project64/Source/Project64-core/N64System/Mips/MemoryVirtualMem.cpp

1258 lines
38 KiB
C++
Executable File

#include "stdafx.h"
#include <Common\MemoryManagement.h>
#include <Project64-core\Debugger.h>
#include <Project64-core\ExceptionHandler.h>
#include <Project64-core\N64System\Mips\Disk.h>
#include <Project64-core\N64System\Mips\MemoryVirtualMem.h>
#include <Project64-core\N64System\N64Rom.h>
#include <Project64-core\N64System\N64System.h>
#include <Project64-core\N64System\SystemGlobals.h>
#include <stdio.h>
uint8_t * CMipsMemoryVM::m_Reserve1 = nullptr;
uint8_t * CMipsMemoryVM::m_Reserve2 = nullptr;
uint32_t CMipsMemoryVM::RegModValue;
#pragma warning(disable : 4355) // Disable 'this' : used in base member initializer list
CMipsMemoryVM::CMipsMemoryVM(CN64System & System, bool SavesReadOnly) :
m_System(System),
m_Reg(System.m_Reg),
m_AudioInterfaceHandler(System, System.m_Reg),
m_CartridgeDomain1Address1Handler(System.m_Reg, g_DDRom),
m_CartridgeDomain2Address1Handler(System.m_Reg),
m_CartridgeDomain2Address2Handler(System, System.m_Reg, *this, SavesReadOnly),
m_RDRAMRegistersHandler(System.m_Reg),
m_DPCommandRegistersHandler(System, System.GetPlugins(), System.m_Reg),
m_ISViewerHandler(System, m_RomMemoryHandler, *g_Rom),
m_MIPSInterfaceHandler(System.m_Reg),
m_PeripheralInterfaceHandler(System, *this, System.m_Reg, m_CartridgeDomain2Address2Handler),
m_PifRamHandler(System, SavesReadOnly),
m_RDRAMInterfaceHandler(System.m_Reg),
m_RomMemoryHandler(System, System.m_Reg, *g_Rom),
m_SerialInterfaceHandler(*this, System.m_Reg),
m_SPRegistersHandler(System, *this, System.m_Reg),
m_VideoInterfaceHandler(System, *this, System.m_Reg),
m_MemoryReadMap(nullptr),
m_MemoryWriteMap(nullptr),
m_TLB_ReadMap(nullptr),
m_TLB_WriteMap(nullptr),
m_RDRAM(nullptr),
m_Rom(*g_Rom)
{
g_Settings->RegisterChangeCB(Game_RDRamSize, this, (CSettings::SettingChangedFunc)RdramChanged);
}
CMipsMemoryVM::~CMipsMemoryVM()
{
g_Settings->UnregisterChangeCB(Game_RDRamSize, this, (CSettings::SettingChangedFunc)RdramChanged);
FreeMemory();
}
void CMipsMemoryVM::Reset(bool /*EraseMemory*/)
{
if (m_MemoryReadMap != nullptr && m_MemoryWriteMap != nullptr)
{
memset(m_MemoryReadMap, -1, 0x100000 * sizeof(m_MemoryReadMap[0]));
memset(m_MemoryWriteMap, -1, 0x100000 * sizeof(m_MemoryWriteMap[0]));
for (uint32_t i = 0; i < 2; i++)
{
uint32_t BaseAddress = i == 0 ? 0x80000000 : 0xA0000000;
for (size_t Address = BaseAddress; Address < BaseAddress + m_AllocatedRdramSize; Address += 0x1000)
{
m_MemoryReadMap[Address >> 12] = (size_t)((m_RDRAM + (Address & 0x1FFFFFFF)) - Address);
m_MemoryWriteMap[Address >> 12] = (size_t)((m_RDRAM + (Address & 0x1FFFFFFF)) - Address);
}
for (size_t Address = BaseAddress + 0x04000000; Address < (BaseAddress + 0x04001000); Address += 0x1000)
{
m_MemoryReadMap[Address >> 12] = (size_t)(Dmem() - Address);
}
for (size_t Address = BaseAddress + 0x04001000; Address < (BaseAddress + 0x04002000); Address += 0x1000)
{
m_MemoryReadMap[Address >> 12] = (size_t)(Imem() - Address);
}
}
}
if (m_TLB_ReadMap)
{
memset(m_TLB_ReadMap, -1, 0xFFFFF * sizeof(m_TLB_ReadMap[0]));
memset(m_TLB_WriteMap, -1, 0xFFFFF * sizeof(m_TLB_WriteMap[0]));
for (uint32_t Address = 0x80000000; Address < 0xC0000000; Address += 0x1000)
{
m_TLB_ReadMap[Address >> 12] = (Address & 0x1FFFFFFF) - Address;
m_TLB_WriteMap[Address >> 12] = (Address & 0x1FFFFFFF) - Address;
}
if (g_Settings->LoadDword(Rdb_TLB_VAddrStart) != 0)
{
uint32_t Start = g_Settings->LoadDword(Rdb_TLB_VAddrStart); //0x7F000000;
uint32_t Len = g_Settings->LoadDword(Rdb_TLB_VAddrLen); //0x01000000;
uint32_t PAddr = g_Settings->LoadDword(Rdb_TLB_PAddrStart); //0x10034b30;
uint32_t End = Start + Len;
for (uint32_t Address = Start; Address < End; Address += 0x1000)
{
uint32_t TargetAddress = (Address - Start + PAddr);
if (TargetAddress < m_AllocatedRdramSize)
{
m_MemoryReadMap[Address >> 12] = ((size_t)m_RDRAM + TargetAddress) - Address;
