Reg(x86_EAX, x86_EDI);
CondMoveLess(x86_EAX, x86_EDI);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
}
}
#endif
}
void CRSPRecompilerOps::Vector_VMACF(void)
{
#ifndef CompileVmacf
Cheat_r4300iOpcode(&RSPOp::Vector_VMACF, "&RSPOp::Vector_VMACF");
#else
char Reg[256];
uint8_t count, el, del;
bool bOptimize = (m_OpCode.rs & 8) ? true : false;
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (bWriteToDest)
{
// Prepare for conditional moves
MoveConstToX86reg(0x00007fff, x86_ESI);
MoveConstToX86reg(0xFFFF8000, x86_EDI);
}
if (bOptimize)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
for (count = 0; count < 8; count++)
{
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
CPU_Message(" Iteration: %i", count);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);
if (!bOptimize)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
imulX86reg(x86_EBX);
MoveX86RegToX86Reg(x86_EAX, x86_EDX);
ShiftRightSignImmed(x86_EDX, 15);
ShiftLeftSignImmed(x86_EAX, 17);
AddX86regToVariable(x86_EAX, &m_ACCUM[el].W[0], "m_ACCUM[el].W[0]");
AdcX86regToVariable(x86_EDX, &m_ACCUM[el].W[1], "m_ACCUM[el].W[1]");
if (bWriteToDest)
{
MoveVariableToX86reg(&m_ACCUM[el].W[1], "m_ACCUM[el].W[1]", x86_EAX);
CompX86RegToX86Reg(x86_EAX, x86_ESI);
CondMoveGreater(x86_EAX, x86_ESI);
CompX86RegToX86Reg(x86_EAX, x86_EDI);
CondMoveLess(x86_EAX, x86_EDI);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
}
#endif
}
void CRSPRecompilerOps::Vector_VMACU(void)
{
Cheat_r4300iOpcode(&RSPOp::Vector_VMACU, "&RSPOp::Vector_VMACU");
}
void CRSPRecompilerOps::Vector_VMACQ(void)
{
Cheat_r4300iOpcode(&RSPOp::Vector_VMACQ, "RSPOp::Vector_VMACQ");
}
void CRSPRecompilerOps::Vector_VMADL(void)
{
#ifndef CompileVmadl
Cheat_r4300iOpcode(&RSPOp::Vector_VMADL, "&RSPOp::Vector_VMADL");
#else
char Reg[256];
uint8_t count, el, del;
bool bOptimize = (m_OpCode.rs & 8) ? true : false;
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (bOptimize)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
if (bWriteToDest)
{
// Prepare for conditional moves
MoveConstToX86reg(0x00007FFF, x86_ESI);
MoveConstToX86reg(0xFFFF8000, x86_EDI);
Push(x86_EBP);
MoveConstToX86reg(0x0000FFFF, x86_EBP);
}
for (count = 0; count < 8; count++)
{
CPU_Message(" Iteration: %i", count);
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);
if (!bOptimize)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
imulX86reg(x86_EBX);
sprintf(Reg, "m_ACCUM[%i].W[0]", el);
AddX86regToVariable(x86_EAX, &m_ACCUM[el].W[0], Reg);
sprintf(Reg, "m_ACCUM[%i].W[1]", el);
AdcConstToVariable(&m_ACCUM[el].W[1], Reg, 0);
if (bWriteToDest != false)
{
XorX86RegToX86Reg(x86_EDX, x86_EDX);
MoveVariableToX86reg(&m_ACCUM[el].W[1], "m_ACCUM[el].W[1]", x86_EAX);
MoveZxVariableToX86regHalf(&m_ACCUM[el].HW[1], "m_ACCUM[el].hW[1]", x86_ECX);
CompX86RegToX86Reg(x86_EAX, x86_ESI);
CondMoveGreater(x86_ECX, x86_EBP);
CompX86RegToX86Reg(x86_EAX, x86_EDI);
CondMoveLess(x86_ECX, x86_EDX);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
}
if (bWriteToDest)
{
Pop(x86_EBP);
}
#endif
}
void CRSPRecompilerOps::Vector_VMADM(void)
{
#ifndef CompileVmadm
Cheat_r4300iOpcode(&RSPOp::Vector_VMADM, "&RSPOp::Vector_VMADM");
#else
char Reg[256];
uint8_t count, el, del;
bool bOptimize = (m_OpCode.rs & 8) ? true : false;
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (bOptimize)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
if (bWriteToDest)
{
// Prepare for conditional moves
MoveConstToX86reg(0x00007fff, x86_ESI);
MoveConstToX86reg(0xFFFF8000, x86_EDI);
}
Push(x86_EBP);
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rd);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vs].s16(0), Reg, x86_EBP);
if (bWriteToDest)
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.sa);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vd].s16(0), Reg, x86_ECX);
}
else if (!bOptimize)
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vt].s16(0), Reg, x86_ECX);
}
for (count = 0; count < 8; count++)
{
CPU_Message(" Iteration: %i", count);
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
/*sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);*/
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, (uint8_t)(el * 2), x86_EAX);
if (!bOptimize)
{
if (bWriteToDest)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), "m_Vect[m_OpCode.vt].s16(del)", x86_EBX);
}
else
{
MoveZxX86RegPtrDispToX86RegHalf(x86_ECX, (uint8_t)(del * 2), x86_EBX);
}
}
imulX86reg(x86_EBX);
MoveX86RegToX86Reg(x86_EAX, x86_EDX);
ShiftRightSignImmed(x86_EDX, 16);
ShiftLeftSignImmed(x86_EAX, 16);
AddX86regToVariable(x86_EAX, &m_ACCUM[el].W[0], "m_ACCUM[el].W[0]");
AdcX86regToVariable(x86_EDX, &m_ACCUM[el].W[1], "m_ACCUM[el].W[1]");
if (bWriteToDest)
{
// For compare
sprintf(Reg, "m_ACCUM[%i].W[1]", el);
MoveVariableToX86reg(&m_ACCUM[el].W[1], "m_ACCUM[el].W[1]", x86_EAX);
CompX86RegToX86Reg(x86_EAX, x86_ESI);
CondMoveGreater(x86_EAX, x86_ESI);
CompX86RegToX86Reg(x86_EAX, x86_EDI);
CondMoveLess(x86_EAX, x86_EDI);
/*sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);*/
MoveX86regHalfToX86regPointerDisp(x86_EAX, x86_ECX, (uint8_t)(el * 2));
}
}
Pop(x86_EBP);
#endif
}
void CRSPRecompilerOps::Vector_VMADN(void)
{
#ifndef CompileVmadn
Cheat_r4300iOpcode(&RSPOp::Vector_VMADN, "RSPOp::Vector_VMADN");
#else
char Reg[256];
uint8_t count, el, del;
bool bOptimize = (m_OpCode.rs & 8) ? true : false;
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (bOptimize)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
if (bWriteToDest)
{
// Prepare for conditional moves
MoveConstToX86reg(0x0000ffff, x86_ESI);
MoveConstToX86reg(0x00000000, x86_EDI);
}
Push(x86_EBP);
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rd);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vs].s16(0), Reg, x86_EBP);
for (count = 0; count < 8; count++)
{
CPU_Message(" Iteration: %i", count);
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
/*sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.rd, el);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vs].u16(el), Reg, x86_EAX);*/
MoveZxX86RegPtrDispToX86RegHalf(x86_EBP, (uint8_t)(el * 2), x86_EAX);
if (!bOptimize)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
imulX86reg(x86_EBX);
MoveX86RegToX86Reg(x86_EAX, x86_EDX);
ShiftRightSignImmed(x86_EDX, 16);
ShiftLeftSignImmed(x86_EAX, 16);
AddX86regToVariable(x86_EAX, &m_ACCUM[el].W[0], "m_ACCUM[el].W[0]");
AdcX86regToVariable(x86_EDX, &m_ACCUM[el].W[1], "m_ACCUM[el].W[1]");
if (bWriteToDest)
{
// For compare
sprintf(Reg, "m_ACCUM[%i].W[1]", el);
MoveVariableToX86reg(&m_ACCUM[el].W[1], Reg, x86_EAX);
// For vector
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveVariableToX86regHalf(&m_ACCUM[el].HW[1], Reg, x86_ECX);
// TODO: Weird eh?
CompConstToX86reg(x86_EAX, 0x7fff);
CondMoveGreater(x86_ECX, x86_ESI);
CompConstToX86reg(x86_EAX, (uint32_t)(-0x8000));
CondMoveLess(x86_ECX, x86_EDI);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
}
Pop(x86_EBP);
#endif
}
void CRSPRecompilerOps::Vector_VMADH(void)
{
#ifndef CompileVmadh
Cheat_r4300iOpcode(&RSPOp::Vector_VMADH, "RSPOp::Vector_VMADH");
#else
char Reg[256];
uint8_t count, el, del;
bool bOptimize = (m_OpCode.rs & 8) ? true : false;
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (bOptimize)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
if (bWriteToDest)
{
// Prepare for conditional moves
MoveConstToX86reg(0x00007fff, x86_ESI);
MoveConstToX86reg(0xFFFF8000, x86_EDI);
}
if (bWriteToDest == false && bOptimize == true)
{
Push(x86_EBP);
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rd);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vs].s16(0), Reg, x86_EBP);
// Pipe lined segment 0
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 0, x86_EAX);
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 2, x86_ECX);
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 4, x86_EDI);
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 6, x86_ESI);
ImulX86RegToX86Reg(x86_EAX, x86_EBX);
ImulX86RegToX86Reg(x86_ECX, x86_EBX);
ImulX86RegToX86Reg(x86_EDI, x86_EBX);
ImulX86RegToX86Reg(x86_ESI, x86_EBX);
sprintf(Reg, "m_ACCUM[%i].W[1]", 0);
AddX86regToVariable(x86_EAX, &m_ACCUM[0].W[1], Reg);
sprintf(Reg, "m_ACCUM[%i].W[1]", 1);
AddX86regToVariable(x86_ECX, &m_ACCUM[1].W[1], Reg);
sprintf(Reg, "m_ACCUM[%i].W[1]", 2);
AddX86regToVariable(x86_EDI, &m_ACCUM[2].W[1], Reg);
sprintf(Reg, "m_ACCUM[%i].W[1]", 3);
AddX86regToVariable(x86_ESI, &m_ACCUM[3].W[1], Reg);
// Pipe lined segment 1
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 8, x86_EAX);
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 10, x86_ECX);
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 12, x86_EDI);
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, 14, x86_ESI);
ImulX86RegToX86Reg(x86_EAX, x86_EBX);
ImulX86RegToX86Reg(x86_ECX, x86_EBX);
ImulX86RegToX86Reg(x86_EDI, x86_EBX);
ImulX86RegToX86Reg(x86_ESI, x86_EBX);
sprintf(Reg, "m_ACCUM[%i].W[1]", 4);
AddX86regToVariable(x86_EAX, &m_ACCUM[4].W[1], Reg);
sprintf(Reg, "m_ACCUM[%i].W[1]", 5);
AddX86regToVariable(x86_ECX, &m_ACCUM[5].W[1], Reg);
sprintf(Reg, "m_ACCUM[%i].W[1]", 6);
AddX86regToVariable(x86_EDI, &m_ACCUM[6].W[1], Reg);
sprintf(Reg, "m_ACCUM[%i].W[1]", 7);
AddX86regToVariable(x86_ESI, &m_ACCUM[7].W[1], Reg);
Pop(x86_EBP);
}
else
{
Push(x86_EBP);
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rd);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vs].s16(0), Reg, x86_EBP);
if (bWriteToDest)
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.sa);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vd].s16(0), Reg, x86_ECX);
}
else if (!bOptimize)
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vt].s16(0), Reg, x86_ECX);
}
for (count = 0; count < 8; count++)
{
CPU_Message(" Iteration: %i", count);
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
/*sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);*/
MoveSxX86RegPtrDispToX86RegHalf(x86_EBP, (uint8_t)(el * 2), x86_EAX);
if (!bOptimize)
{
if (bWriteToDest)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
else
{
MoveSxX86RegPtrDispToX86RegHalf(x86_ECX, (uint8_t)(del * 2), x86_EBX);
}
}
imulX86reg(x86_EBX);
sprintf(Reg, "m_ACCUM[%i].W[1]", el);
AddX86regToVariable(x86_EAX, &m_ACCUM[el].W[1], Reg);
if (bWriteToDest)
{
MoveVariableToX86reg(&m_ACCUM[el].W[1], "m_ACCUM[el].W[1]", x86_EAX);
CompX86RegToX86Reg(x86_EAX, x86_ESI);
CondMoveGreater(x86_EAX, x86_ESI);
CompX86RegToX86Reg(x86_EAX, x86_EDI);
CondMoveLess(x86_EAX, x86_EDI);
/*sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);*/
MoveX86regHalfToX86regPointerDisp(x86_EAX, x86_ECX, (uint8_t)(el * 2));
}
}
Pop(x86_EBP);
}
#endif
}
bool CRSPRecompilerOps::Compile_Vector_VADD_MMX(void)
{
char Reg[256];
// Do our MMX checks here
if (!IsMmxEnabled)
return false;
if ((m_OpCode.rs & 0x0f) >= 2 && !(m_OpCode.rs & 8) && IsMmx2Enabled == false)
return false;
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM0, &m_Vect[m_OpCode.vs].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM1, &m_Vect[m_OpCode.vs].u16(4), Reg);
if (m_OpCode.rs & 8)
{
RSP_Element2Mmx(x86_MM2);
MmxPaddswRegToReg(x86_MM0, x86_MM2);
MmxPaddswRegToReg(x86_MM1, x86_MM2);
}
else if ((m_OpCode.rs & 15) < 2)
{
if (m_OpCode.rd == m_OpCode.rt)
{
MmxPaddswRegToReg(x86_MM0, x86_MM0);
MmxPaddswRegToReg(x86_MM1, x86_MM1);
}
else
