project64/Source/Project64/UserInterface/Debugger/MemoryScanner.cpp

1055 lines
28 KiB
C++

#include "stdafx.h"
#include "MemoryScanner.h"
CMixed::TypeNameEntry CMixed::TypeNames[] = {
{ "uint8", ValueType_uint8 },
{ "int8", ValueType_int8 },
{ "uint16", ValueType_uint16 },
{ "int16", ValueType_int16 },
{ "uint32", ValueType_uint32 },
{ "int32", ValueType_int32 },
{ "uint64", ValueType_uint64 },
{ "int64", ValueType_int64 },
{ "float", ValueType_float },
{ "double", ValueType_double },
{ "char", ValueType_string },
{ "char", ValueType_unkstring },
{ "char", ValueType_unkstring },
{ NULL, ValueType_invalid}
};
const char* CMixed::GetTypeName(void)
{
switch (m_Type)
{
case ValueType_uint8: return "uint8";
case ValueType_int8: return "int8";
case ValueType_uint16: return "uint16";
case ValueType_int16: return "int16";
case ValueType_uint32: return "uint32";
case ValueType_int32: return "int32";
case ValueType_uint64: return "uint64";
case ValueType_int64: return "int64";
case ValueType_float: return "float";
case ValueType_double: return "double";
case ValueType_string:
case ValueType_istring:
case ValueType_unkstring:
return "char";
}
return NULL;
}
ValueType CMixed::GetTypeFromString(const char* name, int* charArrayLength)
{
for (int i = 0; TypeNames[i].name != NULL; i++)
{
if (strcmp(name, TypeNames[i].name) == 0)
{
*charArrayLength = 0;
return TypeNames[i].type;
}
}
if (sscanf(name, "char[%d]", charArrayLength) != 0)
{
return ValueType_string;
}
return ValueType_invalid;
}
int CMixed::GetTypeSize(void)
{
switch (m_Type)
{
case ValueType_uint8: return sizeof(uint8_t);
case ValueType_int8: return sizeof(int8_t);
case ValueType_uint16: return sizeof(uint16_t);
case ValueType_int16: return sizeof(int16_t);
case ValueType_uint32: return sizeof(uint32_t);
case ValueType_int32: return sizeof(int32_t);
case ValueType_uint64: return sizeof(uint64_t);
case ValueType_int64: return sizeof(int64_t);
case ValueType_float: return sizeof(float);
case ValueType_double: return sizeof(double);
case ValueType_string:
case ValueType_istring:
case ValueType_unkstring:
return m_StrLength;
default:
return 0;
}
}
bool CMixed::IsStringType(void)
{
switch (m_Type)
{
case ValueType_string:
case ValueType_istring:
case ValueType_unkstring:
return true;
}
return false;
}
int CMixed::ToString(char* buffer, bool bHex, size_t size)
{
if (bHex)
{
switch (m_Type)
{
case ValueType_uint8:
case ValueType_int8:
return snprintf(buffer, size, "0x%02X", m_Value._uint8);
case ValueType_uint16:
case ValueType_int16:
return snprintf(buffer, size, "0x%04X", m_Value._uint16);
case ValueType_uint32:
case ValueType_int32:
case ValueType_float:
return snprintf(buffer, size, "0x%08X", m_Value._uint32);
case ValueType_uint64:
case ValueType_int64:
case ValueType_double:
return snprintf(buffer, size, "0x%016llX", m_Value._uint64);
default:
return snprintf(buffer, size, "?");
}
}
switch (m_Type)
{
case ValueType_uint8: return snprintf(buffer, size, "%d", m_Value._uint8);