m_MemoryWriteMap[Address >> 12] = ((size_t)m_RDRAM + TargetAddress) - Address;
}
if (TargetAddress >= 0x10000000 && TargetAddress < (0x10000000 + g_Rom->GetRomSize()))
{
m_MemoryReadMap[Address >> 12] = ((size_t)g_Rom->GetRomAddress() + (TargetAddress - 0x10000000)) - Address;
}
m_TLB_ReadMap[Address >> 12] = TargetAddress - Address;
m_TLB_WriteMap[Address >> 12] = TargetAddress - Address;
}
}
}
}
void CMipsMemoryVM::ReserveMemory()
{
#if defined(__i386__) || defined(_M_IX86)
m_Reserve1 = (uint8_t *)AllocateAddressSpace(0x20000000, (void *)g_Settings->LoadDword(Setting_FixedRdramAddress));
#else
m_Reserve1 = (uint8_t *)AllocateAddressSpace(0x20000000);
#endif
m_Reserve2 = (uint8_t *)AllocateAddressSpace(0x04002000);
}
void CMipsMemoryVM::FreeReservedMemory()
{
if (m_Reserve1)
{
FreeAddressSpace(m_Reserve1, 0x20000000);
m_Reserve1 = nullptr;
}
if (m_Reserve2)
{
FreeAddressSpace(m_Reserve2, 0x20000000);
m_Reserve2 = nullptr;
}
}
bool CMipsMemoryVM::Initialize(bool SyncSystem)
{
if (m_RDRAM != nullptr)
{
return true;
}
if (!SyncSystem && m_RDRAM == nullptr && m_Reserve1 != nullptr)
{
m_RDRAM = m_Reserve1;
m_Reserve1 = nullptr;
}
if (SyncSystem && m_RDRAM == nullptr && m_Reserve2 != nullptr)
{
m_RDRAM = m_Reserve2;
m_Reserve2 = nullptr;
}
if (m_RDRAM == nullptr)
{
m_RDRAM = (uint8_t *)AllocateAddressSpace(0x20000000);
}
if (m_RDRAM == nullptr)
{
WriteTrace(TraceN64System, TraceError, "Failed to reserve RDRAM (Size: 0x%X)", 0x20000000);
FreeMemory();
return false;
}
m_AllocatedRdramSize = g_Settings->LoadDword(Game_RDRamSize);
if (CommitMemory(m_RDRAM, m_AllocatedRdramSize, MEM_READWRITE) == nullptr)
{
WriteTrace(TraceN64System, TraceError, "Failed to allocate RDRAM (Size: 0x%X)", m_AllocatedRdramSize);
FreeMemory();
return false;
}
m_MemoryReadMap = new size_t[0x100000];
if (m_MemoryReadMap == nullptr)
{
WriteTrace(TraceN64System, TraceError, "Failed to allocate m_MemoryReadMap (Size: 0x%X)", 0x100000 * sizeof(size_t));
FreeMemory();
return false;
}
m_MemoryWriteMap = new size_t[0x100000];
if (m_MemoryWriteMap == nullptr)
{
WriteTrace(TraceN64System, TraceError, "Failed to allocate m_MemoryWriteMap (Size: 0x%X)", 0x100000 * sizeof(size_t));
FreeMemory();
return false;
}
m_TLB_ReadMap = new uint32_t[0x100000];
if (m_TLB_ReadMap == nullptr)
{
WriteTrace(TraceN64System, TraceError, "Failed to allocate m_TLB_ReadMap (Size: 0x%X)", 0x100000 * sizeof(size_t));
FreeMemory();
return false;
}
m_TLB_WriteMap = new uint32_t[0x100000];
if (m_TLB_WriteMap == nullptr)
{
WriteTrace(TraceN64System, TraceError, "Failed to allocate m_TLB_WriteMap (Size: 0x%X)", 0xFFFFF * sizeof(size_t));
FreeMemory();
return false;
}
Reset(false);
return true;
}
void CMipsMemoryVM::FreeMemory()
{
if (m_RDRAM)
{
if (DecommitMemory(m_RDRAM, 0x20000000))
{
if (m_Reserve1 == nullptr)
{
m_Reserve1 = m_RDRAM;
}
else if (m_Reserve2 == nullptr)
{
m_Reserve2 = m_RDRAM;
}
else
{
FreeAddressSpace(m_RDRAM, 0x20000000);
}
}
else
{
FreeAddressSpace(m_RDRAM, 0x20000000);
}
m_RDRAM = nullptr;
}
if (m_TLB_ReadMap)
{
delete[] m_TLB_ReadMap;
m_TLB_ReadMap = nullptr;
}
if (m_TLB_WriteMap)
{
delete[] m_TLB_WriteMap;
m_TLB_WriteMap = nullptr;
}
if (m_MemoryReadMap)
{
delete[] m_MemoryReadMap;
m_MemoryReadMap = nullptr;
}
if (m_MemoryWriteMap)
{
delete[] m_MemoryWriteMap;
m_MemoryWriteMap = nullptr;
}
}
uint8_t * CMipsMemoryVM::MemoryPtr(uint32_t VAddr, uint32_t Size, bool Read)
{
if (m_TLB_ReadMap[VAddr >> 12] == -1)
{
return nullptr;
}
uint32_t PAddr = m_TLB_ReadMap[VAddr >> 12] + VAddr;
if ((PAddr + Size) < m_AllocatedRdramSize)
{
return (uint8_t *)(m_RDRAM + PAddr);
}
if (PAddr >= 0x04000000 && (PAddr + Size) <= 0x04001000)
{
return (uint8_t *)&m_SPRegistersHandler.Dmem()[PAddr - 0x04000000];
}
if (PAddr >= 0x04001000 && (PAddr + Size) <= 0x04002000)
{
return (uint8_t *)&m_SPRegistersHandler.Imem()[PAddr - 0x04001000];
}
if (Read && PAddr >= 0x10000000 && (PAddr + Size) < (0x10000000 + m_Rom.GetRomSize()))
{
return (uint8_t *)&m_Rom.GetRomAddress()[PAddr - 0x10000000];