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MmxPaddswVariableToReg(x86_MM0, &m_Vect[m_OpCode.vt].s16(0), Reg);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rt);
MmxPaddswVariableToReg(x86_MM1, &m_Vect[m_OpCode.vt].s16(4), Reg);
}
}
else
{
RSP_MultiElement2Mmx(x86_MM2, x86_MM3);
MmxPaddswRegToReg(x86_MM0, x86_MM2);
MmxPaddswRegToReg(x86_MM1, x86_MM3);
}
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM0, &m_Vect[m_OpCode.vd].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM1, &m_Vect[m_OpCode.vd].u16(4), Reg);
if (IsNextInstructionMmx(m_CompilePC) != true)
{
MmxEmptyMultimediaState();
}
return true;
}
void CRSPRecompilerOps::Vector_VADD(void)
{
#ifndef CompileVadd
Cheat_r4300iOpcode(&RSPOp::Vector_VADD, "RSPOp::Vector_VADD");
#else
char Reg[256];
uint8_t count, el, del;
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
bool bElement = (m_OpCode.rs & 8) ? true : false;
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
bool bFlagUseage = UseRspFlags(m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (bWriteToAccum == false && bFlagUseage == false)
{
if (true == Compile_Vector_VADD_MMX())
return;
}
if (bElement == true)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
if (bWriteToDest)
{
// Prepare for conditional moves
MoveConstToX86reg(0x00007fff, x86_ESI);
MoveConstToX86reg(0xffff8000, x86_EDI);
}
// Used for invoking x86 carry flag
XorX86RegToX86Reg(x86_ECX, x86_ECX);
Push(x86_EBP);
MoveVariableToX86reg(&m_Flags[0].UW, "m_Flags[0].UW", x86_EBP);
for (count = 0; count < 8; count++)
{
CPU_Message(" Iteration: %i", count);
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);
if (bElement == false)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
MoveX86RegToX86Reg(x86_EBP, x86_EDX);
AndConstToX86Reg(x86_EDX, 1 << (7 - el));
CompX86RegToX86Reg(x86_ECX, x86_EDX);
AdcX86RegToX86Reg(x86_EAX, x86_EBX);
if (bWriteToAccum != false)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_EAX, &m_ACCUM[el].HW[1], Reg);
}
if (bWriteToDest != false)
{
CompX86RegToX86Reg(x86_EAX, x86_ESI);
CondMoveGreater(x86_EAX, x86_ESI);
CompX86RegToX86Reg(x86_EAX, x86_EDI);
CondMoveLess(x86_EAX, x86_EDI);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
}
MoveConstToVariable(0, &m_Flags[0].UW, "m_Flags[0].UW");
Pop(x86_EBP);
#endif
}
bool CRSPRecompilerOps::Compile_Vector_VSUB_MMX(void)
{
char Reg[256];
// Do our MMX checks here
if (!IsMmxEnabled)
return false;
if ((m_OpCode.rs & 0x0f) >= 2 && !(m_OpCode.rs & 8) && IsMmx2Enabled == false)
return false;
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM0, &m_Vect[m_OpCode.vs].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM1, &m_Vect[m_OpCode.vs].u16(4), Reg);
if ((m_OpCode.rs & 15) >= 8)
{
RSP_Element2Mmx(x86_MM2);
MmxPsubswRegToReg(x86_MM0, x86_MM2);
MmxPsubswRegToReg(x86_MM1, x86_MM2);
}
else if ((m_OpCode.rs & 15) < 2)
{
if (m_OpCode.rd == m_OpCode.rt)
{
MmxPsubswRegToReg(x86_MM0, x86_MM0);
MmxPsubswRegToReg(x86_MM1, x86_MM1);
}
else
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MmxPsubswVariableToReg(x86_MM0, &m_Vect[m_OpCode.vt].s16(0), Reg);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rt);
MmxPsubswVariableToReg(x86_MM1, &m_Vect[m_OpCode.vt].s16(4), Reg);
}
}
else
{
RSP_MultiElement2Mmx(x86_MM2, x86_MM3);
MmxPsubswRegToReg(x86_MM0, x86_MM2);
MmxPsubswRegToReg(x86_MM1, x86_MM3);
}
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM0, &m_Vect[m_OpCode.vd].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM1, &m_Vect[m_OpCode.vd].u16(4), Reg);
if (IsNextInstructionMmx(m_CompilePC) != true)
{
MmxEmptyMultimediaState();
}
return true;
}
void CRSPRecompilerOps::Vector_VSUB(void)
{
#ifndef CompileVsub
Cheat_r4300iOpcode(&RSPOp::Vector_VSUB, "&RSPOp::Vector_VSUB");
#else
char Reg[256];
uint8_t count, el, del;
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
bool bOptimize = (m_OpCode.rs & 8) ? true : false;
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
bool bFlagUseage = UseRspFlags(m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (bWriteToAccum == false && bFlagUseage == false)
{
if (true == Compile_Vector_VSUB_MMX())
return;
}
Push(x86_EBP);
// Used for invoking the x86 carry flag
XorX86RegToX86Reg(x86_ECX, x86_ECX);
MoveVariableToX86reg(&m_Flags[0].UW, "m_Flags[0].UW", x86_EBP);
if (bOptimize)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
if (bWriteToDest)
{
// Prepare for conditional moves
MoveConstToX86reg(0x00007fff, x86_ESI);
MoveConstToX86reg(0xffff8000, x86_EDI);
}
for (count = 0; count < 8; count++)
{
CPU_Message(" Iteration: %i", count);
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), "m_Vect[m_OpCode.vs].s16(el)", x86_EAX);
if (!bOptimize)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
MoveX86RegToX86Reg(x86_EBP, x86_EDX);
AndConstToX86Reg(x86_EDX, 1 << (7 - el));
CompX86RegToX86Reg(x86_ECX, x86_EDX);
SbbX86RegToX86Reg(x86_EAX, x86_EBX);
if (bWriteToAccum != false)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_EAX, &m_ACCUM[el].HW[1], Reg);
}
if (bWriteToDest != false)
{
CompX86RegToX86Reg(x86_EAX, x86_ESI);
CondMoveGreater(x86_EAX, x86_ESI);
CompX86RegToX86Reg(x86_EAX, x86_EDI);
CondMoveLess(x86_EAX, x86_EDI);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
}
MoveConstToVariable(0, &m_Flags[0].UW, "m_Flags[0].UW");
Pop(x86_EBP);
#endif
}
bool CRSPRecompilerOps::Compile_Vector_VABS_MMX(void)
{
char Reg[256];
// Do our MMX checks here
if (!IsMmxEnabled)
return false;
if ((m_OpCode.rs & 0x0f) >= 2 && !(m_OpCode.rs & 8) && IsMmx2Enabled == false)
return false;
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM0, &m_Vect[m_OpCode.vs].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM1, &m_Vect[m_OpCode.vs].u16(4), Reg);
if ((m_OpCode.rs & 15) >= 8)
{
RSP_Element2Mmx(x86_MM2);
MmxMoveRegToReg(x86_MM3, x86_MM2);
}
else if ((m_OpCode.rs & 15) < 2)
{
if (m_OpCode.rd != m_OpCode.rt)
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MmxMoveQwordVariableToReg(x86_MM2, &m_Vect[m_OpCode.vt].s16(0), Reg);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rt);
MmxMoveQwordVariableToReg(x86_MM3, &m_Vect[m_OpCode.vt].s16(4), Reg);
}
else
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MmxMoveRegToReg(x86_MM2, x86_MM0);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rt);
MmxMoveRegToReg(x86_MM3, x86_MM1);
}
}
else
{
RSP_MultiElement2Mmx(x86_MM2, x86_MM3);
}
if (m_OpCode.rd == m_OpCode.rt)
{
MmxPsrawImmed(x86_MM2, 15);
MmxPsrawImmed(x86_MM3, 15);
MmxXorRegToReg(x86_MM0, x86_MM2);
MmxXorRegToReg(x86_MM1, x86_MM3);
MmxPsubswRegToReg(x86_MM0, x86_MM2);
MmxPsubswRegToReg(x86_MM1, x86_MM3);
}
else
{
MmxXorRegToReg(x86_MM7, x86_MM7);
MmxMoveRegToReg(x86_MM4, x86_MM0);
MmxMoveRegToReg(x86_MM5, x86_MM1);
MmxPsrawImmed(x86_MM4, 15);
MmxPsrawImmed(x86_MM5, 15);
MmxPcmpeqwRegToReg(x86_MM0, x86_MM7);
MmxPcmpeqwRegToReg(x86_MM1, x86_MM7);
MmxXorRegToReg(x86_MM2, x86_MM4);
MmxXorRegToReg(x86_MM3, x86_MM5);
MmxPsubswRegToReg(x86_MM2, x86_MM4);
MmxPsubswRegToReg(x86_MM3, x86_MM5);
MmxPandnRegToReg(x86_MM0, x86_MM2);
MmxPandnRegToReg(x86_MM1, x86_MM3);
}
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM0, &m_Vect[m_OpCode.vd].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM1, &m_Vect[m_OpCode.vd].u16(4), Reg);
if (IsNextInstructionMmx(m_CompilePC) != true)
{
MmxEmptyMultimediaState();
}
return true;
}
void CRSPRecompilerOps::Vector_VABS(void)
{
#ifndef CompileVabs
Cheat_r4300iOpcode(&RSPOp::Vector_VABS, "RSPOp::Vector_VABS");
#else
uint8_t count, el, del;
char Reg[256];
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (!bWriteToAccum)
{
if (true == Compile_Vector_VABS_MMX())
return;
}
for (count = 0; count < 8; count++)
{
CPU_Message(" Iteration: %i", count);
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
if (m_OpCode.rd == m_OpCode.rt && (m_OpCode.rs & 0xF) < 2)
{
// Optimize: EDI/ESI unused, and ECX is CONST etc.
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);
// Obtain the negative of the source
MoveX86RegToX86Reg(x86_EAX, x86_EBX);
NegateX86reg(x86_EBX);
// Determine negative value,
// Note: negate(FFFF8000h) == 00008000h
MoveConstToX86reg(0x7fff, x86_ECX);
CompConstToX86reg(x86_EBX, 0x00008000);
CondMoveEqual(x86_EBX, x86_ECX);
// sign clamp, dest = (eax >= 0) ? eax : ebx
CompConstToX86reg(x86_EAX, 0);
CondMoveLess(x86_EAX, x86_EBX);
if (bWriteToDest)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
if (bWriteToAccum)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_EAX, &m_ACCUM[el].HW[1], Reg);
}
}
else
{
// Optimize: ESI unused, and EDX is CONST etc.
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
// Obtain the negative of the source
MoveX86RegToX86Reg(x86_EBX, x86_ECX);
NegateX86reg(x86_EBX);
// Determine negative value,
// Note: negate(FFFF8000h) == 00008000h
MoveConstToX86reg(0x7fff, x86_EDX);
CompConstToX86reg(x86_EBX, 0x00008000);
CondMoveEqual(x86_EBX, x86_EDX);
// sign clamp, dest = (eax >= 0) ? ecx : ebx
CompConstToX86reg(x86_EAX, 0);
CondMoveGreaterEqual(x86_EDI, x86_ECX);
CondMoveLess(x86_EDI, x86_EBX);
if (bWriteToDest)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EDI, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
if (bWriteToAccum)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_EDI, &m_ACCUM[el].HW[1], Reg);
}
}
}
#endif
}
void CRSPRecompilerOps::Vector_VADDC(void)
{
#ifndef CompileVaddc
Cheat_r4300iOpcode(&RSPOp::Vector_VADDC, "&RSPOp::Vector_VADDC");
#else
char Reg[256];
uint8_t count, el, del;
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
bool bElement = (m_OpCode.rs & 8) ? true : false;
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (bElement == true)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
// Initialize flag register
XorX86RegToX86Reg(x86_ECX, x86_ECX);
Push(x86_EBP);
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rd);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vs].s16(0), Reg, x86_EBP);
for (count = 0; count < 8; count++)
{
CPU_Message(" Iteration: %i", count);
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
/*sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);*/
MoveZxX86RegPtrDispToX86RegHalf(x86_EBP, (uint8_t)(el * 2), x86_EAX);
if (bElement == false)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
AddX86RegToX86Reg(x86_EAX, x86_EBX);
XorX86RegToX86Reg(x86_EDX, x86_EDX);
TestConstToX86Reg(0xFFFF0000, x86_EAX);
Setnz(x86_EDX);
if ((7 - el) != 0)
{
ShiftLeftSignImmed(x86_EDX, (uint8_t)(7 - el));
}
OrX86RegToX86Reg(x86_ECX, x86_EDX);
if (bWriteToAccum != false)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_EAX, &m_ACCUM[el].HW[1], Reg);
}
if (bWriteToDest != false)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
}
MoveX86regToVariable(x86_ECX, &m_Flags[0].UW, "m_Flags[0].UW");
Pop(x86_EBP);
#endif
}
void CRSPRecompilerOps::Vector_VSUBC(void)
{
#ifndef CompileVsubc
Cheat_r4300iOpcode(&RSPOp::Vector_VSUBC, "&RSPOp::Vector_VSUBC");
#else
char Reg[256];
uint8_t count, el, del;
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
bool bElement = (m_OpCode.rs & 8) ? true : false;
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (bElement == true)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
// Initialize flag register
XorX86RegToX86Reg(x86_ECX, x86_ECX);
for (count = 0; count < 8; count++)
{
CPU_Message(" Iteration: %i", count);
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);
if (bElement == false)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
SubX86RegToX86Reg(x86_EAX, x86_EBX);
XorX86RegToX86Reg(x86_EDX, x86_EDX);