case ValueType_int8: return snprintf(buffer, size, "%d", m_Value._sint8);
case ValueType_uint16: return snprintf(buffer, size, "%d", m_Value._uint16);
case ValueType_int16: return snprintf(buffer, size, "%d", m_Value._sint16);
case ValueType_uint32: return snprintf(buffer, size, "%lu", m_Value._uint32);
case ValueType_int32: return snprintf(buffer, size, "%d", m_Value._sint32);
case ValueType_uint64: return snprintf(buffer, size, "%llu", m_Value._uint64);
case ValueType_int64: return snprintf(buffer, size, "%lld", m_Value._sint64);
case ValueType_float: return snprintf(buffer, size, "%f", m_Value._float);
case ValueType_double: return snprintf(buffer, size, "%f", m_Value._double);
default: return snprintf(buffer, size, "?");
}
}
CScanResult::CScanResult(AddressType addressType, DisplayFormat displayFormat) :
m_AddressType(addressType),
m_Address(0),
m_DisplayFormat(displayFormat),
m_bSelected(false),
m_Description(NULL)
{
}
CScanResult::~CScanResult(void)
{
}
void CScanResult::SetDescription(const char* str)
{
if (m_Description != NULL)
{
free(m_Description);
}
size_t len = strlen(str);
m_Description = (char*)malloc(len + 1);
strcpy(m_Description, str);
m_Description[len] = '\0';
}
void CScanResult::DeleteDescription(void)
{
if (m_Description != NULL)
{
free(m_Description);
m_Description = NULL;
}
}
const char* CScanResult::GetDescription(void)
{
if (m_Description == NULL)
{
return "";
}
return m_Description;
}
int CScanResult::GetValueString(char *buffer, size_t size)
{
bool bHex = (m_DisplayFormat == DisplayHex);
return ToString(buffer, bHex, size);
}
bool CScanResult::GetMemoryValue(CMixed* v)
{
if (g_MMU == NULL)
{
return false;
}
uint32_t paddr = m_Address & 0x1FFFFFFF;
if (!CMemoryScanner::PAddrValid(paddr))
{
return false;
}
uint8_t* mem = CMemoryScanner::GetMemoryPool(paddr);
uint64_t raw64 = 0;
if (GetTypeSize() == 8)
{
raw64 = ((uint64_t)*(uint32_t*)&mem[paddr] << 32) | *(uint32_t*)&mem[paddr + 4];
}
switch (m_Type)
{
case ValueType_uint8: v->Set(*(uint8_t*) &mem[paddr ^ 3]); break;
case ValueType_int8: v->Set(*(int8_t*) &mem[paddr ^ 3]); break;
case ValueType_uint16: v->Set(*(uint16_t*)&mem[paddr ^ 2]); break;
case ValueType_int16: v->Set(*(int16_t*) &mem[paddr ^ 2]); break;
case ValueType_uint32: v->Set(*(uint32_t*)&mem[paddr]); break;
case ValueType_int32: v->Set(*(int32_t*)&mem[paddr]); break;
case ValueType_uint64: v->Set(*(uint64_t*)&raw64); break;
case ValueType_int64: v->Set(*(int64_t*)&raw64); break;
case ValueType_float: v->Set(*(float*)&mem[paddr]); break;
case ValueType_double: v->Set(*(double*)&raw64); break;
default: return false; // (primitives only)
}
return true;
}
int CScanResult::GetMemoryValueString(char* buffer, size_t size, bool bIgnoreHex)
{
if (g_MMU == NULL)
{
sprintf(buffer, "?");
return 1;
}
bool bHex = (m_DisplayFormat == DisplayHex) && !bIgnoreHex;
uint32_t paddr = m_Address & 0x1FFFFFFF;
if (!CMemoryScanner::PAddrValid(paddr))