}
g_Notify->BreakPoint(__FILE__, __LINE__);
return nullptr;
}
bool CMipsMemoryVM::MemoryValue8(uint32_t VAddr, uint8_t & Value)
{
uint8_t * ptr = MemoryPtr(VAddr ^ 3, 1, true);
if (ptr == nullptr)
{
return false;
}
Value = *ptr;
return true;
}
bool CMipsMemoryVM::MemoryValue16(uint32_t VAddr, uint16_t & Value)
{
uint8_t * ptr = MemoryPtr(VAddr ^ 2, 2, true);
if (ptr == nullptr)
{
return false;
}
Value = *(uint16_t *)(ptr);
return true;
}
bool CMipsMemoryVM::MemoryValue32(uint32_t VAddr, uint32_t & Value)
{
uint8_t * ptr = MemoryPtr(VAddr, 4, true);
if (ptr == nullptr)
{
return false;
}
Value = *(uint32_t *)(ptr);
return true;
}
bool CMipsMemoryVM::MemoryValue64(uint32_t VAddr, uint64_t & Value)
{
uint8_t * ptr = MemoryPtr(VAddr, 8, true);
if (ptr == nullptr)
{
return false;
}
*((uint32_t *)(&Value) + 1) = *(uint32_t *)(ptr);
*((uint32_t *)(&Value) + 0) = *(uint32_t *)(ptr + 4);
return true;
}
bool CMipsMemoryVM::UpdateMemoryValue8(uint32_t VAddr, uint8_t Value)
{
uint8_t * ptr = MemoryPtr(VAddr ^ 3, 1, false);
if (ptr == nullptr)
{
return false;
}
*ptr = Value;
return true;
}
bool CMipsMemoryVM::UpdateMemoryValue16(uint32_t VAddr, uint16_t Value)
{
uint8_t * ptr = MemoryPtr(VAddr ^ 2, 2, false);
if (ptr == nullptr)
{
return false;
}
*(uint16_t *)(ptr) = Value;
return true;
}
bool CMipsMemoryVM::UpdateMemoryValue32(uint32_t VAddr, uint32_t Value)
{
uint8_t * ptr = MemoryPtr(VAddr, 4, false);
if (ptr == nullptr)
{
return false;
}
*(uint32_t *)(ptr) = Value;
return true;
}
bool CMipsMemoryVM::LB_Memory(uint64_t VAddr, uint8_t & Value)
{
if (!b32BitCore() && (uint64_t)((int32_t)VAddr) != VAddr)
{
GenerateAddressErrorException(VAddr, true);
return false;
}
uint32_t VAddr32 = (uint32_t)VAddr;
if (HaveReadBP() && g_Debugger->ReadBP8(VAddr32) && MemoryBreakpoint())
{
return false;
}
uint8_t * MemoryPtr = (uint8_t *)m_MemoryReadMap[VAddr32 >> 12];
if (MemoryPtr != (uint8_t *)-1)
{
Value = *(uint8_t *)(MemoryPtr + (VAddr32 ^ 3));
return true;
}
return LB_NonMemory(VAddr32, Value);
}
bool CMipsMemoryVM::LH_Memory(uint64_t VAddr, uint16_t & Value)
{
if (!b32BitCore() && (uint64_t)((int32_t)VAddr) != VAddr)
{
GenerateAddressErrorException(VAddr, true);
return false;
}
uint32_t VAddr32 = (uint32_t)VAddr;
if ((VAddr32 & 1) != 0)
{
GenerateAddressErrorException(VAddr, true);
return false;
}
if (HaveReadBP() && g_Debugger->ReadBP16(VAddr32) && MemoryBreakpoint())
{
return false;
}
uint8_t * MemoryPtr = (uint8_t *)m_MemoryReadMap[VAddr32 >> 12];
if (MemoryPtr != (uint8_t *)-1)
{
Value = *(uint16_t *)(MemoryPtr + (VAddr32 ^ 2));
return true;
}
return LH_NonMemory(VAddr32, Value);
}
bool CMipsMemoryVM::LW_Memory(uint64_t VAddr, uint32_t & Value)
{
if (!b32BitCore() && (uint64_t)((int32_t)VAddr) != VAddr)
{
GenerateAddressErrorException(VAddr, true);
return false;
}
uint32_t VAddr32 = (uint32_t)VAddr;
if ((VAddr32 & 3) != 0)
{
GenerateAddressErrorException(VAddr, true);
return false;
}
if (HaveReadBP() && g_Debugger->ReadBP32(VAddr32) && MemoryBreakpoint())
{
return false;
}
uint8_t * MemoryPtr = (uint8_t *)m_MemoryReadMap[VAddr32 >> 12];
if (MemoryPtr != (uint8_t *)-1)
{
Value = *(uint32_t *)(MemoryPtr + VAddr32);
return true;
}
uint32_t BaseAddress = m_TLB_ReadMap[VAddr32 >> 12];
if (BaseAddress == -1)
{
GenerateTLBReadException(VAddr, __FUNCTION__);
return false;
}
return LW_NonMemory(VAddr32, Value);
}
bool CMipsMemoryVM::LD_Memory(uint64_t VAddr, uint64_t & Value)
{
if (!b32BitCore() && (uint64_t)((int32_t)VAddr) != VAddr)
{
GenerateAddressErrorException(VAddr, true);
return false;
}
uint32_t VAddr32 = (uint32_t)VAddr;
if ((VAddr32 & 7) != 0)
{
GenerateAddressErrorException(VAddr, true);
return false;
}
if (HaveReadBP() && g_Debugger->ReadBP64(VAddr32) && MemoryBreakpoint())
{
return false;
}
uint8_t * MemoryPtr = (uint8_t *)m_MemoryReadMap[VAddr32 >> 12];
if (MemoryPtr != (uint8_t *)-1)
{
*((uint32_t *)(&Value) + 1) = *(uint32_t *)(MemoryPtr + VAddr32);