TestConstToX86Reg(0x0000FFFF, x86_EAX);
Setnz(x86_EDX);
ShiftLeftSignImmed(x86_EDX, (uint8_t)(15 - el));
OrX86RegToX86Reg(x86_ECX, x86_EDX);
XorX86RegToX86Reg(x86_EDX, x86_EDX);
TestConstToX86Reg(0xFFFF0000, x86_EAX);
Setnz(x86_EDX);
ShiftLeftSignImmed(x86_EDX, (uint8_t)(7 - el));
OrX86RegToX86Reg(x86_ECX, x86_EDX);
if (bWriteToAccum != false)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_EAX, &m_ACCUM[el].HW[1], Reg);
}
if (bWriteToDest != false)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
}
MoveX86regToVariable(x86_ECX, &m_Flags[0].UW, "m_Flags[0].UW");
#endif
}
void CRSPRecompilerOps::Vector_VSAW(void)
{
#ifndef CompileVsaw
Cheat_r4300iOpcode(&RSPOp::Vector_VSAW, "RSPOp::Vector_VSAW");
#else
char Reg[256];
uint32_t Word;
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
switch ((m_OpCode.rs & 0xF))
{
case 8: Word = 3; break;
case 9: Word = 2; break;
case 10: Word = 1; break;
default:
MoveConstToVariable(0, &m_Vect[m_OpCode.vd].u64(1), "m_Vect[m_OpCode.vd].s64(1)");
MoveConstToVariable(0, &m_Vect[m_OpCode.vd].u64(0), "m_Vect[m_OpCode.vd].s64(0)");
return;
}
sprintf(Reg, "m_ACCUM[1].HW[%i]", Word);
MoveVariableToX86regHalf(&m_ACCUM[1].HW[Word], Reg, x86_EAX);
sprintf(Reg, "m_ACCUM[3].HW[%i]", Word);
MoveVariableToX86regHalf(&m_ACCUM[3].HW[Word], Reg, x86_EBX);
sprintf(Reg, "m_ACCUM[5].HW[%i]", Word);
MoveVariableToX86regHalf(&m_ACCUM[5].HW[Word], Reg, x86_ECX);
sprintf(Reg, "m_ACCUM[7].HW[%i]", Word);
MoveVariableToX86regHalf(&m_ACCUM[7].HW[Word], Reg, x86_EDX);
ShiftLeftSignImmed(x86_EAX, 16);
ShiftLeftSignImmed(x86_EBX, 16);
ShiftLeftSignImmed(x86_ECX, 16);
ShiftLeftSignImmed(x86_EDX, 16);
sprintf(Reg, "m_ACCUM[0].HW[%i]", Word);
MoveVariableToX86regHalf(&m_ACCUM[0].HW[Word], Reg, x86_EAX);
sprintf(Reg, "m_ACCUM[2].HW[%i]", Word);
MoveVariableToX86regHalf(&m_ACCUM[2].HW[Word], Reg, x86_EBX);
sprintf(Reg, "m_ACCUM[4].HW[%i]", Word);
MoveVariableToX86regHalf(&m_ACCUM[4].HW[Word], Reg, x86_ECX);
sprintf(Reg, "m_ACCUM[6].HW[%i]", Word);
MoveVariableToX86regHalf(&m_ACCUM[6].HW[Word], Reg, x86_EDX);
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.sa);
MoveX86regToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(0), Reg);
sprintf(Reg, "m_Vect[%i].HW[2]", m_OpCode.sa);
MoveX86regToVariable(x86_EBX, &m_Vect[m_OpCode.vd].s16(2), Reg);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.sa);
MoveX86regToVariable(x86_ECX, &m_Vect[m_OpCode.vd].s16(4), Reg);
sprintf(Reg, "m_Vect[%i].HW[6]", m_OpCode.sa);
MoveX86regToVariable(x86_EDX, &m_Vect[m_OpCode.vd].s16(6), Reg);
#endif
}
void CRSPRecompilerOps::Vector_VLT(void)
{
#ifndef CompileVlt
Cheat_r4300iOpcode(&RSPOp::Vector_VLT, "&RSPOp::Vector_VLT");
#else
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
uint8_t * jump[3];
uint32_t flag;
char Reg[256];
uint8_t el, del, last;
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
last = (uint8_t)-1;
XorX86RegToX86Reg(x86_EBX, x86_EBX);
MoveVariableToX86reg(&m_Flags[0].UW, "&m_Flags[0].UW", x86_ESI);
for (el = 0; el < 8; el++)
{
del = EleSpec[m_OpCode.e].B[el];
flag = 0x101 << (7 - el);
if (del != el || m_OpCode.rt != m_OpCode.rd)
{
if (del != last)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_ECX);
last = del;
}
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EDX);
CompX86RegToX86Reg(x86_EDX, x86_ECX);
JgeLabel8("jge", 0);
jump[0] = (uint8_t *)(RecompPos - 1);
if (bWriteToAccum || bWriteToDest)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_EDX, &m_ACCUM[el].HW[1], Reg);
}
OrConstToX86Reg((flag & 0xFF), x86_EBX);
JmpLabel8("jmp", 0);
jump[1] = (uint8_t *)(RecompPos - 1);
x86_SetBranch8b(jump[0], RecompPos);
if (bWriteToAccum || bWriteToDest)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_ECX, &m_ACCUM[el].HW[1], Reg);
}
JneLabel8("jne", 0);
jump[2] = (uint8_t *)(RecompPos - 1);
MoveX86RegToX86Reg(x86_ESI, x86_EDI);
AndConstToX86Reg(x86_EDI, flag);
ShiftRightUnsignImmed(x86_EDI, 8);
AndX86RegToX86Reg(x86_EDI, x86_ESI);
OrX86RegToX86Reg(x86_EBX, x86_EDI);
x86_SetBranch8b(jump[2], RecompPos);
x86_SetBranch8b(jump[1], RecompPos);
}
else
{
MoveX86RegToX86Reg(x86_ESI, x86_EDI);
if (bWriteToAccum || bWriteToDest)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_ECX, &m_ACCUM[el].HW[1], Reg);
}
AndConstToX86Reg(x86_EDI, flag);
ShiftRightUnsignImmed(x86_EDI, 8);
AndX86RegToX86Reg(x86_EDI, x86_ESI);
OrX86RegToX86Reg(x86_EBX, x86_EDI);
}
}
MoveConstToVariable(0, &m_Flags[0].UW, "m_Flags[0].UW");
MoveX86regToVariable(x86_EBX, &m_Flags[1].UW, "m_Flags[1].UW");
if (bWriteToDest != false)
{
for (el = 0; el < 8; el += 2)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveVariableToX86regHalf(&m_ACCUM[el].HW[1], Reg, x86_EAX);
sprintf(Reg, "m_ACCUM[%i].HW[1]", el + 1);
MoveVariableToX86regHalf(&m_ACCUM[el + 1].HW[1], Reg, x86_ECX);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el + 1);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vd].s16(el + 1), Reg);
}
}
#endif
}
void CRSPRecompilerOps::Vector_VEQ(void)
{
#ifndef CompileVeq
Cheat_r4300iOpcode(&RSPOp::Vector_VEQ, "&RSPOp::Vector_VEQ");
#else
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
uint32_t flag;
char Reg[256];
uint8_t count, el, del, last = (uint8_t)-1;
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
MoveZxVariableToX86regHalf(&m_Flags[0].UHW[1], "&m_Flags[0].UHW[1]", x86_EBX);
XorConstToX86Reg(x86_EBX, 0xFFFF);
for (el = 0; el < 8; el++)
{
del = EleSpec[m_OpCode.e].B[el];
flag = (0x101 << (7 - el)) ^ 0xFFFF;
if (del != el || m_OpCode.rt != m_OpCode.rd)
{
if (del != last)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_ECX);
last = del;
}
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EDX);
if (bWriteToAccum)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_ECX, &m_ACCUM[el].HW[1], Reg);
}
SubX86RegToX86Reg(x86_EDX, x86_ECX);
CompConstToX86reg(x86_EDX, 1);
SbbX86RegToX86Reg(x86_EDX, x86_EDX);
OrConstToX86Reg(flag, x86_EDX);
AndX86RegToX86Reg(x86_EBX, x86_EDX);
}
else
{
if (bWriteToAccum)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_ECX, &m_ACCUM[el].HW[1], Reg);
}
}
}
MoveConstToVariable(0, &m_Flags[0].UW, "m_Flags[0].UW");
MoveX86regToVariable(x86_EBX, &m_Flags[1].UW, "m_Flags[1].UW");
if (bWriteToDest != false)
{
for (count = 0; count < 8; count++)
{
el = EleSpec[m_OpCode.e].B[count];
if (el != last)
{
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.rt, el);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].u16(el), Reg, x86_EDX);
last = el;
}
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, count);
MoveX86regHalfToVariable(x86_EDX, &m_Vect[m_OpCode.vd].s16(count), Reg);
}
}
#endif
}
void CRSPRecompilerOps::Vector_VNE(void)
{
#ifndef CompileVne
Cheat_r4300iOpcode(&RSPOp::Vector_VNE, "&RSPOp::Vector_VNE");
#else
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
uint32_t flag;
char Reg[256];
uint8_t el, del, last = (uint8_t)-1;
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
MoveZxVariableToX86regHalf(&m_Flags[0].UHW[1], "&m_Flags[0].UHW[1]", x86_EBX);
for (el = 0; el < 8; el++)
{
del = EleSpec[m_OpCode.e].B[el];
flag = 0x101 << (7 - el);
if (del != el || m_OpCode.rt != m_OpCode.rd)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EDX);
if (del != last)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_ECX);
last = del;
}
if (bWriteToAccum)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_EDX, &m_ACCUM[el].HW[1], Reg);
}
SubX86RegToX86Reg(x86_EDX, x86_ECX);
NegateX86reg(x86_EDX);
SbbX86RegToX86Reg(x86_EDX, x86_EDX);
AndConstToX86Reg(x86_EDX, flag);
OrX86RegToX86Reg(x86_EBX, x86_EDX);
}
else
{
if (bWriteToAccum)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_EDX, &m_ACCUM[el].HW[1], Reg);
}
}
}
MoveConstToVariable(0, &m_Flags[0].UW, "m_Flags[0].UW");
MoveX86regToVariable(x86_EBX, &m_Flags[1].UW, "m_Flags[1].UW");
if (bWriteToDest != false)
{
for (el = 0; el < 4; el++)
{
sprintf(Reg, "m_Vect[%i].W[%i]", m_OpCode.rd, el);
MoveVariableToX86reg(&m_Vect[m_OpCode.vs].s32(el), Reg, x86_EDX);
sprintf(Reg, "m_Vect[%i].W[%i]", m_OpCode.sa, el);
MoveX86regToVariable(x86_EDX, &m_Vect[m_OpCode.vd].s32(el), Reg);
}
}
#endif
}
bool CRSPRecompilerOps::Compile_Vector_VGE_MMX(void)
{
char Reg[256];
if ((m_OpCode.rs & 0xF) >= 2 && !(m_OpCode.rs & 8) && IsMmx2Enabled == false)
return false;
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
MoveConstToVariable(0, &m_Flags[1].UW, "m_Flags[1].UW");
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM0, &m_Vect[m_OpCode.vs].s16(0), Reg);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM1, &m_Vect[m_OpCode.vs].s16(4), Reg);
MmxMoveRegToReg(x86_MM2, x86_MM0);
MmxMoveRegToReg(x86_MM3, x86_MM1);
if ((m_OpCode.rs & 0x0f) < 2)
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MmxMoveQwordVariableToReg(x86_MM4, &m_Vect[m_OpCode.vt].s16(0), Reg);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rt);
MmxMoveQwordVariableToReg(x86_MM5, &m_Vect[m_OpCode.vt].s16(4), Reg);
}
else if (m_OpCode.rs & 8)
{
RSP_Element2Mmx(x86_MM4);
}
else
{
RSP_MultiElement2Mmx(x86_MM4, x86_MM5);
}
MmxCompareGreaterWordRegToReg(x86_MM2, x86_MM4);
MmxCompareGreaterWordRegToReg(x86_MM3, (m_OpCode.rs & 8) ? x86_MM4 : x86_MM5);
MmxPandRegToReg(x86_MM0, x86_MM2);
MmxPandRegToReg(x86_MM1, x86_MM3);
MmxPandnRegToReg(x86_MM2, x86_MM4);
MmxPandnRegToReg(x86_MM3, (m_OpCode.rs & 8) ? x86_MM4 : x86_MM5);
MmxPorRegToReg(x86_MM0, x86_MM2);
MmxPorRegToReg(x86_MM1, x86_MM3);
MoveConstToVariable(0, &m_Flags[0].UW, "m_Flags[0].UW");
return true;
}
void CRSPRecompilerOps::Vector_VGE(void)
{
#ifndef CompileVge
Cheat_r4300iOpcode(&RSPOp::Vector_VGE, "&RSPOp::Vector_VGE");
#else
/*
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
TODO: works ok, but needs careful flag analysis */
/* #if defined (DLIST)
if (bWriteToAccum == false && true == Compile_Vector_VGE_MMX()) {
return;
}
#endif
*/
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
uint8_t * jump[3];
uint32_t flag;
char Reg[256];
uint8_t el, del, last = (uint8_t)-1;
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
XorX86RegToX86Reg(x86_EBX, x86_EBX);
MoveVariableToX86reg(&m_Flags[0].UW, "&m_Flags[0].UW", x86_ESI);
for (el = 0; el < 8; el++)
{
del = EleSpec[m_OpCode.e].B[el];
flag = 0x101 << (7 - el);
if (del != el || m_OpCode.rt != m_OpCode.rd)
{
if (del != last)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_ECX);
last = del;
}
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EDX);
CompX86RegToX86Reg(x86_EDX, x86_ECX);
JleLabel8("jle", 0);
jump[0] = (uint8_t *)(RecompPos - 1);
if (bWriteToAccum || bWriteToDest)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_EDX, &m_ACCUM[el].HW[1], Reg);
}
OrConstToX86Reg((flag & 0xFF), x86_EBX);
JmpLabel8("jmp", 0);
jump[1] = (uint8_t *)(RecompPos - 1);
x86_SetBranch8b(jump[0], RecompPos);
if (bWriteToAccum || bWriteToDest)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_ECX, &m_ACCUM[el].HW[1], Reg);
}
JneLabel8("jne", 0);
jump[2] = (uint8_t *)(RecompPos - 1);
MoveX86RegToX86Reg(x86_ESI, x86_EDI);
AndConstToX86Reg(x86_EDI, flag);
SubConstFromX86Reg(x86_EDI, flag);
ShiftRightSignImmed(x86_EDI, 31);
AndConstToX86Reg(x86_EDI, (flag & 0xFF));
OrX86RegToX86Reg(x86_EBX, x86_EDI);
x86_SetBranch8b(jump[1], RecompPos);
x86_SetBranch8b(jump[2], RecompPos);
}
else
{
MoveX86RegToX86Reg(x86_ESI, x86_EDI);
if (bWriteToAccum || bWriteToDest)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_ECX, &m_ACCUM[el].HW[1], Reg);
}
AndConstToX86Reg(x86_EDI, flag);