{
return sprintf(buffer, "?");
}
uint8_t* mem = CMemoryScanner::GetMemoryPool(paddr);
if (m_Type == ValueType_istring ||
m_Type == ValueType_string ||
m_Type == ValueType_unkstring)
{
if (bHex)
{
char* out = buffer;
for (int i = 0; i < m_StrLength; i++)
{
uint32_t ipaddr = (paddr + i) ^ 3;
if (i != 0) out += sprintf(out, " ");
out += sprintf(out, "%02X", mem[ipaddr]);
}
*out = '\0';
return out - buffer;
}
else
{
for (int i = 0; i < m_StrLength; i++)
{
uint32_t ipaddr = (paddr + i) ^ 3;
buffer[i] = mem[ipaddr];
}
buffer[m_StrLength] = '\0';
return m_StrLength;
}
}
CMixed memVal;
if (!GetMemoryValue(&memVal))
{
return 0;
}
return memVal.ToString(buffer, bHex, size);
}
int CScanResult::GetAddressString(char *buffer)
{
return sprintf(buffer, "0x%08X", m_Address);
}
uint32_t CScanResult::GetVirtualAddress(void)
{
if (m_AddressType == AddressType_Virtual)
{
return m_Address;
}
else
{
// convert physical to virtual kseg0
return (m_Address | 0x80000000);
}
}
bool CScanResult::SetMemoryValueFromString(const char* str)
{
if (g_MMU == NULL)
{
//sprintf(buffer, "?");
return false;
}
bool bHex = (m_DisplayFormat == DisplayHex);
uint32_t paddr = m_Address & 0x1FFFFFFF;
if (!CMemoryScanner::PAddrValid(paddr))
{
return false;
}
uint8_t* mem = CMemoryScanner::GetMemoryPool(m_Address & 0x1FFFFFFF);
char* endptr;
uint64_t intVal = strtoull(str, &endptr, 0);
double doubleVal = strtod(str, &endptr);
switch (m_Type)
{
case ValueType_uint8:
case ValueType_int8:
mem[paddr ^ 3] = intVal & 0xFF;
break;
case ValueType_uint16:
case ValueType_int16:
*(uint16_t*)&mem[paddr ^ 2] = intVal & 0xFFFF;
break;
case ValueType_uint32:
case ValueType_int32:
*(uint32_t*)&mem[paddr] = intVal & 0xFFFFFFFF;
break;
case ValueType_uint64:
case ValueType_int64:
*(uint64_t*)&mem[paddr] = (intVal << 32) | (intVal >> 32);
break;
case ValueType_float:
if (bHex)
{
*(uint32_t*)&mem[paddr] = intVal & 0xFFFFFFFF;
break;
}
*(float*)&mem[paddr] = (float)doubleVal;
break;
case ValueType_double:
if (bHex)
{
*(uint64_t*)&mem[paddr] = (intVal << 32) | (intVal >> 32);
break;
}
intVal = *(uint64_t*)&doubleVal;
*(uint64_t*)&mem[paddr] = (intVal << 32) | (intVal >> 32);
break;
case ValueType_string:
case ValueType_istring:
case ValueType_unkstring:
if (bHex)
{
int size = CMemoryScanner::ParseHexString(NULL, str);
if (size == 0)
{
return false;
}
char* buff = new char[size];
CMemoryScanner::ParseHexString(buff, str);
for (int i = 0; i < m_StrLength; i++)
{
uint32_t ipaddr = (paddr + i) ^ 3;
mem[ipaddr] = buff[i];
}
delete[] buff;
}
else
{
for (int i = 0; i < m_StrLength; i++)
{
uint32_t ipaddr = (paddr + i) ^ 3;
mem[ipaddr] = str[i];
}
}
break;
}
return true;
}
bool CScanResult::SetAddressSafe(uint32_t address)
{
if (!g_MMU || !g_Rom)
{
return false;
}
uint32_t ramSize = g_MMU->RdramSize();
uint32_t romSize = g_Rom->GetRomSize();
uint32_t paddrStart = address & 0x1FFFFFFF;
uint32_t paddrEnd = (paddrStart + GetTypeSize()) - 1;