*((uint32_t *)(&Value) + 0) = *(uint32_t *)(MemoryPtr + VAddr32 + 4);
return true;
}
uint32_t BaseAddress = m_TLB_ReadMap[VAddr32 >> 12];
if (BaseAddress == -1)
{
return false;
}
return LD_NonMemory(VAddr32, Value);
}
bool CMipsMemoryVM::SB_Memory(uint64_t VAddr, uint32_t Value)
{
if (!b32BitCore() && (uint64_t)((int32_t)VAddr) != VAddr)
{
GenerateAddressErrorException(VAddr, false);
return false;
}
uint32_t VAddr32 = (uint32_t)VAddr;
if (HaveWriteBP() && g_Debugger->WriteBP8(VAddr32) && MemoryBreakpoint())
{
return false;
}
uint8_t * MemoryPtr = (uint8_t *)m_MemoryWriteMap[VAddr32 >> 12];
if (MemoryPtr != (uint8_t *)-1)
{
*(uint8_t *)(MemoryPtr + (VAddr32 ^ 3)) = (uint8_t)Value;
return true;
}
return SB_NonMemory(VAddr32, Value);
}
bool CMipsMemoryVM::SH_Memory(uint64_t VAddr, uint32_t Value)
{
if (!b32BitCore() && (uint64_t)((int32_t)VAddr) != VAddr)
{
GenerateAddressErrorException(VAddr, false);
return false;
}
uint32_t VAddr32 = (uint32_t)VAddr;
if ((VAddr32 & 1) != 0)
{
GenerateAddressErrorException(VAddr, false);
return false;
}
if (HaveWriteBP() && g_Debugger->WriteBP16(VAddr32) && MemoryBreakpoint())
{
return false;
}
uint8_t * MemoryPtr = (uint8_t *)m_MemoryWriteMap[VAddr32 >> 12];
if (MemoryPtr != (uint8_t *)-1)
{
*(uint16_t *)(MemoryPtr + (VAddr32 ^ 2)) = (uint16_t)Value;
return true;
}
return SH_NonMemory(VAddr32, Value);
}
bool CMipsMemoryVM::SW_Memory(uint64_t VAddr, uint32_t Value)
{
if (!b32BitCore() && (uint64_t)((int32_t)VAddr) != VAddr)
{
GenerateAddressErrorException(VAddr, false);
return false;
}
uint32_t VAddr32 = (uint32_t)VAddr;
if ((VAddr32 & 3) != 0)
{
GenerateAddressErrorException(VAddr, false);
return false;
}
if (HaveWriteBP() && g_Debugger->WriteBP32(VAddr32) && MemoryBreakpoint())
{
return false;
}
uint8_t * MemoryPtr = (uint8_t *)m_MemoryWriteMap[VAddr32 >> 12];
if (MemoryPtr != (uint8_t *)-1)
{
*(uint32_t *)(MemoryPtr + VAddr32) = Value;
return true;
}
uint32_t BaseAddress = m_TLB_ReadMap[VAddr32 >> 12];
if (BaseAddress == -1)
{
GenerateTLBWriteException(VAddr, __FUNCTION__);
return false;
}
return SW_NonMemory(VAddr32, Value);
}
bool CMipsMemoryVM::SD_Memory(uint64_t VAddr, uint64_t Value)
{
if (!b32BitCore() && (uint64_t)((int32_t)VAddr) != VAddr)
{
GenerateAddressErrorException(VAddr, false);
return false;
}
uint32_t VAddr32 = (uint32_t)VAddr;
if ((VAddr & 7) != 0)
{
GenerateAddressErrorException(VAddr, false);
return false;
}
if (HaveWriteBP() && g_Debugger->WriteBP64(VAddr32) && MemoryBreakpoint())
{
return false;
}
uint8_t * MemoryPtr = (uint8_t *)m_MemoryWriteMap[VAddr32 >> 12];
if (MemoryPtr != (uint8_t *)-1)
{
*(uint32_t *)(MemoryPtr + VAddr32 + 0) = *((uint32_t *)(&Value) + 1);
*(uint32_t *)(MemoryPtr + VAddr32 + 4) = *((uint32_t *)(&Value));
return true;
}
return SD_NonMemory(VAddr32, Value);
}
bool CMipsMemoryVM::ValidVaddr(uint32_t VAddr) const
{
return m_TLB_ReadMap[VAddr >> 12] != -1;
}
bool CMipsMemoryVM::VAddrToPAddr(uint32_t VAddr, uint32_t & PAddr) const
{
if (m_TLB_ReadMap[VAddr >> 12] == -1)
{
return false;
}
PAddr = m_TLB_ReadMap[VAddr >> 12] + VAddr;
return true;
}
bool CMipsMemoryVM::LB_NonMemory(uint32_t VAddr, uint8_t & Value)
{
uint32_t BaseAddress = m_TLB_ReadMap[VAddr >> 12];
if (BaseAddress == -1)
{
GenerateTLBReadException(VAddr, __FUNCTION__);
return false;
}
uint32_t PAddr = BaseAddress + VAddr;
uint32_t ReadAddress = PAddr & ~3;
uint32_t Value32;
switch (PAddr & 0xFFF00000)
{
case 0x1FC00000: m_PifRamHandler.Read32(ReadAddress, Value32); break;
default:
if (PAddr >= 0x10000000 && PAddr < 0x20000000)
{
if (!m_RomMemoryHandler.Read32(PAddr, Value32))
{
return false;
}
Value = ((Value32 >> (((PAddr & 1) ^ 3) << 3)) & 0xff);
return true;
}
else
{
if (BreakOnUnhandledMemory())
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
Value32 = 0;
}
}
Value = ((Value32 >> (((PAddr & 3) ^ 3) << 3)) & 0xff);
return true;
}
bool CMipsMemoryVM::LH_NonMemory(uint32_t VAddr, uint16_t & Value)
{
uint32_t BaseAddress = m_TLB_ReadMap[VAddr >> 12];