SubConstFromX86Reg(x86_EDI, flag);
ShiftRightSignImmed(x86_EDI, 31);
AndConstToX86Reg(x86_EDI, (flag & 0xFF));
OrX86RegToX86Reg(x86_EBX, x86_EDI);
}
}
MoveConstToVariable(0, &m_Flags[0].UW, "m_Flags[0].UW");
MoveX86regToVariable(x86_EBX, &m_Flags[1].UW, "m_Flags[1].UW");
if (bWriteToDest != false)
{
for (el = 0; el < 8; el += 2)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el + 0);
MoveVariableToX86regHalf(&m_ACCUM[el].HW[1], Reg, x86_EAX);
sprintf(Reg, "m_ACCUM[%i].HW[1]", el + 1);
MoveVariableToX86regHalf(&m_ACCUM[el + 1].HW[1], Reg, x86_ECX);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el + 0);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el + 0), Reg);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el + 1);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vd].s16(el + 1), Reg);
}
}
#endif
}
void CRSPRecompilerOps::Vector_VCL(void)
{
Cheat_r4300iOpcode(&RSPOp::Vector_VCL, "RSPOp::Vector_VCL");
}
void CRSPRecompilerOps::Vector_VCH(void)
{
Cheat_r4300iOpcode(&RSPOp::Vector_VCH, "RSPOp::Vector_VCH");
}
void CRSPRecompilerOps::Vector_VCR(void)
{
Cheat_r4300iOpcode(&RSPOp::Vector_VCR, "RSPOp::Vector_VCR");
}
void CRSPRecompilerOps::Vector_VMRG(void)
{
#ifndef CompileVmrg
Cheat_r4300iOpcode(&RSPOp::Vector_VMRG, "&RSPOp::Vector_VMRG");
#else
char Reg[256];
uint8_t count, el, del;
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
MoveVariableToX86reg(&m_Flags[1].UW, "m_Flags[1].UW", x86_EDX);
for (count = 0; count < 8; count++)
{
el = Indx[m_OpCode.e].UB[count];
del = EleSpec[m_OpCode.e].UB[el];
CPU_Message(" Iteration: %i", count);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveZxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
TestConstToX86Reg(1 << (7 - el), x86_EDX);
CondMoveNotEqual(x86_ECX, x86_EAX);
CondMoveEqual(x86_ECX, x86_EBX);
if (bWriteToAccum)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_ECX, &m_ACCUM[el].HW[1], Reg);
}
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
#endif
}
bool CRSPRecompilerOps::Compile_Vector_VAND_MMX(void)
{
char Reg[256];
// Do our MMX checks here
if (!IsMmxEnabled)
return false;
if ((m_OpCode.rs & 0x0f) >= 2 && !(m_OpCode.rs & 8) && IsMmx2Enabled == false)
return false;
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM0, &m_Vect[m_OpCode.vs].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM1, &m_Vect[m_OpCode.vs].u16(4), Reg);
if (m_OpCode.rs & 8)
{
RSP_Element2Mmx(x86_MM2);
MmxPandRegToReg(x86_MM0, x86_MM2);
MmxPandRegToReg(x86_MM1, x86_MM2);
}
else if ((m_OpCode.rs & 0xF) < 2)
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MmxPandVariableToReg(&m_Vect[m_OpCode.vt].s16(0), Reg, x86_MM0);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rt);
MmxPandVariableToReg(&m_Vect[m_OpCode.vt].s16(4), Reg, x86_MM1);
}
else
{
RSP_MultiElement2Mmx(x86_MM2, x86_MM3);
MmxPandRegToReg(x86_MM0, x86_MM2);
MmxPandRegToReg(x86_MM1, x86_MM3);
}
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM0, &m_Vect[m_OpCode.vd].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM1, &m_Vect[m_OpCode.vd].u16(4), Reg);
if (!IsNextInstructionMmx(m_CompilePC))
MmxEmptyMultimediaState();
return true;
}
void CRSPRecompilerOps::Vector_VAND(void)
{
#ifndef CompileVand
Cheat_r4300iOpcode(&RSPOp::Vector_VAND, "RSPOp::Vector_VAND");
#else
char Reg[256];
uint8_t el, del, count;
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
bool bElement = (m_OpCode.rs & 8) ? true : false;
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (!bWriteToAccum)
{
if (true == Compile_Vector_VAND_MMX())
return;
}
if (bElement == true)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
for (count = 0; count < 8; count++)
{
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
CPU_Message(" Iteration: %i", count);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);
if (bElement == false)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
AndVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EAX);
}
else
{
AndX86RegHalfToX86RegHalf(x86_EAX, x86_EBX);
}
if (bWriteToDest != false)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
if (bWriteToAccum != false)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_EAX, &m_ACCUM[el].HW[1], Reg);
}
}
#endif
}
bool CRSPRecompilerOps::Compile_Vector_VNAND_MMX(void)
{
char Reg[256];
// Do our MMX checks here
if (!IsMmxEnabled)
return false;
if ((m_OpCode.rs & 0x0f) >= 2 && !(m_OpCode.rs & 8) && IsMmx2Enabled == false)
return false;
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM0, &m_Vect[m_OpCode.vs].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM1, &m_Vect[m_OpCode.vs].u16(4), Reg);
MmxPcmpeqwRegToReg(x86_MM7, x86_MM7);
if (m_OpCode.rs & 8)
{
RSP_Element2Mmx(x86_MM2);
MmxPandRegToReg(x86_MM0, x86_MM2);
MmxPandRegToReg(x86_MM1, x86_MM2);
}
else if ((m_OpCode.rs & 0xF) < 2)
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MmxPandVariableToReg(&m_Vect[m_OpCode.vt].s16(0), Reg, x86_MM0);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rt);
MmxPandVariableToReg(&m_Vect[m_OpCode.vt].s16(4), Reg, x86_MM1);
}
else
{
RSP_MultiElement2Mmx(x86_MM2, x86_MM3);
MmxPandRegToReg(x86_MM0, x86_MM2);
MmxPandRegToReg(x86_MM1, x86_MM3);
}
MmxXorRegToReg(x86_MM0, x86_MM7);
MmxXorRegToReg(x86_MM1, x86_MM7);
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM0, &m_Vect[m_OpCode.vd].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM1, &m_Vect[m_OpCode.vd].u16(4), Reg);
if (!IsNextInstructionMmx(m_CompilePC))
MmxEmptyMultimediaState();
return true;
}
void CRSPRecompilerOps::Vector_VNAND(void)
{
#ifndef CompileVnand
Cheat_r4300iOpcode(&RSPOp::Vector_VNAND, "&RSPOp::Vector_VNAND");
#else
char Reg[256];
uint8_t el, del, count;
bool bWriteToDest = WriteToVectorDest(m_OpCode.sa, m_CompilePC);
bool bElement = (m_OpCode.rs & 8) ? true : false;
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (!bWriteToAccum)
{
if (true == Compile_Vector_VNAND_MMX())
return;
}
if (bElement == true)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
for (count = 0; count < 8; count++)
{
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
CPU_Message(" Iteration: %i", count);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);
if (bElement == false)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
AndVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EAX);
}
else
{
AndX86RegHalfToX86RegHalf(x86_EAX, x86_EBX);
}
NotX86reg(x86_EAX);
if (bWriteToDest != false)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
if (bWriteToAccum != false)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_EAX, &m_ACCUM[el].HW[1], Reg);
}
}
#endif
}
bool CRSPRecompilerOps::Compile_Vector_VOR_MMX(void)
{
char Reg[256];
// Do our MMX checks here
if (!IsMmxEnabled)
return false;
if ((m_OpCode.rs & 0x0f) >= 2 && !(m_OpCode.rs & 8) && IsMmx2Enabled == false)
return false;
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM0, &m_Vect[m_OpCode.vs].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM1, &m_Vect[m_OpCode.vs].u16(4), Reg);
if ((m_OpCode.rs & 0xF) < 2 && (m_OpCode.rd == m_OpCode.rt))
{
}
else if (m_OpCode.rs & 8)
{
RSP_Element2Mmx(x86_MM2);
MmxPorRegToReg(x86_MM0, x86_MM2);
MmxPorRegToReg(x86_MM1, x86_MM2);
}
else if ((m_OpCode.rs & 0xF) < 2)
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MmxPorVariableToReg(&m_Vect[m_OpCode.vt].s16(0), Reg, x86_MM0);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rt);
MmxPorVariableToReg(&m_Vect[m_OpCode.vt].s16(4), Reg, x86_MM1);
}
else
{
RSP_MultiElement2Mmx(x86_MM2, x86_MM3);
MmxPorRegToReg(x86_MM0, x86_MM2);
MmxPorRegToReg(x86_MM1, x86_MM3);
}
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM0, &m_Vect[m_OpCode.vd].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM1, &m_Vect[m_OpCode.vd].u16(4), Reg);
if (!IsNextInstructionMmx(m_CompilePC))
MmxEmptyMultimediaState();
return true;
}
void CRSPRecompilerOps::Vector_VOR(void)
{
#ifndef CompileVor
Cheat_r4300iOpcode(&RSPOp::Vector_VOR, "RSPOp::Vector_VOR");
#else
char Reg[256];
uint8_t el, del, count;
bool bElement = (m_OpCode.rs & 8) ? true : false;
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (!bWriteToAccum)
{
if (true == Compile_Vector_VOR_MMX())
return;
}
if (bElement == true)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
for (count = 0; count < 8; count++)
{
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
CPU_Message(" Iteration: %i", count);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);
if (bElement == false)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
OrVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EAX);
}
else
{
OrX86RegToX86Reg(x86_EAX, x86_EBX);
}
if (bWriteToAccum != false)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_EAX, &m_ACCUM[el].HW[1], Reg);
}
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
#endif
}
bool CRSPRecompilerOps::Compile_Vector_VNOR_MMX(void)
{
char Reg[256];
// Do our MMX checks here
if (!IsMmxEnabled)
return false;
if ((m_OpCode.rs & 0x0f) >= 2 && !(m_OpCode.rs & 8) && IsMmx2Enabled == false)
return false;
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM0, &m_Vect[m_OpCode.vs].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM1, &m_Vect[m_OpCode.vs].u16(4), Reg);
MmxPcmpeqwRegToReg(x86_MM7, x86_MM7);
if (m_OpCode.rs & 8)
{
RSP_Element2Mmx(x86_MM2);
MmxPorRegToReg(x86_MM0, x86_MM2);
MmxPorRegToReg(x86_MM1, x86_MM2);
}
else if ((m_OpCode.rs & 0xF) < 2)
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MmxPorVariableToReg(&m_Vect[m_OpCode.vt].s16(0), Reg, x86_MM0);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rt);
MmxPorVariableToReg(&m_Vect[m_OpCode.vt].s16(4), Reg, x86_MM1);
}
else
{
RSP_MultiElement2Mmx(x86_MM2, x86_MM3);
MmxPorRegToReg(x86_MM0, x86_MM2);
MmxPorRegToReg(x86_MM1, x86_MM3);
}
MmxXorRegToReg(x86_MM0, x86_MM7);
MmxXorRegToReg(x86_MM1, x86_MM7);
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM0, &m_Vect[m_OpCode.vd].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM1, &m_Vect[m_OpCode.vd].u16(4), Reg);
if (!IsNextInstructionMmx(m_CompilePC))
MmxEmptyMultimediaState();
return true;
}
void CRSPRecompilerOps::Vector_VNOR(void)
{
#ifndef CompileVnor
Cheat_r4300iOpcode(&RSPOp::Vector_VNOR, "&RSPOp::Vector_VNOR");
#else
char Reg[256];
uint8_t el, del, count;
bool bElement = (m_OpCode.rs & 8) ? true : false;
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (!bWriteToAccum)
{
if (true == Compile_Vector_VNOR_MMX())
return;
}
if (bElement == true)
{
del = (m_OpCode.rs & 0x07) ^ 7;
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EBX);
}
for (count = 0; count < 8; count++)
{
el = Indx[m_OpCode.e].B[count];
del = EleSpec[m_OpCode.e].B[el];
CPU_Message(" Iteration: %i", count);
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rd, el);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vs].s16(el), Reg, x86_EAX);
if (bElement == false)
{
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.rt, del);
OrVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(del), Reg, x86_EAX);
}
else
{
OrX86RegToX86Reg(x86_EAX, x86_EBX);
}
NotX86reg(x86_EAX);
if (bWriteToAccum != false)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", el);
MoveX86regHalfToVariable(x86_EAX, &m_ACCUM[el].HW[1], Reg);
}
sprintf(Reg, "m_Vect[%i].HW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
}
#endif
}
bool CRSPRecompilerOps::Compile_Vector_VXOR_MMX(void)
{
char Reg[256];
// Do our MMX checks here
if (!IsMmxEnabled)
return false;