if (m_AddressType == AddressType_Virtual)
{
if (!CMemoryScanner::AddrCheck(address, 0x80000000, 0xBFFFFFFF))
{
return false;
}
}
if (!CMemoryScanner::PAddrRangeValid(paddrStart, paddrEnd))
{
return false;
}
if (!CMemoryScanner::RangeCheck(paddrStart, paddrEnd, 0x00000000, ramSize - 1) &&
!CMemoryScanner::RangeCheck(paddrStart, paddrEnd, 0x10000000, 0x10000000 + romSize - 1) &&
!CMemoryScanner::RangeCheck(paddrStart, paddrEnd, 0x04000000, 0x04001FFF))
{
return false;
}
m_Address = address;
return true;
}
bool CScanResult::SetStrLengthSafe(int length)
{
if (!g_MMU || !g_Rom)
{
return false;
}
uint32_t ramSize = g_MMU->RdramSize();
uint32_t romSize = g_Rom->GetRomSize();
uint32_t paddrStart = m_Address & 0x1FFFFFFF;
uint32_t paddrEnd = (paddrStart + length) - 1;
if (!CMemoryScanner::RangeCheck(paddrStart, paddrEnd, 0x00000000, ramSize - 1) &&
!CMemoryScanner::RangeCheck(paddrStart, paddrEnd, 0x10000000, 0x10000000 + romSize - 1) &&
!CMemoryScanner::RangeCheck(paddrStart, paddrEnd, 0x04000000, 0x04001FFF))
{
return false;
}
m_StrLength = length;
return true;
}
//bool CScanResult::IsSelected(void)
//{
// return m_bSelected;
//}
//
//void CScanResult::SetSelected(bool bSelected)
//{
// m_bSelected = bSelected;
//}
/*********************/
CMemoryScanner::CMemoryScanner(void) :
m_DidFirstScan(false),
m_ValueType(ValueType_uint8),
m_StringValueLength(false),
m_bDataTypePrimitive(true),
m_SearchType(SearchType_ExactValue),
m_AddressType(AddressType_Virtual),
m_VAddrBits(0x80000000),
m_Memory(NULL)
{
m_Value._uint64 = 0;
SetAddressRange(0x80000000, 0x803FFFFF);
}
bool CMemoryScanner::RangeCheck(uint32_t addrStart, uint32_t addrEnd, uint32_t rangeStart, uint32_t rangeEnd)
{
return (addrStart <= addrEnd) && (addrStart >= rangeStart) && (addrEnd <= rangeEnd);
}
bool CMemoryScanner::AddrCheck(uint32_t addr, uint32_t rangeStart, uint32_t rangeEnd)
{
return (addr >= rangeStart) && (addr <= rangeEnd);
}
bool CMemoryScanner::PAddrValid(uint32_t physAddr)
{
if (g_MMU == NULL || g_Rom == NULL)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
uint32_t ramSize = g_MMU->RdramSize();
uint32_t romSize = g_Rom->GetRomSize();
return (AddrCheck(physAddr, 0x00000000, 0x00000000 + ramSize - 1) ||
AddrCheck(physAddr, 0x10000000, 0x10000000 + romSize - 1) ||
AddrCheck(physAddr, 0x04000000, 0x04001FFF));
}
bool CMemoryScanner::PAddrRangeValid(uint32_t physAddrStart, uint32_t physAddrEnd)
{
return (RangeCheck(physAddrStart, physAddrEnd, 0x00000000, g_MMU->RdramSize()) ||
RangeCheck(physAddrStart, physAddrEnd, 0x04000000, 0x04001FFF) ||
RangeCheck(physAddrStart, physAddrEnd, 0x10000000, 0x15FFFFFF));
}
void CMemoryScanner::SetAddressType(AddressType addressType)
{
m_AddressType = addressType;
}
void CMemoryScanner::Reset(void)
{
m_DidFirstScan = false;
m_ValueType = ValueType_uint8;
m_SearchType = SearchType_ExactValue;
m_Results.clear();
}
bool CMemoryScanner::SetAddressRange(uint32_t startAddress, uint32_t endAddress)
{