if (BaseAddress == -1)
{
GenerateTLBReadException(VAddr, __FUNCTION__);
return false;
}
uint32_t PAddr = BaseAddress + VAddr;
uint32_t ReadAddress = PAddr & ~1;
uint32_t Value32;
switch (PAddr & 0xFFF00000)
{
case 0x1FC00000: m_PifRamHandler.Read32(ReadAddress, Value32); break;
default:
if (PAddr >= 0x10000000 && PAddr < 0x20000000)
{
if (!m_RomMemoryHandler.Read32(PAddr, Value32))
{
return false;
}
Value = ((Value32 >> 16) & 0xffff);
return true;
}
else
{
if (BreakOnUnhandledMemory())
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
Value32 = 0;
}
}
Value = ((Value32 >> (((PAddr ^ 1) & 1) << 4)) & 0xffff);
return true;
}
bool CMipsMemoryVM::LW_NonMemory(uint32_t VAddr, uint32_t & Value)
{
uint32_t BaseAddress = m_TLB_ReadMap[VAddr >> 12];
if (BaseAddress == -1)
{
GenerateTLBReadException(VAddr, __FUNCTION__);
return false;
}
uint32_t PAddr = BaseAddress + VAddr;
switch (PAddr & 0xFFF00000)
{
case 0x03F00000: m_RDRAMRegistersHandler.Read32(PAddr, Value); break;
case 0x04000000: m_SPRegistersHandler.Read32(PAddr, Value); break;
case 0x04100000: m_DPCommandRegistersHandler.Read32(PAddr, Value); break;
case 0x04300000: m_MIPSInterfaceHandler.Read32(PAddr, Value); break;
case 0x04400000: m_VideoInterfaceHandler.Read32(PAddr, Value); break;
case 0x04500000: m_AudioInterfaceHandler.Read32(PAddr, Value); break;
case 0x04600000: m_PeripheralInterfaceHandler.Read32(PAddr, Value); break;
case 0x04700000: m_RDRAMInterfaceHandler.Read32(PAddr, Value); break;
case 0x04800000: m_SerialInterfaceHandler.Read32(PAddr, Value); break;
case 0x05000000: m_CartridgeDomain2Address1Handler.Read32(PAddr, Value); break;
case 0x06000000: m_CartridgeDomain1Address1Handler.Read32(PAddr, Value); break;
case 0x08000000: m_CartridgeDomain2Address2Handler.Read32(PAddr, Value); break;
case 0x13F00000: m_ISViewerHandler.Read32(PAddr, Value); break;
case 0x1FC00000: m_PifRamHandler.Read32(PAddr, Value); break;
case 0x1FF00000: m_CartridgeDomain1Address3Handler.Read32(PAddr, Value); break;
default:
if (PAddr >= 0x10000000 && PAddr < 0x20000000)
{
m_RomMemoryHandler.Read32(PAddr, Value);
}
else if (BreakOnUnhandledMemory())
{
g_Notify->BreakPoint(__FILE__, __LINE__);
Value = ((PAddr & 0xFFFF) << 16) | (PAddr & 0xFFFF);
}
else
{
Value = ((PAddr & 0xFFFF) << 16) | (PAddr & 0xFFFF);
}
}
return true;
}
bool CMipsMemoryVM::LD_NonMemory(uint32_t VAddr, uint64_t & Value)
{
uint32_t BaseAddress = m_TLB_ReadMap[VAddr >> 12];
if (BaseAddress == -1)
{
GenerateTLBReadException(VAddr, __FUNCTION__);
return false;
}
uint32_t PAddr = BaseAddress + VAddr;
if (PAddr < 0x800000)
{
Value = 0;
return true;
}
g_Notify->BreakPoint(__FILE__, __LINE__);
Value = 0;
return false;
}
bool CMipsMemoryVM::SB_NonMemory(uint32_t VAddr, uint32_t Value)
{
uint32_t BaseAddress = m_TLB_ReadMap[VAddr >> 12];
if (BaseAddress == -1)
{
GenerateTLBWriteException(VAddr, __FUNCTION__);
return false;
}
uint32_t PAddr = BaseAddress + VAddr;
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
if (PAddr < RdramSize())
{
g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF, 0xFFC, CRecompiler::Remove_ProtectedMem);
::ProtectMemory(m_RDRAM + (PAddr & ~0xFFF), 0xFFC, MEM_READWRITE);
*(uint8_t *)(m_RDRAM + (PAddr ^ 3)) = (uint8_t)Value;
}
break;
case 0x04000000: m_SPRegistersHandler.Write32(PAddr & ~3, Value << ((3 - (PAddr & 3)) * 8), 0xFFFFFFFF); break;
case 0x1FC00000: m_PifRamHandler.Write32(PAddr & ~3, Value << ((3 - (PAddr & 3)) * 8), 0xFFFFFFFF); break;
default:
if (PAddr >= 0x10000000 && PAddr < 0x20000000)
{
m_RomMemoryHandler.Write32(PAddr, Value << ((3 - (PAddr & 3)) * 8), 0xFFFFFFFF);
}
else if (BreakOnUnhandledMemory())
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
}
return true;
}
bool CMipsMemoryVM::SH_NonMemory(uint32_t VAddr, uint32_t Value)
{
uint32_t BaseAddress = m_TLB_ReadMap[VAddr >> 12];
if (BaseAddress == -1)
{
GenerateTLBWriteException(VAddr, __FUNCTION__);
return false;
}
uint32_t PAddr = BaseAddress + VAddr;