if ((m_OpCode.rs & 0x0f) >= 2 && !(m_OpCode.rs & 8) && IsMmx2Enabled == false)
return false;
if ((m_OpCode.rs & 0xF) < 2 && (m_OpCode.rd == m_OpCode.rt))
{
static uint32_t VXOR_DynaRegCount = 0;
MmxXorRegToReg(VXOR_DynaRegCount, VXOR_DynaRegCount);
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(VXOR_DynaRegCount, &m_Vect[m_OpCode.vd].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(VXOR_DynaRegCount, &m_Vect[m_OpCode.vd].u16(4), Reg);
VXOR_DynaRegCount = (VXOR_DynaRegCount + 1) & 7;
}
else
{
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM0, &m_Vect[m_OpCode.vs].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM1, &m_Vect[m_OpCode.vs].u16(4), Reg);
if (m_OpCode.rs & 8)
{
RSP_Element2Mmx(x86_MM2);
MmxXorRegToReg(x86_MM0, x86_MM2);
MmxXorRegToReg(x86_MM1, x86_MM2);
}
else if ((m_OpCode.rs & 0xF) < 2)
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MmxMoveQwordVariableToReg(x86_MM2, &m_Vect[m_OpCode.vt].s16(0), Reg);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rt);
MmxMoveQwordVariableToReg(x86_MM3, &m_Vect[m_OpCode.vt].s16(4), Reg);
MmxXorRegToReg(x86_MM0, x86_MM2);
MmxXorRegToReg(x86_MM1, x86_MM3);
}
else
{
RSP_MultiElement2Mmx(x86_MM2, x86_MM3);
MmxXorRegToReg(x86_MM0, x86_MM2);
MmxXorRegToReg(x86_MM1, x86_MM3);
}
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM0, &m_Vect[m_OpCode.vd].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM1, &m_Vect[m_OpCode.vd].u16(4), Reg);
}
if (!IsNextInstructionMmx(m_CompilePC))
MmxEmptyMultimediaState();
return true;
}
void CRSPRecompilerOps::Vector_VXOR(void)
{
#ifdef CompileVxor
char Reg[256];
uint32_t count;
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (!bWriteToAccum || ((m_OpCode.rs & 0xF) < 2 && m_OpCode.rd == m_OpCode.rt))
{
if (true == Compile_Vector_VXOR_MMX())
{
if (bWriteToAccum)
{
XorX86RegToX86Reg(x86_EAX, x86_EAX);
for (count = 0; count < 8; count++)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", count);
MoveX86regHalfToVariable(x86_EAX, &m_ACCUM[count].HW[1], Reg);
}
}
return;
}
}
#endif
Cheat_r4300iOpcodeNoMessage(&RSPOp::Vector_VXOR, "RSPOp::Vector_VXOR");
}
bool CRSPRecompilerOps::Compile_Vector_VNXOR_MMX(void)
{
char Reg[256];
// Do our MMX checks here
if (!IsMmxEnabled)
return false;
if ((m_OpCode.rs & 0x0f) >= 2 && !(m_OpCode.rs & 8) && IsMmx2Enabled == false)
return false;
if ((m_OpCode.rs & 0xF) < 2 && (m_OpCode.rd == m_OpCode.rt))
{
static uint32_t VNXOR_DynaRegCount = 0;
MmxPcmpeqwRegToReg(VNXOR_DynaRegCount, VNXOR_DynaRegCount);
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(VNXOR_DynaRegCount, &m_Vect[m_OpCode.vd].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(VNXOR_DynaRegCount, &m_Vect[m_OpCode.vd].u16(4), Reg);
VNXOR_DynaRegCount = (VNXOR_DynaRegCount + 1) & 7;
}
else
{
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM0, &m_Vect[m_OpCode.vs].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.rd);
MmxMoveQwordVariableToReg(x86_MM1, &m_Vect[m_OpCode.vs].u16(4), Reg);
MmxPcmpeqwRegToReg(x86_MM7, x86_MM7);
if (m_OpCode.rs & 8)
{
RSP_Element2Mmx(x86_MM2);
MmxXorRegToReg(x86_MM0, x86_MM2);
MmxXorRegToReg(x86_MM1, x86_MM2);
}
else if ((m_OpCode.rs & 0xF) < 2)
{
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MmxMoveQwordVariableToReg(x86_MM2, &m_Vect[m_OpCode.vt].s16(0), Reg);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rt);
MmxMoveQwordVariableToReg(x86_MM3, &m_Vect[m_OpCode.vt].s16(4), Reg);
MmxXorRegToReg(x86_MM0, x86_MM2);
MmxXorRegToReg(x86_MM1, x86_MM3);
}
else
{
RSP_MultiElement2Mmx(x86_MM2, x86_MM3);
MmxXorRegToReg(x86_MM0, x86_MM2);
MmxXorRegToReg(x86_MM1, x86_MM3);
}
MmxXorRegToReg(x86_MM0, x86_MM7);
MmxXorRegToReg(x86_MM1, x86_MM7);
sprintf(Reg, "m_Vect[%i].UHW[0]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM0, &m_Vect[m_OpCode.vd].u16(0), Reg);
sprintf(Reg, "m_Vect[%i].UHW[4]", m_OpCode.sa);
MmxMoveQwordRegToVariable(x86_MM1, &m_Vect[m_OpCode.vd].u16(4), Reg);
}
if (!IsNextInstructionMmx(m_CompilePC))
MmxEmptyMultimediaState();
return true;
}
void CRSPRecompilerOps::Vector_VNXOR(void)
{
#ifdef CompileVnxor
char Reg[256];
uint32_t count;
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (!bWriteToAccum || ((m_OpCode.rs & 0xF) < 2 && m_OpCode.rd == m_OpCode.rt))
{
if (true == Compile_Vector_VNXOR_MMX())
{
if (bWriteToAccum)
{
OrConstToX86Reg(0xFFFFFFFF, x86_EAX);
for (count = 0; count < 8; count++)
{
sprintf(Reg, "m_ACCUM[%i].HW[1]", count);
MoveX86regHalfToVariable(x86_EAX, &m_ACCUM[count].HW[1], Reg);
}
}
return;
}
}
#endif
Cheat_r4300iOpcode(&RSPOp::Vector_VNXOR, "RSPOp::Vector_VNXOR");
}
void CRSPRecompilerOps::Vector_VRCP(void)
{
#ifndef CompileVrcp
Cheat_r4300iOpcode(&RSPOp::Vector_VRCP, "&RSPOp::Vector_VRCP");
#else
char Reg[256];
uint8_t count, el, last;
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
uint32_t * end = NULL;
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
el = EleSpec[m_OpCode.e].B[(m_OpCode.rd & 0x7)];
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.rt, el);
MoveSxVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(el), Reg, x86_ESI);
MoveConstToX86reg(0x7FFFFFFF, x86_EAX);
TestX86RegToX86Reg(x86_ESI, x86_ESI);
MoveX86RegToX86Reg(x86_ESI, x86_EDI);
JeLabel32("Done", 0);
end = (uint32_t *)(RecompPos - 4);
MoveConstToX86reg(0xFFC0, x86_EBX);
ShiftRightSignImmed(x86_ESI, 31);
XorX86RegToX86Reg(x86_EDX, x86_EDX);
XorX86RegToX86Reg(x86_EDI, x86_ESI);
SubX86RegToX86Reg(x86_EDI, x86_ESI);
BsrX86RegToX86Reg(x86_ECX, x86_EDI);
XorConstToX86Reg(x86_ECX, 15);
ShiftRightUnsign(x86_EBX);
AndX86RegToX86Reg(x86_EDI, x86_EBX);
idivX86reg(x86_EDI);
MoveConstToX86reg(0xFFFF8000, x86_EBX);
BsrX86RegToX86Reg(x86_ECX, x86_EAX);
XorConstToX86Reg(x86_ECX, 31);
ShiftRightUnsign(x86_EBX);
AndX86RegToX86Reg(x86_EAX, x86_EBX);
XorX86RegToX86Reg(x86_EAX, x86_ESI);
x86_SetBranch32b(end, RecompPos);
if (bWriteToAccum != false)
{
last = (uint8_t)-1;
for (count = 0; count < 8; count++)
{
el = EleSpec[m_OpCode.e].B[count];
if (el != last)
{
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.rt, el);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].u16(el), Reg, x86_ECX);
last = el;
}
sprintf(Reg, "m_ACCUM[%i].HW[1]", count);
MoveX86regHalfToVariable(x86_ECX, &m_ACCUM[count].HW[1], Reg);
}
}
el = 7 - (m_OpCode.rd & 0x7);
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
MoveX86regToVariable(x86_EAX, &RecpResult.W, "RecpResult.W");
#endif
}
void CRSPRecompilerOps::Vector_VRCPL(void)
{
#ifndef CompileVrcpl
Cheat_r4300iOpcode(&RSPOp::Vector_VRCPL, "RSPOp::Vector_VRCPL");
#else
char Reg[256];
uint8_t count, el, last;
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
uint32_t * end = NULL;
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
el = EleSpec[m_OpCode.e].B[(m_OpCode.rd & 0x7)];
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.rt, el);
MoveVariableToX86reg(&Recp.W, "Recp.W", x86_ESI);
OrVariableToX86regHalf(&m_Vect[m_OpCode.vt].s16(el), Reg, x86_ESI);
MoveConstToX86reg(0x7FFFFFFF, x86_EAX);
TestX86RegToX86Reg(x86_ESI, x86_ESI);
MoveX86RegToX86Reg(x86_ESI, x86_EDI);
JeLabel32("Done", 0);
end = (uint32_t *)(RecompPos - 4);
MoveConstToX86reg(0xFFC00000, x86_EBX);
ShiftRightSignImmed(x86_ESI, 31);
MoveX86RegToX86Reg(x86_EDI, x86_ECX);
MoveZxX86RegHalfToX86Reg(x86_EDI, x86_EDX);
OrConstToX86Reg(0xFFFF, x86_ECX);
ShiftRightUnsignImmed(x86_EDX, 15);
XorX86RegToX86Reg(x86_EDI, x86_ESI);
AddX86RegToX86Reg(x86_ECX, x86_EDX);
AdcConstToX86reg(0, x86_EDI);
XorX86RegToX86Reg(x86_EDX, x86_EDX);
BsrX86RegToX86Reg(x86_ECX, x86_EDI);
XorConstToX86Reg(x86_ECX, 31);
ShiftRightUnsign(x86_EBX);
AndX86RegToX86Reg(x86_EDI, x86_EBX);
idivX86reg(x86_EDI);
MoveConstToX86reg(0xFFFF8000, x86_EBX);
BsrX86RegToX86Reg(x86_ECX, x86_EAX);
XorConstToX86Reg(x86_ECX, 31);
ShiftRightUnsign(x86_EBX);
AndX86RegToX86Reg(x86_EAX, x86_EBX);
XorX86RegToX86Reg(x86_EAX, x86_ESI);
x86_SetBranch32b(end, RecompPos);
if (bWriteToAccum != false)
{
last = (uint8_t)-1;
for (count = 0; count < 8; count++)
{
el = EleSpec[m_OpCode.e].B[count];
if (el != last)
{
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.rt, el);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].u16(el), Reg, x86_ECX);
last = el;
}
sprintf(Reg, "m_ACCUM[%i].HW[1]", count);
MoveX86regHalfToVariable(x86_ECX, &m_ACCUM[count].HW[1], Reg);
}
}
el = 7 - (m_OpCode.rd & 0x7);
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_EAX, &m_Vect[m_OpCode.vd].s16(el), Reg);
MoveX86regToVariable(x86_EAX, &RecpResult.W, "RecpResult.W");
#endif
}
void CRSPRecompilerOps::Vector_VRCPH(void)
{
#ifndef CompileVrcph
Cheat_r4300iOpcode(&RSPOp::Vector_VRCPH, "&RSPOp::Vector_VRCPH");
#else
char Reg[256];
uint8_t count, el, last;
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
el = EleSpec[m_OpCode.e].B[(m_OpCode.rd & 0x7)];
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.rt, el);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].u16(el), Reg, x86_EDX);
MoveX86regHalfToVariable(x86_EDX, &Recp.UHW[1], "Recp.UHW[1]");
MoveVariableToX86regHalf(&RecpResult.UHW[1], "RecpResult.UHW[1]", x86_ECX);
if (bWriteToAccum != false)
{
last = (uint8_t)-1;
for (count = 0; count < 8; count++)
{
el = EleSpec[m_OpCode.e].B[count];
if (el != last)
{
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.rt, el);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].u16(el), Reg, x86_EAX);
last = el;
}
sprintf(Reg, "m_ACCUM[%i].HW[1]", count);
MoveX86regHalfToVariable(x86_EAX, &m_ACCUM[count].HW[1], Reg);
}
}
el = 7 - (m_OpCode.rd & 0x7);
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vd].u16(el), Reg);
#endif
}
void CRSPRecompilerOps::Vector_VMOV(void)
{
#ifndef CompileVmov
Cheat_r4300iOpcode(&RSPOp::Vector_VMOV, "&RSPOp::Vector_VMOV");
#else
char Reg[256];
uint8_t el, count;
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (bWriteToAccum)
{
for (count = 0; count < 8; count++)
{
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.rt, EleSpec[m_OpCode.e].B[count]);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].u16(EleSpec[m_OpCode.e].B[count]), Reg, x86_EAX);
sprintf(Reg, "m_ACCUM[%i].HW[1]", count);
MoveX86regHalfToVariable(x86_EAX, &m_ACCUM[count].HW[1], Reg);
}
}
el = EleSpec[m_OpCode.e].B[(m_OpCode.rd & 0x7)];
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.rt, el);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].u16(el), Reg, x86_ECX);
el = 7 - (m_OpCode.rd & 0x7);
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vd].u16(el), Reg);
#endif
}
void CRSPRecompilerOps::Vector_VRSQ(void)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
Cheat_r4300iOpcodeNoMessage(&RSPOp::Vector_VRSQ, "RSPOp::Vector_VRSQ");
}
void CRSPRecompilerOps::Vector_VRSQL(void)
{
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
Cheat_r4300iOpcodeNoMessage(&RSPOp::Vector_VRSQL, "RSPOp::Vector_VRSQL");
}
void CRSPRecompilerOps::Vector_VRSQH(void)
{
#ifndef CompileVrsqh
Cheat_r4300iOpcode(&RSPOp::Vector_VRSQH, "RSPOp::Vector_VRSQH");
#else
char Reg[256];
uint8_t count, el, last;
bool bWriteToAccum = WriteToAccum(Low16BitAccum, m_CompilePC);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
el = EleSpec[m_OpCode.e].B[(m_OpCode.rd & 0x7)];
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.rt, el);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].u16(el), Reg, x86_EDX);
MoveX86regHalfToVariable(x86_EDX, &SQroot.UHW[1], "SQroot.UHW[1]");
MoveVariableToX86regHalf(&SQrootResult.UHW[1], "SQrootResult.UHW[1]", x86_ECX);
if (bWriteToAccum != false)