if (!g_MMU || !g_Rom)
{
return false;
}
if(m_DidFirstScan)
{
return false;
}
if (m_AddressType == AddressType_Virtual)
{
m_VAddrBits = startAddress & 0xE0000000;
// don't allow TLB
if (!RangeCheck(startAddress, endAddress, 0x80000000, 0xBFFFFFFF))
{
return false;
}
// use physical addresses internally
startAddress = startAddress & 0x1FFFFFFF;
endAddress = endAddress & 0x1FFFFFFF;
}
else
{
m_VAddrBits = 0;
}
if (RangeCheck(startAddress, endAddress, 0x00000000, 0x007FFFFF))
{
if (endAddress >= g_MMU->RdramSize())
{
return false;
}
m_Memory = g_MMU->Rdram();
}
else if (RangeCheck(startAddress, endAddress, 0x04000000, 0x04001FFF))
{
m_Memory = g_MMU->Rdram();
}
else if (RangeCheck(startAddress, endAddress, 0x10000000, 0x10FFFFFF))
{
if ((endAddress - 0x10000000) >= g_Rom->GetRomSize())
{
return false;
}
m_Memory = (g_Rom->GetRomAddress() - 0x10000000);
}
else
{
return false; // invalid range
}
m_Memory = GetMemoryPool(startAddress);
m_RangeStartAddress = startAddress;
m_RangeEndAddress = endAddress;
return true;
}
uint8_t* CMemoryScanner::GetMemoryPool(uint32_t physAddr)
{
if (!g_MMU || !g_Rom)
{
return NULL;
}
if ((physAddr >= 0x00000000 && physAddr < g_MMU->RdramSize()) ||
(physAddr >= 0x04000000 && physAddr <= 0x04001FFF))
{
return g_MMU->Rdram();
}
else if (physAddr >= 0x10000000 && physAddr <= 0x18000000)
{
return (g_Rom->GetRomAddress() - 0x10000000);
}
else
{
return NULL;
}
}
bool CMemoryScanner::SetValueType(ValueType type)
{
if(m_DidFirstScan)
{
return false;
}
switch(type)
{
case ValueType_string:
case ValueType_istring:
case ValueType_unkstring:
m_bDataTypePrimitive = false;
break;
default:
m_bDataTypePrimitive = true;
break;
}
m_ValueType = type;
return true;
}
void CMemoryScanner::SetStringValueLength(int length)
{
m_StringValueLength = length;
}
bool CMemoryScanner::SetSearchType(SearchType searchType)
{
if(!m_bDataTypePrimitive)
{
return false;
}
switch(searchType)
{
case SearchType_UnknownValue:
case SearchType_JalTo:
if (m_DidFirstScan)
{
return false;
}
break;
case SearchType_ChangedValue:
case SearchType_UnchangedValue:
case SearchType_IncreasedValue:
case SearchType_DecreasedValue:
if(!m_DidFirstScan)
{
return false;
}
break;
}
m_SearchType = searchType;
return true;
}
bool CMemoryScanner::DidFirstScan(void)
{
return m_DidFirstScan;
}
size_t CMemoryScanner::GetNumResults(void)
{
return m_Results.size();
}
CScanResult* CMemoryScanner::GetResult(size_t index)
{
if (index >= m_Results.size())
{
return NULL;
}
return &m_Results[index];
}
void CMemoryScanner::RemoveResult(size_t index)
{
if (index >= m_Results.size())
{
return;
}
m_Results.erase(m_Results.begin() + index);
}
// scan for text or hex array
void CMemoryScanner::FirstScanLoopString(DisplayFormat resultDisplayFormat)
{
int length = m_StringValueLength;
uint32_t startAddr = m_RangeStartAddress;
uint32_t endAddr = (m_RangeEndAddress - length) + 1;
CScanResult result(m_AddressType, resultDisplayFormat);
result.SetStrLength(length);