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
if (PAddr < RdramSize())
{
if (CGameSettings::bSMM_Protect() || CGameSettings::bSMM_StoreInstruc())
{
g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF, 0x1000, CRecompiler::Remove_ProtectedMem);
if (CGameSettings::bSMM_Protect())
{
::ProtectMemory(m_RDRAM + (PAddr & ~0xFFF), 0xFFC, MEM_READWRITE);
}
if (CGameSettings::bSMM_StoreInstruc())
{
m_TLB_WriteMap[VAddr >> 12] = PAddr - VAddr;
}
*(uint16_t *)(m_RDRAM + (PAddr ^ 2)) = (uint16_t)Value;
}
}
break;
case 0x04000000: m_SPRegistersHandler.Write32(PAddr & ~3, Value << ((2 - (PAddr & 2)) * 8), 0xFFFFFFFF); break;
case 0x1FC00000: m_PifRamHandler.Write32(PAddr & ~3, Value << ((2 - (PAddr & 2)) * 8), 0xFFFFFFFF); break;
default:
if (PAddr >= 0x10000000 && PAddr < 0x20000000)
{
m_RomMemoryHandler.Write32(PAddr, Value << ((2 - (PAddr & 2)) * 8), 0xFFFFFFFF);
}
else if (BreakOnUnhandledMemory())
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
return false;
}
return true;
}
bool CMipsMemoryVM::SW_NonMemory(uint32_t VAddr, uint32_t Value)
{
uint32_t BaseAddress = m_TLB_ReadMap[VAddr >> 12];
if (BaseAddress == -1)
{
GenerateTLBWriteException(VAddr, __FUNCTION__);
return false;
}
uint32_t PAddr = BaseAddress + VAddr;
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
case 0x00800000:
if (PAddr < RdramSize())
{
if (CGameSettings::bSMM_Protect() || CGameSettings::bSMM_StoreInstruc())
{
g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF, 0x1000, CRecompiler::Remove_ProtectedMem);
if (CGameSettings::bSMM_Protect())
{
::ProtectMemory(m_RDRAM + (PAddr & ~0xFFF), 0xFFC, MEM_READWRITE);
}
if (CGameSettings::bSMM_StoreInstruc())
{
m_TLB_WriteMap[VAddr >> 12] = PAddr - VAddr;
}
*(uint32_t *)(m_RDRAM + PAddr) = Value;
}
}
break;
case 0x03F00000: m_RDRAMRegistersHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x04000000: m_SPRegistersHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x04100000: m_DPCommandRegistersHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x04300000: m_MIPSInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x04400000: m_VideoInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x04500000: m_AudioInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x04600000: m_PeripheralInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x04700000: m_RDRAMInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x04800000: m_SerialInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x05000000: m_CartridgeDomain2Address1Handler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x06000000: m_CartridgeDomain1Address1Handler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x08000000:
case 0x0fe00000:
m_CartridgeDomain2Address2Handler.Write32(PAddr, Value, 0xFFFFFFFF);
break;
case 0x13F00000: m_ISViewerHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x1FC00000: m_PifRamHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x1FF00000: m_CartridgeDomain1Address3Handler.Write32(PAddr, Value, 0xFFFFFFFF); break;
default:
if (PAddr >= 0x10000000 && PAddr < 0x20000000)
{
m_RomMemoryHandler.Write32(PAddr, Value, 0xFFFFFFFF);
}
else if (BreakOnUnhandledMemory())
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
break;
}
return true;
}
bool CMipsMemoryVM::SD_NonMemory(uint32_t VAddr, uint64_t Value)
{
uint32_t BaseAddress = m_TLB_ReadMap[VAddr >> 12];
if (BaseAddress == -1)
{
GenerateTLBWriteException(VAddr, __FUNCTION__);
return false;
}
uint32_t PAddr = BaseAddress + VAddr;
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
if (PAddr < RdramSize())
{
g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF, 0xFFC, CRecompiler::Remove_ProtectedMem);
::ProtectMemory(m_RDRAM + (PAddr & ~0xFFF), 0xFFC, MEM_READWRITE);
*(uint64_t *)(m_RDRAM + PAddr) = Value;
}
break;
case 0x04000000: m_SPRegistersHandler.Write32(PAddr, (int32_t)(Value >> 32), 0xFFFFFFFF); break;
default:
if (PAddr >= 0x10000000 && PAddr < 0x20000000)
{