{
last = (uint8_t)-1;
for (count = 0; count < 8; count++)
{
el = EleSpec[m_OpCode.e].B[count];
if (el != last)
{
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.rt, el);
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].u16(el), Reg, x86_EAX);
last = el;
}
sprintf(Reg, "m_ACCUM[%i].HW[1]", count);
MoveX86regHalfToVariable(x86_EAX, &m_ACCUM[count].HW[1], Reg);
}
}
el = 7 - (m_OpCode.rd & 0x7);
sprintf(Reg, "m_Vect[%i].UHW[%i]", m_OpCode.sa, el);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vd].u16(el), Reg);
#endif
}
void CRSPRecompilerOps::Vector_VNOOP(void)
{
}
void CRSPRecompilerOps::Vector_Reserved(void)
{
Cheat_r4300iOpcode(&RSPOp::Vector_Reserved, "&RSPOp::Vector_Reserved");
}
// LC2 functions
void CRSPRecompilerOps::Opcode_LBV(void)
{
#ifndef CompileLbv
Cheat_r4300iOpcode(&RSPOp::LBV, "RSPOp::LBV");
#else
char Reg[256];
int offset = m_OpCode.voffset << 0;
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (offset != 0)
AddConstToX86Reg(x86_EBX, offset);
AndConstToX86Reg(x86_EBX, 0x0FFF);
XorConstToX86Reg(x86_EBX, 3);
MoveN64MemToX86regByte(x86_ECX, x86_EBX);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 15 - m_OpCode.del);
MoveX86regByteToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s8((uint8_t)(15 - m_OpCode.del)), Reg);
#endif
}
void CRSPRecompilerOps::Opcode_LSV(void)
{
#ifndef CompileLsv
Cheat_r4300iOpcode(&RSPOp::LSV, "RSPOp::LSV");
#else
if (m_OpCode.del > 14)
{
Cheat_r4300iOpcodeNoMessage(&RSPOp::LSV, "RSPOp::LSV");
return;
}
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
char Reg[256];
int offset = (m_OpCode.voffset << 1);
if (IsRegConst(m_OpCode.base))
{
uint32_t Addr = (MipsRegConst(m_OpCode.base) + offset) & 0xfff;
if ((Addr & 1) != 0)
{
sprintf(Reg, "DMEM + %Xh", (Addr + 0) ^ 3);
MoveVariableToX86regByte(RSPInfo.DMEM + ((Addr + 0) ^ 3), Reg, x86_ECX);
sprintf(Reg, "DMEM + %Xh", (Addr + 1) ^ 3);
MoveVariableToX86regByte(RSPInfo.DMEM + ((Addr + 1) ^ 3), Reg, x86_EDX);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 15 - (m_OpCode.del + 0));
MoveX86regByteToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s8((uint8_t)(15 - (m_OpCode.del + 0))), Reg);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 15 - (m_OpCode.del + 1));
MoveX86regByteToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s8((uint8_t)(15 - (m_OpCode.del + 1))), Reg);
}
else
{
sprintf(Reg, "DMEM + %Xh", Addr ^ 2);
MoveVariableToX86regHalf(RSPInfo.DMEM + (Addr ^ 2), Reg, x86_EDX);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 15 - (m_OpCode.del + 1));
MoveX86regHalfToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s8((uint8_t)(15 - (m_OpCode.del + 1))), Reg);
}
return;
}
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (offset != 0)
{
AddConstToX86Reg(x86_EBX, offset);
}
AndConstToX86Reg(x86_EBX, 0x0FFF);
if (Compiler.bAlignVector == true)
{
XorConstToX86Reg(x86_EBX, 2);
MoveN64MemToX86regHalf(x86_ECX, x86_EBX);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 15 - (m_OpCode.del + 1));
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s8((uint8_t)(15 - (m_OpCode.del + 1))), Reg);
}
else
{
LeaSourceAndOffset(x86_EAX, x86_EBX, 1);
AndConstToX86Reg(x86_EAX, 0x0FFF);
XorConstToX86Reg(x86_EBX, 3);
XorConstToX86Reg(x86_EAX, 3);
MoveN64MemToX86regByte(x86_ECX, x86_EBX);
MoveN64MemToX86regByte(x86_EDX, x86_EAX);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 15 - (m_OpCode.del + 0));
MoveX86regByteToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s8((uint8_t)(15 - (m_OpCode.del + 0))), Reg);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 15 - (m_OpCode.del + 1));
MoveX86regByteToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s8((uint8_t)(15 - (m_OpCode.del + 1))), Reg);
}
#endif
}
void CRSPRecompilerOps::Opcode_LLV(void)
{
#ifndef CompileLlv
Cheat_r4300iOpcode(&RSPOp::LLV, "RSPOp::LLV");
#else
char Reg[256];
int offset = (m_OpCode.voffset << 2);
uint8_t * Jump[2];
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if ((m_OpCode.del & 0x3) != 0)
{
Cheat_r4300iOpcode(&RSPOp::LLV, "RSPOp::LLV");
return;
}
if (IsRegConst(m_OpCode.base))
{
uint32_t Addr = (MipsRegConst(m_OpCode.base) + offset) & 0xfff;
if ((Addr & 3) != 0)
{
CompilerWarning("Unaligned LLV at constant address");
Cheat_r4300iOpcodeNoMessage(&RSPOp::LLV, "RSPOp::LLV");
return;
}
sprintf(Reg, "DMEM + %Xh", Addr);
MoveVariableToX86reg(RSPInfo.DMEM + Addr, Reg, x86_EAX);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 16 - m_OpCode.del - 4);
MoveX86regToVariable(x86_EAX, &m_Vect[m_OpCode.vt].s8((uint8_t)(16 - m_OpCode.del - 4)), Reg);
return;
}
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (offset != 0) AddConstToX86Reg(x86_EBX, offset);
TestConstToX86Reg(3, x86_EBX);
JneLabel32("Unaligned", 0);
Jump[0] = RecompPos - 4;
// Unaligned
CompilerToggleBuffer();
CPU_Message(" Unaligned:");
*((uint32_t *)(Jump[0])) = (uint32_t)(RecompPos - Jump[0] - 4);
Cheat_r4300iOpcodeNoMessage(&RSPOp::LLV, "RSPOp::LLV");
JmpLabel32("Done", 0);
Jump[1] = RecompPos - 4;
CompilerToggleBuffer();
// Aligned
AndConstToX86Reg(x86_EBX, 0x0fff);
MoveN64MemToX86reg(x86_EAX, x86_EBX);
// Because of byte swapping this swizzle works nicely
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 16 - m_OpCode.del - 4);
MoveX86regToVariable(x86_EAX, &m_Vect[m_OpCode.vt].s8((uint8_t)(16 - m_OpCode.del - 4)), Reg);
CPU_Message(" Done:");
*((uint32_t *)(Jump[1])) = (uint32_t)(RecompPos - Jump[1] - 4);
#endif
}
void CRSPRecompilerOps::Opcode_LDV(void)
{
#ifndef CompileLdv
Cheat_r4300iOpcode(&RSPOp::LDV, "RSPOp::LDV");
#else
char Reg[256];
int offset = (m_OpCode.voffset << 3);
uint8_t * Jump[2];
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
//if ((m_OpCode.del & 0x7) != 0) {
// rsp_UnknownOpcode();
// return;
//}
if ((m_OpCode.del & 0x3) != 0)
{
CompilerWarning(stdstr_f("LDV's element = %X, PC = %04X", m_OpCode.del, m_CompilePC).c_str());
Cheat_r4300iOpcodeNoMessage(&RSPOp::LDV, "RSPOp::LDV");
return;
}
if (IsRegConst(m_OpCode.base))
{
uint32_t Addr = (MipsRegConst(m_OpCode.base) + offset) & 0xfff;
if ((Addr & 3) != 0)
{
CompilerWarning(stdstr_f("Unaligned LDV at constant address PC = %04X", m_CompilePC).c_str());
Cheat_r4300iOpcodeNoMessage(&RSPOp::LDV, "RSPOp::LDV");
return;
}
sprintf(Reg, "DMEM + %Xh", Addr);
MoveVariableToX86reg(RSPInfo.DMEM + Addr + 0, Reg, x86_EAX);
sprintf(Reg, "DMEM + %Xh", ((Addr + 4) & 0xFFF));
MoveVariableToX86reg(RSPInfo.DMEM + ((Addr + 4) & 0xFFF), Reg, x86_ECX);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 16 - m_OpCode.del - 4);
MoveX86regToVariable(x86_EAX, &m_Vect[m_OpCode.vt].s8((uint8_t)(16 - m_OpCode.del - 4)), Reg);
if (m_OpCode.del != 12)
{
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 16 - m_OpCode.del - 8);
MoveX86regToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s8((uint8_t)(16 - m_OpCode.del - 8)), Reg);
}
return;
}
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (offset != 0)
{
AddConstToX86Reg(x86_EBX, offset);
}
AndConstToX86Reg(x86_EBX, 0x0fff);
TestConstToX86Reg(7, x86_EBX);
JneLabel32("Unaligned", 0);
Jump[0] = RecompPos - 4;
CompilerToggleBuffer();
CPU_Message(" Unaligned:");
x86_SetBranch32b(Jump[0], RecompPos);
Cheat_r4300iOpcodeNoMessage(&RSPOp::LDV, "RSPOp::LDV");
JmpLabel32("Done", 0);
Jump[1] = RecompPos - 4;
CompilerToggleBuffer();
MoveN64MemToX86reg(x86_EAX, x86_EBX);
MoveN64MemDispToX86reg(x86_ECX, x86_EBX, 4);
// Because of byte swapping this swizzle works nicely
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 16 - m_OpCode.del - 4);
MoveX86regToVariable(x86_EAX, &m_Vect[m_OpCode.vt].s8((uint8_t)(16 - m_OpCode.del - 4)), Reg);
if (m_OpCode.del != 12)
{
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 16 - m_OpCode.del - 8);
MoveX86regToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s8((uint8_t)(16 - m_OpCode.del - 8)), Reg);
}
CPU_Message(" Done:");
x86_SetBranch32b(Jump[1], RecompPos);
#endif
}
void CRSPRecompilerOps::Opcode_LQV(void)
{
#ifndef CompileLqv
Cheat_r4300iOpcode(&RSPOp::LQV, "RSPOp::LQV");
#else
char Reg[256];
int offset = (m_OpCode.voffset << 4);
uint8_t * Jump[2];
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.del != 0)
{
Cheat_r4300iOpcode(&RSPOp::LQV, "RSPOp::LQV");
return;
}
if (IsRegConst(m_OpCode.base))
{
uint32_t Addr = (MipsRegConst(m_OpCode.base) + offset) & 0xfff;
if (Addr & 15)
{
CompilerWarning(stdstr_f("Unaligned LQV at constant address PC = %04X", m_CompilePC).c_str());
Cheat_r4300iOpcodeNoMessage(&RSPOp::LQV, "RSPOp::LQV");
return;
}
// Aligned store
if (IsSseEnabled == false)
{
sprintf(Reg, "DMEM+%Xh+0", Addr);
MoveVariableToX86reg(RSPInfo.DMEM + Addr + 0, Reg, x86_EAX);
sprintf(Reg, "DMEM+%Xh+4", Addr);
MoveVariableToX86reg(RSPInfo.DMEM + Addr + 4, Reg, x86_EBX);
sprintf(Reg, "DMEM+%Xh+8", Addr);
MoveVariableToX86reg(RSPInfo.DMEM + Addr + 8, Reg, x86_ECX);
sprintf(Reg, "DMEM+%Xh+C", Addr);
MoveVariableToX86reg(RSPInfo.DMEM + Addr + 12, Reg, x86_EDX);
sprintf(Reg, "m_Vect[%i].B[12]", m_OpCode.rt);
MoveX86regToVariable(x86_EAX, &m_Vect[m_OpCode.vt].s8(12), Reg);
sprintf(Reg, "m_Vect[%i].B[8]", m_OpCode.rt);
MoveX86regToVariable(x86_EBX, &m_Vect[m_OpCode.vt].s8(8), Reg);
sprintf(Reg, "m_Vect[%i].B[4]", m_OpCode.rt);
MoveX86regToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s8(4), Reg);
sprintf(Reg, "m_Vect[%i].B[0]", m_OpCode.rt);
MoveX86regToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s8(0), Reg);
}
else
{
sprintf(Reg, "DMEM+%Xh", Addr);
SseMoveUnalignedVariableToReg(RSPInfo.DMEM + Addr, Reg, x86_XMM0);
SseShuffleReg(x86_XMM0, x86_MM0, 0x1b);
sprintf(Reg, "m_Vect[%i].B[0]", m_OpCode.rt);
SseMoveAlignedRegToVariable(x86_XMM0, &m_Vect[m_OpCode.vt].s8(0), Reg);
}
return;
}
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (offset != 0)
{
AddConstToX86Reg(x86_EBX, offset);
}
TestConstToX86Reg(15, x86_EBX);
JneLabel32("Unaligned", 0);
Jump[0] = RecompPos - 4;
CompilerToggleBuffer();
CPU_Message(" Unaligned:");
x86_SetBranch32b(Jump[0], RecompPos);
Cheat_r4300iOpcodeNoMessage(&RSPOp::LQV, "RSPOp::LQV");
JmpLabel32("Done", 0);
Jump[1] = RecompPos - 4;
CompilerToggleBuffer();
AndConstToX86Reg(x86_EBX, 0x0fff);
if (IsSseEnabled == false)
{
MoveN64MemDispToX86reg(x86_EAX, x86_EBX, 0);
MoveN64MemDispToX86reg(x86_ECX, x86_EBX, 4);
MoveN64MemDispToX86reg(x86_EDX, x86_EBX, 8);
MoveN64MemDispToX86reg(x86_EDI, x86_EBX, 12);
sprintf(Reg, "m_Vect[%i].B[12]", m_OpCode.rt);
MoveX86regToVariable(x86_EAX, &m_Vect[m_OpCode.vt].s8(12), Reg);
sprintf(Reg, "m_Vect[%i].B[8]", m_OpCode.rt);
MoveX86regToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s8(8), Reg);
sprintf(Reg, "m_Vect[%i].B[4]", m_OpCode.rt);
MoveX86regToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s8(4), Reg);
sprintf(Reg, "m_Vect[%i].B[0]", m_OpCode.rt);
MoveX86regToVariable(x86_EDI, &m_Vect[m_OpCode.vt].s8(0), Reg);
}
else
{
SseMoveUnalignedN64MemToReg(x86_XMM0, x86_EBX);
SseShuffleReg(x86_XMM0, x86_MM0, 0x1b);
sprintf(Reg, "m_Vect[%i].B[0]", m_OpCode.rt);
SseMoveAlignedRegToVariable(x86_XMM0, &m_Vect[m_OpCode.vt].s8(0), Reg);
}
CPU_Message(" Done:");
x86_SetBranch32b((uint32_t *)Jump[1], (uint32_t *)RecompPos);
#endif
}
void CRSPRecompilerOps::Opcode_LRV(void)
{
#ifndef CompileLrv
Cheat_r4300iOpcode(&RSPOp::LRV, "RSPOp::LRV");
#else
int offset = (m_OpCode.voffset << 4);
uint8_t *Loop, *Jump[2];
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (m_OpCode.del != 0)
{
Cheat_r4300iOpcode(&RSPOp::LRV, "RSPOp::LRV");
return;
}