for (uint32_t addr = startAddr; addr <= endAddr; addr++)
{
for (int i = 0; i < length; i++)
{
uint32_t leAddr = (addr + i) ^ 3;
if ((uint8_t)m_Value._string[i] != m_Memory[leAddr])
{
goto next_addr;
}
}
result.m_Address = addr | m_VAddrBits;
result.Set((const wchar_t*)NULL);
m_Results.push_back(result);
next_addr:;
}
}
// scan for text (case-insensitive)
void CMemoryScanner::FirstScanLoopIString(DisplayFormat resultDisplayFormat)
{
int length = m_StringValueLength;
uint32_t startAddr = m_RangeStartAddress;
uint32_t endAddr = m_RangeEndAddress - length;
CScanResult result(m_AddressType, resultDisplayFormat);
result.SetStrLength(length);
for (uint32_t addr = startAddr; addr <= endAddr; addr++)
{
for (int i = 0; i < length; i++)
{
uint32_t leAddr = (addr + i) ^ 3;
if (toupper((uint8_t)m_Value._string[i]) != toupper(m_Memory[leAddr]))
{
goto next_addr;
}
}
result.m_Address = addr | m_VAddrBits;
result.Set((const wchar_t*)NULL);
m_Results.push_back(result);
next_addr:;
}
}
// scan for text of unknown single-byte encoding
void CMemoryScanner::FirstScanLoopUnkString(void)
{
const char* str = stdstr().FromUTF16(m_Value._string).c_str();
int length = m_StringValueLength;
uint32_t startAddr = m_RangeStartAddress;
uint32_t endAddr = m_RangeEndAddress - length;
CScanResult result(m_AddressType, DisplayHex);
result.SetStrLength(length);
for (uint32_t addr = startAddr; addr <= endAddr; addr++)
{
uint32_t leAddr = addr ^ 3;
char numberDiff = 0, lowercaseDiff = 0, uppercaseDiff = 0;
bool haveNumberDiff = false, haveLowercaseDiff = false, haveUppercaseDiff = false;
for (int i = 0; i < length; i++)
{
leAddr = (addr + i) ^ 3;
if (!isalnum(str[i]))
{
continue;
}
if (str[i] >= 'a' && str[i] <= 'z')
{
if (!haveLowercaseDiff)
{
lowercaseDiff = str[i] - m_Memory[leAddr];
haveLowercaseDiff = true;
}
else if (m_Memory[leAddr] + lowercaseDiff != str[i])
{
goto next_addr;
}
}
else if (str[i] >= 'A' && str[i] <= 'Z')
{
if (!haveUppercaseDiff)
{
uppercaseDiff = str[i] - m_Memory[leAddr];
haveUppercaseDiff = true;
}
else if (m_Memory[leAddr] + uppercaseDiff != str[i])
{
goto next_addr;
}
}
else if (str[i] >= '0' && str[i] <= '9')
{
if (!haveNumberDiff)
{
numberDiff = str[i] - m_Memory[leAddr];
haveNumberDiff = true;
}
else if (m_Memory[leAddr] + numberDiff != str[i])
{
goto next_addr;
}
}
}
result.m_Address = addr | m_VAddrBits;
result.Set((const wchar_t*)NULL);
m_Results.push_back(result);
next_addr:;
}
}
#define _FirstScanLoopPrimitive(T, Compare, resDisplayFormat) FirstScanLoopPrimitive<T>(Compare<T>, resDisplayFormat)
#define _FirstScanLoopPrimitive64(T, Compare, resDisplayFormat) FirstScanLoopPrimitive64<T>(Compare<T>, resDisplayFormat)
#define FIRST_SCAN_PRIMITIVES(CompareFunc) \
switch(m_ValueType) \
{ \
case ValueType_uint8: _FirstScanLoopPrimitive(uint8_t, CompareFunc, resDisplayFormat); break; \
case ValueType_int8: _FirstScanLoopPrimitive(int8_t, CompareFunc, resDisplayFormat); break; \