m_RomMemoryHandler.Write32(PAddr, (int32_t)(Value >> 32), 0xFFFFFFFF);
}
else if (BreakOnUnhandledMemory())
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
return false;
}
return true;
}
void CMipsMemoryVM::ClearMemoryWriteMap(uint32_t VAddr, uint32_t Length)
{
uint32_t BaseAddress = m_TLB_ReadMap[VAddr >> 12];
if (BaseAddress == -1)
{
return;
}
uint32_t PAddr = m_TLB_ReadMap[VAddr >> 12] + VAddr;
for (uint32_t i = PAddr, n = (PAddr + Length) + 0x1000; i < n; i += 0x1000)
{
m_MemoryWriteMap[(i + 0x80000000) >> 12] = (size_t)-1;
m_MemoryWriteMap[(i + 0xA0000000) >> 12] = (size_t)-1;
}
}
void CMipsMemoryVM::ProtectMemory(uint32_t StartVaddr, uint32_t EndVaddr)
{
WriteTrace(TraceProtectedMem, TraceDebug, "StartVaddr: %08X EndVaddr: %08X", StartVaddr, EndVaddr);
if (!ValidVaddr(StartVaddr) || !ValidVaddr(EndVaddr) || EndVaddr < StartVaddr)
{
return;
}
int32_t Length = ((EndVaddr + 3) - StartVaddr) & ~3;
if (Length < 0)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
return;
}
uint8_t * MemLoc = MemoryPtr(StartVaddr, Length, true);
if (MemLoc == nullptr)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
return;
}
WriteTrace(TraceProtectedMem, TraceDebug, "Length: 0x%X", Length);
::ProtectMemory(MemLoc, Length, MEM_READONLY);
}
void CMipsMemoryVM::UnProtectMemory(uint32_t StartVaddr, uint32_t EndVaddr)
{
WriteTrace(TraceProtectedMem, TraceDebug, "StartVaddr: %08X EndVaddr: %08X", StartVaddr, EndVaddr);
if (!ValidVaddr(StartVaddr) || !ValidVaddr(EndVaddr) || EndVaddr < StartVaddr)
{
return;
}
int32_t Length = ((EndVaddr + 3) - StartVaddr) & ~3;
if (Length < 0)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
return;
}
uint8_t * MemLoc = MemoryPtr(StartVaddr, Length, true);
if (MemLoc == nullptr)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
return;
}
WriteTrace(TraceProtectedMem, TraceDebug, "Length: 0x%X", Length);
::ProtectMemory(MemLoc, Length, MEM_READWRITE);
}
const char * CMipsMemoryVM::LabelName(uint32_t Address) const
{
sprintf(m_strLabelName, "0x%08X", Address);
return m_strLabelName;
}
void CMipsMemoryVM::TLB_Mapped(uint32_t VAddr, uint32_t Len, uint32_t PAddr, bool bReadOnly)
{
uint32_t VEnd = VAddr + Len;
for (uint32_t Address = VAddr; Address < VEnd; Address += 0x1000)
{
size_t Index = Address >> 12;
if ((Address - VAddr + PAddr) < m_AllocatedRdramSize)
{
m_MemoryReadMap[Index] = (size_t)((m_RDRAM + (Address - VAddr + PAddr)) - Address);
}
m_TLB_ReadMap[Index] = ((size_t)(Address - VAddr + PAddr)) - Address;
if (!bReadOnly)
{
if ((Address - VAddr + PAddr) < m_AllocatedRdramSize)
{
m_MemoryWriteMap[Index] = (size_t)((m_RDRAM + (Address - VAddr + PAddr)) - Address);
}
m_TLB_WriteMap[Index] = ((size_t)(Address - VAddr + PAddr)) - Address;
}
}
}
void CMipsMemoryVM::TLB_Unmaped(uint32_t Vaddr, uint32_t Len)
{
uint32_t End = Vaddr + Len;
for (uint32_t Address = Vaddr; Address < End; Address += 0x1000)
{
size_t Index = Address >> 12;
m_MemoryReadMap[Index] = (size_t)-1;
m_MemoryWriteMap[Index] = (size_t)-1;
m_TLB_ReadMap[Index] = (uint32_t)-1;
m_TLB_WriteMap[Index] = (uint32_t)-1;
}
}
void CMipsMemoryVM::RdramChanged(CMipsMemoryVM * _this)
{
const size_t new_size = g_Settings->LoadDword(Game_RDRamSize);
const size_t old_size = _this->m_AllocatedRdramSize;
if (old_size == new_size)
{
return;
}
if (old_size > new_size)
{
DecommitMemory(_this->m_RDRAM + new_size, old_size - new_size);
}
else
{
void * result = CommitMemory(_this->m_RDRAM + old_size, new_size - old_size, MEM_READWRITE);
if (result == nullptr)
{
WriteTrace(TraceN64System, TraceError, "Failed to allocate extended memory");
g_Notify->FatalError(GS(MSG_MEM_ALLOC_ERROR));
}
}
if (new_size > 0xFFFFFFFFul)
{ // Should be unreachable because: size_t new_size = g_Settings->(uint32_t)
g_Notify->BreakPoint(__FILE__, __LINE__);
} // However, FFFFFFFF also is a limit to RCP addressing, so we care
_this->m_AllocatedRdramSize = (uint32_t)new_size;
}
void CMipsMemoryVM::ChangeSpStatus()
{
if ((RegModValue & SP_CLR_HALT) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_HALT;