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (offset != 0) AddConstToX86Reg(x86_EBX, offset);
if (Compiler.bAlignVector == false)
{
TestConstToX86Reg(1, x86_EBX);
JneLabel32("Unaligned", 0);
Jump[0] = RecompPos - 4;
// Unaligned
CompilerToggleBuffer();
CPU_Message(" Unaligned:");
x86_SetBranch32b(Jump[0], RecompPos);
Cheat_r4300iOpcodeNoMessage(&RSPOp::LRV, "RSPOp::LRV");
JmpLabel32("Done", 0);
Jump[1] = RecompPos - 4;
CompilerToggleBuffer();
}
// Aligned
MoveX86RegToX86Reg(x86_EBX, x86_EAX);
AndConstToX86Reg(x86_EAX, 0x0F);
AndConstToX86Reg(x86_EBX, 0x0ff0);
MoveX86RegToX86Reg(x86_EAX, x86_ECX);
ShiftRightUnsignImmed(x86_ECX, 1);
JeLabel8("Done", 0);
Jump[0] = RecompPos - 1;
/*
DecX86reg(x86_EAX);
LeaSourceAndOffset(x86_EAX, x86_EAX, (size_t)&m_Vect[m_OpCode.vt].s8(0));
DecX86reg(x86_EAX);
*/
AddConstToX86Reg(x86_EAX, ((size_t)&m_Vect[m_OpCode.vt].u8(0)) - 2);
CPU_Message(" Loop:");
Loop = RecompPos;
MoveX86RegToX86Reg(x86_EBX, x86_ESI);
XorConstToX86Reg(x86_ESI, 2);
MoveN64MemToX86regHalf(x86_EDX, x86_ESI);
MoveX86regHalfToX86regPointer(x86_EDX, x86_EAX);
AddConstToX86Reg(x86_EBX, 2); // DMEM pointer
SubConstFromX86Reg(x86_EAX, 2); // Vector pointer
DecX86reg(x86_ECX); // Loop counter
JneLabel8("Loop", 0);
x86_SetBranch8b(RecompPos - 1, Loop);
if (Compiler.bAlignVector == false)
{
CPU_Message(" Done:");
x86_SetBranch32b((uint32_t *)Jump[1], (uint32_t *)RecompPos);
}
x86_SetBranch8b(Jump[0], RecompPos);
#endif
}
void CRSPRecompilerOps::Opcode_LPV(void)
{
#ifndef CompileLpv
Cheat_r4300iOpcode(&RSPOp::LPV, "RSPOp::LPV");
#else
char Reg[256];
int offset = (m_OpCode.voffset << 3);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (offset != 0)
{
AddConstToX86Reg(x86_EBX, offset);
}
MoveX86RegToX86Reg(x86_EBX, x86_ESI);
MoveX86RegToX86Reg(x86_EBX, x86_EDI);
AddConstToX86Reg(x86_ESI, (0x10 - m_OpCode.del + 0) & 0xF);
AddConstToX86Reg(x86_EDI, (0x10 - m_OpCode.del + 1) & 0xF);
XorConstToX86Reg(x86_ESI, 3);
XorConstToX86Reg(x86_EDI, 3);
AndConstToX86Reg(x86_ESI, 0x0fff);
AndConstToX86Reg(x86_EDI, 0x0fff);
MoveZxN64MemToX86regByte(x86_ECX, x86_ESI);
MoveZxN64MemToX86regByte(x86_EDX, x86_EDI);
ShiftLeftSignImmed(x86_ECX, 8);
ShiftLeftSignImmed(x86_EDX, 8);
sprintf(Reg, "m_Vect[%i].HW[7]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s16(7), Reg);
sprintf(Reg, "m_Vect[%i].HW[6]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s16(6), Reg);
MoveX86RegToX86Reg(x86_EBX, x86_ESI);
MoveX86RegToX86Reg(x86_EBX, x86_EDI);
AddConstToX86Reg(x86_ESI, (0x10 - m_OpCode.del + 2) & 0xF);
AddConstToX86Reg(x86_EDI, (0x10 - m_OpCode.del + 3) & 0xF);
XorConstToX86Reg(x86_ESI, 3);
XorConstToX86Reg(x86_EDI, 3);
AndConstToX86Reg(x86_ESI, 0x0fff);
AndConstToX86Reg(x86_EDI, 0x0fff);
MoveZxN64MemToX86regByte(x86_ECX, x86_ESI);
MoveZxN64MemToX86regByte(x86_EDX, x86_EDI);
ShiftLeftSignImmed(x86_ECX, 8);
ShiftLeftSignImmed(x86_EDX, 8);
sprintf(Reg, "m_Vect[%i].HW[5]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s16(5), Reg);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s16(4), Reg);
MoveX86RegToX86Reg(x86_EBX, x86_ESI);
MoveX86RegToX86Reg(x86_EBX, x86_EDI);
AddConstToX86Reg(x86_ESI, (0x10 - m_OpCode.del + 4) & 0xF);
AddConstToX86Reg(x86_EDI, (0x10 - m_OpCode.del + 5) & 0xF);
XorConstToX86Reg(x86_ESI, 3);
XorConstToX86Reg(x86_EDI, 3);
AndConstToX86Reg(x86_ESI, 0x0fff);
AndConstToX86Reg(x86_EDI, 0x0fff);
MoveZxN64MemToX86regByte(x86_ECX, x86_ESI);
MoveZxN64MemToX86regByte(x86_EDX, x86_EDI);
ShiftLeftSignImmed(x86_ECX, 8);
ShiftLeftSignImmed(x86_EDX, 8);
sprintf(Reg, "m_Vect[%i].HW[3]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s16(3), Reg);
sprintf(Reg, "m_Vect[%i].HW[2]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s16(2), Reg);
MoveX86RegToX86Reg(x86_EBX, x86_ESI);
AddConstToX86Reg(x86_ESI, (0x10 - m_OpCode.del + 6) & 0xF);
AddConstToX86Reg(x86_EBX, (0x10 - m_OpCode.del + 7) & 0xF);
XorConstToX86Reg(x86_ESI, 3);
XorConstToX86Reg(x86_EBX, 3);
AndConstToX86Reg(x86_ESI, 0x0fff);
AndConstToX86Reg(x86_EBX, 0x0fff);
MoveZxN64MemToX86regByte(x86_ECX, x86_ESI);
MoveZxN64MemToX86regByte(x86_EDX, x86_EBX);
ShiftLeftSignImmed(x86_ECX, 8);
ShiftLeftSignImmed(x86_EDX, 8);
sprintf(Reg, "m_Vect[%i].HW[1]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s16(1), Reg);
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s16(0), Reg);
#endif
}
void CRSPRecompilerOps::Opcode_LUV(void)
{
#ifndef CompileLuv
Cheat_r4300iOpcode(&RSPOp::LUV, "RSPOp::LUV");
#else
char Reg[256];
int offset = (m_OpCode.voffset << 3);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (offset != 0)
{
AddConstToX86Reg(x86_EBX, offset);
}
MoveX86RegToX86Reg(x86_EBX, x86_ESI);
MoveX86RegToX86Reg(x86_EBX, x86_EDI);
AddConstToX86Reg(x86_ESI, (0x10 - m_OpCode.del + 0) & 0xF);
AddConstToX86Reg(x86_EDI, (0x10 - m_OpCode.del + 1) & 0xF);
XorConstToX86Reg(x86_ESI, 3);
XorConstToX86Reg(x86_EDI, 3);
AndConstToX86Reg(x86_ESI, 0x0fff);
AndConstToX86Reg(x86_EDI, 0x0fff);
MoveZxN64MemToX86regByte(x86_ECX, x86_ESI);
MoveZxN64MemToX86regByte(x86_EDX, x86_EDI);
ShiftLeftSignImmed(x86_ECX, 7);
ShiftLeftSignImmed(x86_EDX, 7);
sprintf(Reg, "m_Vect[%i].HW[7]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s16(7), Reg);
sprintf(Reg, "m_Vect[%i].HW[6]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s16(6), Reg);
MoveX86RegToX86Reg(x86_EBX, x86_ESI);
MoveX86RegToX86Reg(x86_EBX, x86_EDI);
AddConstToX86Reg(x86_ESI, (0x10 - m_OpCode.del + 2) & 0xF);
AddConstToX86Reg(x86_EDI, (0x10 - m_OpCode.del + 3) & 0xF);
XorConstToX86Reg(x86_ESI, 3);
XorConstToX86Reg(x86_EDI, 3);
AndConstToX86Reg(x86_ESI, 0x0fff);
AndConstToX86Reg(x86_EDI, 0x0fff);
MoveZxN64MemToX86regByte(x86_ECX, x86_ESI);
MoveZxN64MemToX86regByte(x86_EDX, x86_EDI);
ShiftLeftSignImmed(x86_ECX, 7);
ShiftLeftSignImmed(x86_EDX, 7);
sprintf(Reg, "m_Vect[%i].HW[5]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s16(5), Reg);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s16(4), Reg);
MoveX86RegToX86Reg(x86_EBX, x86_ESI);
MoveX86RegToX86Reg(x86_EBX, x86_EDI);
AddConstToX86Reg(x86_ESI, (0x10 - m_OpCode.del + 4) & 0xF);
AddConstToX86Reg(x86_EDI, (0x10 - m_OpCode.del + 5) & 0xF);
XorConstToX86Reg(x86_ESI, 3);
XorConstToX86Reg(x86_EDI, 3);
AndConstToX86Reg(x86_ESI, 0x0fff);
AndConstToX86Reg(x86_EDI, 0x0fff);
MoveZxN64MemToX86regByte(x86_ECX, x86_ESI);
MoveZxN64MemToX86regByte(x86_EDX, x86_EDI);
ShiftLeftSignImmed(x86_ECX, 7);
ShiftLeftSignImmed(x86_EDX, 7);
sprintf(Reg, "m_Vect[%i].HW[3]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s16(3), Reg);
sprintf(Reg, "m_Vect[%i].HW[2]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s16(2), Reg);
MoveX86RegToX86Reg(x86_EBX, x86_ESI);
AddConstToX86Reg(x86_ESI, (0x10 - m_OpCode.del + 6) & 0xF);
AddConstToX86Reg(x86_EBX, (0x10 - m_OpCode.del + 7) & 0xF);
XorConstToX86Reg(x86_ESI, 3);
XorConstToX86Reg(x86_EBX, 3);
AndConstToX86Reg(x86_ESI, 0x0fff);
AndConstToX86Reg(x86_EBX, 0x0fff);
MoveZxN64MemToX86regByte(x86_ECX, x86_ESI);
MoveZxN64MemToX86regByte(x86_EDX, x86_EBX);
ShiftLeftSignImmed(x86_ECX, 7);
ShiftLeftSignImmed(x86_EDX, 7);
sprintf(Reg, "m_Vect[%i].HW[1]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s16(1), Reg);
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s16(0), Reg);
#endif
}
void CRSPRecompilerOps::Opcode_LHV(void)
{
#ifndef CompileLhv
Cheat_r4300iOpcode(&RSPOp::LHV, "RSPOp::LHV");
#else
char Reg[256];
int offset = (m_OpCode.voffset << 4);
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (offset != 0)
{
AddConstToX86Reg(x86_EBX, offset);
}
MoveX86RegToX86Reg(x86_EBX, x86_ESI);
MoveX86RegToX86Reg(x86_EBX, x86_EDI);
AddConstToX86Reg(x86_ESI, (0x10 - m_OpCode.del + 0) & 0xF);
AddConstToX86Reg(x86_EDI, (0x10 - m_OpCode.del + 2) & 0xF);
XorConstToX86Reg(x86_ESI, 3);
XorConstToX86Reg(x86_EDI, 3);
AndConstToX86Reg(x86_ESI, 0x0fff);
AndConstToX86Reg(x86_EDI, 0x0fff);
MoveZxN64MemToX86regByte(x86_ECX, x86_ESI);
MoveZxN64MemToX86regByte(x86_EDX, x86_EDI);
ShiftLeftSignImmed(x86_ECX, 7);
ShiftLeftSignImmed(x86_EDX, 7);
sprintf(Reg, "m_Vect[%i].HW[7]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s16(7), Reg);
sprintf(Reg, "m_Vect[%i].HW[6]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s16(6), Reg);
MoveX86RegToX86Reg(x86_EBX, x86_ESI);
MoveX86RegToX86Reg(x86_EBX, x86_EDI);
AddConstToX86Reg(x86_ESI, (0x10 - m_OpCode.del + 4) & 0xF);
AddConstToX86Reg(x86_EDI, (0x10 - m_OpCode.del + 6) & 0xF);
XorConstToX86Reg(x86_ESI, 3);
XorConstToX86Reg(x86_EDI, 3);
AndConstToX86Reg(x86_ESI, 0x0fff);
AndConstToX86Reg(x86_EDI, 0x0fff);
MoveZxN64MemToX86regByte(x86_ECX, x86_ESI);
MoveZxN64MemToX86regByte(x86_EDX, x86_EDI);
ShiftLeftSignImmed(x86_ECX, 7);
ShiftLeftSignImmed(x86_EDX, 7);
sprintf(Reg, "m_Vect[%i].HW[5]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s16(5), Reg);
sprintf(Reg, "m_Vect[%i].HW[4]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s16(4), Reg);
MoveX86RegToX86Reg(x86_EBX, x86_ESI);
MoveX86RegToX86Reg(x86_EBX, x86_EDI);
AddConstToX86Reg(x86_ESI, (0x10 - m_OpCode.del + 8) & 0xF);
AddConstToX86Reg(x86_EDI, (0x10 - m_OpCode.del + 10) & 0xF);
XorConstToX86Reg(x86_ESI, 3);
XorConstToX86Reg(x86_EDI, 3);
AndConstToX86Reg(x86_ESI, 0x0fff);
AndConstToX86Reg(x86_EDI, 0x0fff);
MoveZxN64MemToX86regByte(x86_ECX, x86_ESI);
MoveZxN64MemToX86regByte(x86_EDX, x86_EDI);
ShiftLeftSignImmed(x86_ECX, 7);
ShiftLeftSignImmed(x86_EDX, 7);
sprintf(Reg, "m_Vect[%i].HW[3]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s16(3), Reg);
sprintf(Reg, "m_Vect[%i].HW[2]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s16(2), Reg);
MoveX86RegToX86Reg(x86_EBX, x86_ESI);
AddConstToX86Reg(x86_ESI, (0x10 - m_OpCode.del + 12) & 0xF);
AddConstToX86Reg(x86_EBX, (0x10 - m_OpCode.del + 14) & 0xF);
XorConstToX86Reg(x86_ESI, 3);
XorConstToX86Reg(x86_EBX, 3);
AndConstToX86Reg(x86_ESI, 0x0fff);
AndConstToX86Reg(x86_EBX, 0x0fff);
MoveZxN64MemToX86regByte(x86_ECX, x86_ESI);
MoveZxN64MemToX86regByte(x86_EDX, x86_EBX);
ShiftLeftSignImmed(x86_ECX, 7);
ShiftLeftSignImmed(x86_EDX, 7);
sprintf(Reg, "m_Vect[%i].HW[1]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_ECX, &m_Vect[m_OpCode.vt].s16(1), Reg);
sprintf(Reg, "m_Vect[%i].HW[0]", m_OpCode.rt);
MoveX86regHalfToVariable(x86_EDX, &m_Vect[m_OpCode.vt].s16(0), Reg);
#endif
}
void CRSPRecompilerOps::Opcode_LFV(void)
{
Cheat_r4300iOpcode(&RSPOp::LFV, "RSPOp::LFV");
}
void CRSPRecompilerOps::Opcode_LWV(void)
{
Cheat_r4300iOpcode(&RSPOp::LWV, "RSPOp::LWV");
}
void CRSPRecompilerOps::Opcode_LTV(void)
{
Cheat_r4300iOpcode(&RSPOp::LTV, "RSPOp::LTV");
}
// SC2 functions
void CRSPRecompilerOps::Opcode_SBV(void)
{
Cheat_r4300iOpcode(&RSPOp::SBV, "RSPOp::SBV");
}
void CRSPRecompilerOps::Opcode_SSV(void)
{
#ifndef CompileSsv
Cheat_r4300iOpcode(&RSPOp::SSV, "RSPOp::SSV");
#else
char Reg[256];
int offset = (m_OpCode.voffset << 1);
if (m_OpCode.del > 14)
{
Cheat_r4300iOpcode(&RSPOp::SSV, "RSPOp::SSV");
return;
}
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (IsRegConst(m_OpCode.base))
{
uint32_t Addr = (MipsRegConst(m_OpCode.base) + offset) & 0xfff;
if ((Addr & 1) != 0)
{
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 15 - (m_OpCode.del + 0));
MoveVariableToX86regByte(&m_Vect[m_OpCode.vt].s8((uint8_t)(15 - (m_OpCode.del + 0))), Reg, x86_ECX);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 15 - (m_OpCode.del + 1));
MoveVariableToX86regByte(&m_Vect[m_OpCode.vt].s8((uint8_t)(15 - (m_OpCode.del + 1))), Reg, x86_EDX);
sprintf(Reg, "DMEM + %Xh", (Addr + 0) ^ 3);