case ValueType_uint16: _FirstScanLoopPrimitive(uint16_t, CompareFunc, resDisplayFormat); break; \
case ValueType_int16: _FirstScanLoopPrimitive(int16_t, CompareFunc, resDisplayFormat); break; \
case ValueType_uint32: _FirstScanLoopPrimitive(uint32_t, CompareFunc, resDisplayFormat); break; \
case ValueType_int32: _FirstScanLoopPrimitive(int32_t, CompareFunc, resDisplayFormat); break; \
case ValueType_uint64: _FirstScanLoopPrimitive64(uint64_t, CompareFunc, resDisplayFormat); break; \
case ValueType_int64: _FirstScanLoopPrimitive64(int64_t, CompareFunc, resDisplayFormat); break; \
case ValueType_float: _FirstScanLoopPrimitive(float, CompareFunc, resDisplayFormat); break; \
case ValueType_double: _FirstScanLoopPrimitive64(double, CompareFunc, resDisplayFormat); break; \
}
bool CMemoryScanner::FirstScan(DisplayFormat resDisplayFormat)
{
if (!g_MMU)
{
return false;
}
if (m_bDataTypePrimitive)
{
switch (m_SearchType)
{
case SearchType_UnknownValue:
FIRST_SCAN_PRIMITIVES(NoCompare);
break;
case SearchType_ExactValue:
FIRST_SCAN_PRIMITIVES(CompareEqual);
break;
case SearchType_JalTo:
m_Value._uint32 = 0x0C000000 | ((m_Value._uint32 & 0x3FFFFFF) >> 2);
FIRST_SCAN_PRIMITIVES(CompareEqual);
break;
case SearchType_LessThanValue:
FIRST_SCAN_PRIMITIVES(CompareLessThan);
break;
case SearchType_GreaterThanValue:
FIRST_SCAN_PRIMITIVES(CompareGreaterThan);
break;
case SearchType_LessThanOrEqualToValue:
FIRST_SCAN_PRIMITIVES(CompareLessThanOrEqual);
break;
case SearchType_GreaterThanOrEqualToValue:
FIRST_SCAN_PRIMITIVES(CompareGreaterThanOrEqual);
break;
}
}
else
{
switch (m_ValueType)
{
case ValueType_string:
FirstScanLoopString(resDisplayFormat);
break;
case ValueType_istring:
FirstScanLoopIString(resDisplayFormat);
break;
case ValueType_unkstring:
FirstScanLoopUnkString();
break;
}
}
m_DidFirstScan = true;
return true;
}
#define _NextScanLoopPrimitive(T, Compare) NextScanLoopPrimitive<T>(Compare<T>)
#define _NextScanLoopPrimitiveResults(T, Compare) NextScanLoopPrimitiveResults<T>(Compare<T>)
#define _NextScanLoopPrimitive64(T, Compare) NextScanLoopPrimitive64<T>(Compare<T>)
#define _NextScanLoopPrimitiveResults64(T, Compare) NextScanLoopPrimitiveResults64<T>(Compare<T>)
// compare result's current value in memory against m_Value
#define NEXT_SCAN_PRIMITIVES_AGAINST_VALUE(CompareFunc) \
switch(m_ValueType) \
{ \
case ValueType_uint8: _NextScanLoopPrimitive(uint8_t, CompareFunc); break; \
case ValueType_int8: _NextScanLoopPrimitive(int8_t, CompareFunc); break; \
case ValueType_uint16: _NextScanLoopPrimitive(uint16_t, CompareFunc); break; \
case ValueType_int16: _NextScanLoopPrimitive(int16_t, CompareFunc); break; \
case ValueType_uint32: _NextScanLoopPrimitive(uint32_t, CompareFunc); break; \
case ValueType_int32: _NextScanLoopPrimitive(int32_t, CompareFunc); break; \
case ValueType_uint64: _NextScanLoopPrimitive64(uint64_t, CompareFunc); break; \
case ValueType_int64: _NextScanLoopPrimitive64(int64_t, CompareFunc); break; \