}
if ((RegModValue & SP_SET_HALT) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_HALT;
}
if ((RegModValue & SP_CLR_BROKE) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_BROKE;
}
if ((RegModValue & SP_CLR_INTR) != 0)
{
g_Reg->MI_INTR_REG &= ~MI_INTR_SP;
g_Reg->m_RspIntrReg &= ~MI_INTR_SP;
g_Reg->CheckInterrupts();
}
if ((RegModValue & SP_SET_INTR) != 0 && HaveDebugger())
{
g_Notify->DisplayError("SP_SET_INTR");
}
if ((RegModValue & SP_CLR_SSTEP) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SSTEP;
}
if ((RegModValue & SP_SET_SSTEP) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SSTEP;
}
if ((RegModValue & SP_CLR_INTR_BREAK) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_INTR_BREAK;
}
if ((RegModValue & SP_SET_INTR_BREAK) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_INTR_BREAK;
}
if ((RegModValue & SP_CLR_SIG0) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG0;
}
if ((RegModValue & SP_SET_SIG0) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG0;
}
if ((RegModValue & SP_CLR_SIG1) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG1;
}
if ((RegModValue & SP_SET_SIG1) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG1;
}
if ((RegModValue & SP_CLR_SIG2) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG2;
}
if ((RegModValue & SP_SET_SIG2) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG2;
}
if ((RegModValue & SP_CLR_SIG3) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG3;
}
if ((RegModValue & SP_SET_SIG3) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG3;
}
if ((RegModValue & SP_CLR_SIG4) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG4;
}
if ((RegModValue & SP_SET_SIG4) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG4;
}
if ((RegModValue & SP_CLR_SIG5) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG5;
}
if ((RegModValue & SP_SET_SIG5) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG5;
}
if ((RegModValue & SP_CLR_SIG6) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG6;
}
if ((RegModValue & SP_SET_SIG6) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG6;
}
if ((RegModValue & SP_CLR_SIG7) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG7;
}
if ((RegModValue & SP_SET_SIG7) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG7;
}
if ((RegModValue & SP_SET_SIG0) != 0 && g_System->RspAudioSignal())
{
g_Reg->MI_INTR_REG |= MI_INTR_SP;
g_Reg->CheckInterrupts();
}
//if (*( uint32_t *)(DMEM + 0xFC0) == 1)
//{
// ChangeTimer(RspTimer,0x40000);
//}
//else
//{
try
{
g_System->RunRSP();
}
catch (...)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
//}
}
void CMipsMemoryVM::ChangeMiIntrMask()
{
if ((RegModValue & MI_INTR_MASK_CLR_SP) != 0)
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_SP;
}
if ((RegModValue & MI_INTR_MASK_SET_SP) != 0)
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_SP;
}
if ((RegModValue & MI_INTR_MASK_CLR_SI) != 0)
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_SI;
}
if ((RegModValue & MI_INTR_MASK_SET_SI) != 0)
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_SI;
}
if ((RegModValue & MI_INTR_MASK_CLR_AI) != 0)
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_AI;
}
if ((RegModValue & MI_INTR_MASK_SET_AI) != 0)
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_AI;
}
if ((RegModValue & MI_INTR_MASK_CLR_VI) != 0)
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_VI;
}
if ((RegModValue & MI_INTR_MASK_SET_VI) != 0)
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_VI;
}
if ((RegModValue & MI_INTR_MASK_CLR_PI) != 0)
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_PI;
}
if ((RegModValue & MI_INTR_MASK_SET_PI) != 0)
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_PI;
}
if ((RegModValue & MI_INTR_MASK_CLR_DP) != 0)
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_DP;
}
if ((RegModValue & MI_INTR_MASK_SET_DP) != 0)
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_DP;
}
}