MoveX86regByteToVariable(x86_ECX, RSPInfo.DMEM + ((Addr + 0) ^ 3), Reg);
sprintf(Reg, "DMEM + %Xh", (Addr + 1) ^ 3);
MoveX86regByteToVariable(x86_EDX, RSPInfo.DMEM + ((Addr + 1) ^ 3), Reg);
}
else
{
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 15 - (m_OpCode.del + 1));
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].s8((uint8_t)(15 - (m_OpCode.del + 1))), Reg, x86_ECX);
sprintf(Reg, "DMEM + %Xh", Addr ^ 2);
MoveX86regHalfToVariable(x86_ECX, RSPInfo.DMEM + (Addr ^ 2), Reg);
}
return;
}
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (offset != 0) AddConstToX86Reg(x86_EBX, offset);
AndConstToX86Reg(x86_EBX, 0x0FFF);
if (Compiler.bAlignVector == true)
{
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 15 - (m_OpCode.del + 1));
MoveVariableToX86regHalf(&m_Vect[m_OpCode.vt].s8((uint8_t)(15 - (m_OpCode.del + 1))), Reg, x86_ECX);
XorConstToX86Reg(x86_EBX, 2);
MoveX86regHalfToN64Mem(x86_ECX, x86_EBX);
}
else
{
LeaSourceAndOffset(x86_EAX, x86_EBX, 1);
XorConstToX86Reg(x86_EBX, 3);
XorConstToX86Reg(x86_EAX, 3);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 15 - (m_OpCode.del + 0));
MoveVariableToX86regByte(&m_Vect[m_OpCode.vt].s8((uint8_t)(15 - (m_OpCode.del + 0))), Reg, x86_ECX);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 15 - (m_OpCode.del + 1));
MoveVariableToX86regByte(&m_Vect[m_OpCode.vt].s8((uint8_t)(15 - (m_OpCode.del + 1))), Reg, x86_EDX);
MoveX86regByteToN64Mem(x86_ECX, x86_EBX);
MoveX86regByteToN64Mem(x86_EDX, x86_EAX);
}
#endif
}
void CRSPRecompilerOps::Opcode_SLV(void)
{
#ifndef CompileSlv
Cheat_r4300iOpcode(&RSPOp::SLV, "RSPOp::SLV");
#else
if (m_OpCode.del > 12)
{
Cheat_r4300iOpcodeNoMessage(&RSPOp::SLV, "RSPOp::SLV");
return;
}
char Reg[256];
int offset = (m_OpCode.voffset << 2);
uint8_t * Jump[2];
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (IsRegConst(m_OpCode.base))
{
uint32_t Addr = (MipsRegConst(m_OpCode.base) + offset) & 0xfff;
if ((Addr & 3) != 0 || m_OpCode.del > 12)
{
Cheat_r4300iOpcodeNoMessage(&RSPOp::SLV, "RSPOp::SLV");
return;
}
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 16 - m_OpCode.del - 4);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8((uint8_t)(16 - m_OpCode.del - 4)), Reg, x86_EAX);
sprintf(Reg, "DMEM + %Xh", Addr);
MoveX86regToVariable(x86_EAX, RSPInfo.DMEM + Addr, Reg);
return;
}
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (offset != 0) AddConstToX86Reg(x86_EBX, offset);
TestConstToX86Reg(3, x86_EBX);
JneLabel32("Unaligned", 0);
Jump[0] = RecompPos - 4;
// Unaligned
CompilerToggleBuffer();
CPU_Message(" Unaligned:");
*((uint32_t *)(Jump[0])) = (uint32_t)(RecompPos - Jump[0] - 4);
Cheat_r4300iOpcodeNoMessage(&RSPOp::SLV, "RSPOp::SLV");
JmpLabel32("Done", 0);
Jump[1] = RecompPos - 4;
CompilerToggleBuffer();
// Aligned
// Because of byte swapping this swizzle works nicely
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, 16 - m_OpCode.del - 4);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8((uint8_t)(16 - m_OpCode.del - 4)), Reg, x86_EAX);
AndConstToX86Reg(x86_EBX, 0x0fff);
MoveX86regToN64Mem(x86_EAX, x86_EBX);
CPU_Message(" Done:");
*((uint32_t *)(Jump[1])) = (uint32_t)(RecompPos - Jump[1] - 4);
#endif
}
void CRSPRecompilerOps::Opcode_SDV(void)
{
#ifndef CompileSdv
Cheat_r4300iOpcode(&RSPOp::SDV, "RSPOp::SDV");
#else
if (m_OpCode.del > 8)
{
Cheat_r4300iOpcodeNoMessage(&RSPOp::SDV, "RSPOp::SDV");
return;
}
char Reg[256];
int offset = (m_OpCode.voffset << 3);
uint8_t *Jump[2], *LoopEntry;
//if ((m_OpCode.del & 0x7) != 0) {
// rsp_UnknownOpcode();
// return;
//}
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (IsRegConst(m_OpCode.base))
{
uint32_t Addr = (MipsRegConst(m_OpCode.base) + offset) & 0xfff;
if ((Addr & 3) != 0)
{
CompilerWarning(stdstr_f("Unaligned SDV at constant address PC = %04X", m_CompilePC).c_str());
Cheat_r4300iOpcodeNoMessage(&RSPOp::SDV, "RSPOp::SDV");
return;
}
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, (16 - m_OpCode.del - 4) & 0xF);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8((16 - m_OpCode.del - 4) & 0xF), Reg, x86_EAX);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, (16 - m_OpCode.del - 8) & 0xF);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8((16 - m_OpCode.del - 8) & 0xF), Reg, x86_EBX);
sprintf(Reg, "DMEM + %Xh", Addr);
MoveX86regToVariable(x86_EAX, RSPInfo.DMEM + Addr, Reg);
sprintf(Reg, "DMEM + %Xh", Addr + 4);
MoveX86regToVariable(x86_EBX, RSPInfo.DMEM + Addr + 4, Reg);
return;
}
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (offset != 0)
{
AddConstToX86Reg(x86_EBX, offset);
}
AndConstToX86Reg(x86_EBX, 0x0fff);
TestConstToX86Reg(3, x86_EBX);
JneLabel32("Unaligned", 0);
Jump[0] = RecompPos - 4;
CompilerToggleBuffer();
CPU_Message(" Unaligned:");
x86_SetBranch32b((uint32_t *)Jump[0], (uint32_t *)RecompPos);
sprintf(Reg, "m_Vect[%i].UB[%i]", m_OpCode.rt, 15 - m_OpCode.del);
MoveOffsetToX86reg((size_t)&m_Vect[m_OpCode.vt].u8((uint8_t)(15 - m_OpCode.del)), Reg, x86_EDI);
MoveConstToX86reg(8, x86_ECX);
CPU_Message(" Loop:");
LoopEntry = RecompPos;
MoveX86RegToX86Reg(x86_EBX, x86_EAX);
XorConstToX86Reg(x86_EAX, 3);
MoveX86regPointerToX86regByte(x86_EDX, x86_EDI);
MoveX86regByteToN64Mem(x86_EDX, x86_EAX);
IncX86reg(x86_EBX); // Address constant
DecX86reg(x86_EDI); // Vector pointer
DecX86reg(x86_ECX); // Counter
JneLabel8("Loop", 0);
x86_SetBranch8b(RecompPos - 1, LoopEntry);
JmpLabel32("Done", 0);
Jump[1] = RecompPos - 4;
CompilerToggleBuffer();
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, (16 - m_OpCode.del - 4) & 0xF);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8((16 - m_OpCode.del - 4) & 0xF), Reg, x86_EAX);
sprintf(Reg, "m_Vect[%i].B[%i]", m_OpCode.rt, (16 - m_OpCode.del - 8) & 0xF);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8((16 - m_OpCode.del - 8) & 0xF), Reg, x86_ECX);
MoveX86regToN64Mem(x86_EAX, x86_EBX);
MoveX86regToN64MemDisp(x86_ECX, x86_EBX, 4);
CPU_Message(" Done:");
x86_SetBranch32b((uint32_t *)Jump[1], (uint32_t *)RecompPos);
#endif
}
void CRSPRecompilerOps::Opcode_SQV(void)
{
#ifndef CompileSqv
Cheat_r4300iOpcode(&RSPOp::SQV, "RSPOp::SQV");
#else
if (m_OpCode.del != 0 && m_OpCode.del != 12)
{
Cheat_r4300iOpcode(&RSPOp::SQV, "RSPOp::SQV");
return;
}
char Reg[256];
int offset = (m_OpCode.voffset << 4);
uint8_t * Jump[2];
CPU_Message(" %X %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
if (IsRegConst(m_OpCode.base))
{
uint32_t Addr = (MipsRegConst(m_OpCode.base) + offset) & 0xfff;
if (Addr & 15)
{
CompilerWarning(stdstr_f("Unaligned SQV at constant address %04X", m_CompilePC).c_str());
Cheat_r4300iOpcodeNoMessage(&RSPOp::SQV, "RSPOp::SQV");
return;
}
// Aligned store
if (IsSseEnabled == false)
{
if (m_OpCode.del == 12)
{
sprintf(Reg, "m_Vect[%i].B[0]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(0), Reg, x86_EAX);
sprintf(Reg, "m_Vect[%i].B[12]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(12), Reg, x86_EBX);
sprintf(Reg, "m_Vect[%i].B[8]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(8), Reg, x86_ECX);
sprintf(Reg, "m_Vect[%i].B[4]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(4), Reg, x86_EDX);
}
else
{
sprintf(Reg, "m_Vect[%i].B[12]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(12), Reg, x86_EAX);
sprintf(Reg, "m_Vect[%i].B[8]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(8), Reg, x86_EBX);
sprintf(Reg, "m_Vect[%i].B[4]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(4), Reg, x86_ECX);
sprintf(Reg, "m_Vect[%i].B[0]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(0), Reg, x86_EDX);
}
sprintf(Reg, "DMEM+%Xh+0", Addr);
MoveX86regToVariable(x86_EAX, RSPInfo.DMEM + Addr + 0, Reg);
sprintf(Reg, "DMEM+%Xh+4", Addr);
MoveX86regToVariable(x86_EBX, RSPInfo.DMEM + Addr + 4, Reg);
sprintf(Reg, "DMEM+%Xh+8", Addr);
MoveX86regToVariable(x86_ECX, RSPInfo.DMEM + Addr + 8, Reg);
sprintf(Reg, "DMEM+%Xh+C", Addr);
MoveX86regToVariable(x86_EDX, RSPInfo.DMEM + Addr + 12, Reg);
}
else
{
sprintf(Reg, "m_Vect[%i].B[0]", m_OpCode.rt);
SseMoveAlignedVariableToReg(&m_Vect[m_OpCode.vt].s8(0), Reg, x86_XMM0);
if (m_OpCode.del == 12)
{
SseShuffleReg(x86_XMM0, x86_MM0, 0x6c);
}
else
{
SseShuffleReg(x86_XMM0, x86_MM0, 0x1b);
}
sprintf(Reg, "DMEM+%Xh", Addr);
SseMoveUnalignedRegToVariable(x86_XMM0, RSPInfo.DMEM + Addr, Reg);
}
return;
}
MoveVariableToX86reg(&m_GPR[m_OpCode.base].UW, GPR_Name(m_OpCode.base), x86_EBX);
if (offset != 0)
{
AddConstToX86Reg(x86_EBX, offset);
}
TestConstToX86Reg(15, x86_EBX);
JneLabel32("Unaligned", 0);
Jump[0] = RecompPos - 4;
CompilerToggleBuffer();
CPU_Message(" Unaligned:");
x86_SetBranch32b((uint32_t *)Jump[0], (uint32_t *)RecompPos);
Cheat_r4300iOpcodeNoMessage(&RSPOp::SQV, "RSPOp::SQV");
JmpLabel32("Done", 0);
Jump[1] = RecompPos - 4;
CompilerToggleBuffer();
AndConstToX86Reg(x86_EBX, 0x0fff);
if (IsSseEnabled == false)
{
if (m_OpCode.del == 12)
{
sprintf(Reg, "m_Vect[%i].B[0]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(0), Reg, x86_EAX);
sprintf(Reg, "m_Vect[%i].B[12]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(12), Reg, x86_ECX);
sprintf(Reg, "m_Vect[%i].B[8]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(8), Reg, x86_EDX);
sprintf(Reg, "m_Vect[%i].B[4]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(4), Reg, x86_EDI);
}
else
{
sprintf(Reg, "m_Vect[%i].B[12]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(12), Reg, x86_EAX);
sprintf(Reg, "m_Vect[%i].B[8]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(8), Reg, x86_ECX);
sprintf(Reg, "m_Vect[%i].B[4]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(4), Reg, x86_EDX);
sprintf(Reg, "m_Vect[%i].B[0]", m_OpCode.rt);
MoveVariableToX86reg(&m_Vect[m_OpCode.vt].s8(0), Reg, x86_EDI);
}
MoveX86regToN64MemDisp(x86_EAX, x86_EBX, 0);
MoveX86regToN64MemDisp(x86_ECX, x86_EBX, 4);
MoveX86regToN64MemDisp(x86_EDX, x86_EBX, 8);
MoveX86regToN64MemDisp(x86_EDI, x86_EBX, 12);
}
else
{
sprintf(Reg, "m_Vect[%i].B[0]", m_OpCode.rt);
SseMoveAlignedVariableToReg(&m_Vect[m_OpCode.vt].s8(0), Reg, x86_XMM0);
if (m_OpCode.del == 12)
{
SseShuffleReg(x86_XMM0, x86_MM0, 0x6c);
}
else
{
SseShuffleReg(x86_XMM0, x86_MM0, 0x1b);
}
SseMoveUnalignedRegToN64Mem(x86_XMM0, x86_EBX);
}
CPU_Message(" Done:");
x86_SetBranch32b((uint32_t *)Jump[1], (uint32_t *)RecompPos);
#endif
}
void CRSPRecompilerOps::Opcode_SRV(void)
{
Cheat_r4300iOpcode(&RSPOp::SRV, "RSPOp::SRV");
}
void CRSPRecompilerOps::Opcode_SPV(void)
{
Cheat_r4300iOpcode(&RSPOp::SPV, "RSPOp::SPV");
}
void CRSPRecompilerOps::Opcode_SUV(void)
{
Cheat_r4300iOpcode(&RSPOp::SUV, "RSPOp::SUV");
}
void CRSPRecompilerOps::Opcode_SHV(void)
{
Cheat_r4300iOpcode(&RSPOp::SHV, "RSPOp::SHV");
}
void CRSPRecompilerOps::Opcode_SFV(void)
{
Cheat_r4300iOpcode(&RSPOp::SFV, "RSPOp::SFV");
}
void CRSPRecompilerOps::Opcode_STV(void)
{
Cheat_r4300iOpcode(&RSPOp::STV, "RSPOp::STV");
}
void CRSPRecompilerOps::Opcode_SWV(void)
{
Cheat_r4300iOpcode(&RSPOp::SWV, "&RSPOp::SWV");
}
// Other functions
void CRSPRecompilerOps::UnknownOpcode(void)
{
CPU_Message(" %X Unhandled Opcode: %s", m_CompilePC, RSPInstruction(m_CompilePC, m_OpCode.Value).NameAndParam().c_str());
m_NextInstruction = RSPPIPELINE_FINISH_BLOCK;
MoveConstToVariable(m_CompilePC, m_System.m_SP_PC_REG, "RSP PC");
MoveConstToVariable(m_OpCode.Value, &m_OpCode.Value, "m_OpCode.Value");
MoveConstToX86reg((uint32_t) & (RSPSystem.m_Op), x86_ECX);
Call_Direct(AddressOf(&RSPOp::UnknownOpcode), "&RSPOp::UnknownOpcode");
Ret();
}