case ValueType_float: _NextScanLoopPrimitive(float, CompareFunc); break; \
case ValueType_double: _NextScanLoopPrimitive64(double, CompareFunc); break; \
}
// compare result's current value in memory against result's old value
#define NEXT_SCAN_PRIMITIVES_AGAINST_RESULTS(CompareFunc) \
switch(m_ValueType) \
{ \
case ValueType_uint8: _NextScanLoopPrimitiveResults(uint8_t, CompareFunc); break; \
case ValueType_int8: _NextScanLoopPrimitiveResults(int8_t, CompareFunc); break; \
case ValueType_uint16: _NextScanLoopPrimitiveResults(uint16_t, CompareFunc); break; \
case ValueType_int16: _NextScanLoopPrimitiveResults(int16_t, CompareFunc); break; \
case ValueType_uint32: _NextScanLoopPrimitiveResults(uint32_t, CompareFunc); break; \
case ValueType_int32: _NextScanLoopPrimitiveResults(int32_t, CompareFunc); break; \
case ValueType_uint64: _NextScanLoopPrimitiveResults64(uint64_t, CompareFunc); break; \
case ValueType_int64: _NextScanLoopPrimitiveResults64(int64_t, CompareFunc); break; \
case ValueType_float: _NextScanLoopPrimitiveResults(float, CompareFunc); break; \
case ValueType_double: _NextScanLoopPrimitiveResults64(double, CompareFunc); break; \
}
bool CMemoryScanner::NextScan()
{
if (!g_MMU || !m_DidFirstScan || !m_bDataTypePrimitive)
{
// NextScan does not support complex data
return false;
}
switch(m_SearchType)
{
case SearchType_ExactValue:
NEXT_SCAN_PRIMITIVES_AGAINST_VALUE(CompareEqual);
break;
case SearchType_LessThanValue:
NEXT_SCAN_PRIMITIVES_AGAINST_VALUE(CompareLessThan);
break;
case SearchType_GreaterThanValue:
NEXT_SCAN_PRIMITIVES_AGAINST_VALUE(CompareGreaterThan);
break;
case SearchType_LessThanOrEqualToValue:
NEXT_SCAN_PRIMITIVES_AGAINST_VALUE(CompareLessThanOrEqual);
break;
case SearchType_GreaterThanOrEqualToValue:
NEXT_SCAN_PRIMITIVES_AGAINST_VALUE(CompareGreaterThanOrEqual);
break;
case SearchType_ChangedValue:
NEXT_SCAN_PRIMITIVES_AGAINST_RESULTS(CompareNotEqual);
break;
case SearchType_UnchangedValue:
NEXT_SCAN_PRIMITIVES_AGAINST_RESULTS(CompareEqual);
break;
case SearchType_IncreasedValue:
NEXT_SCAN_PRIMITIVES_AGAINST_RESULTS(CompareGreaterThan);
break;
case SearchType_DecreasedValue:
NEXT_SCAN_PRIMITIVES_AGAINST_RESULTS(CompareLessThan);
break;
}
return true;
}
int CMemoryScanner::HexDigitVal(char c)
{
if (c >= '0' && c <= '9') return (c - '0');
if (c >= 'A' && c <= 'F') return (c - 'A') + 0x0A;
if (c >= 'a' && c <= 'f') return (c - 'a') + 0x0A;
return 0;
}
int CMemoryScanner::ParseHexString(char *dst, const char* src)
{
bool bHiNibble = true;
uint8_t curByte = 0;
int size = 0;
for (int i = 0; src[i] != '\0'; i++)
{
if (!isxdigit(src[i]))
{
if (!bHiNibble)
{
return 0;
}
if (isspace(src[i]))
{
continue;
}
return 0;
}
if (bHiNibble)
{
curByte = (HexDigitVal(src[i]) << 4) & 0xF0;
bHiNibble = false;
}
else
{
curByte |= HexDigitVal(src[i]);
if (dst != NULL)
{
dst[size] = curByte;
}
size++;
bHiNibble = true;
}
}
if (!bHiNibble)
{
return 0;
}
return size;
}