project64/Source/Project64-rsp-core/Hle/jpeg.cpp

593 lines
18 KiB
C++

// Project64 - A Nintendo 64 emulator
// https://www.pj64-emu.com/
// Copyright(C) 2001-2021 Project64
// Copyright(C) 2012 Bobby Smiles
// Copyright(C) 2009 Richard Goedeken
// Copyright(C) 2002 Hacktarux
// GNU/GPLv2 licensed: https://gnu.org/licenses/gpl-2.0.html
#include <stdint.h>
#include <stdlib.h>
#include "arithmetics.h"
#include "mem.h"
#define SUBBLOCK_SIZE 64
typedef void (*tile_line_emitter_t)(CHle * hle, const int16_t * y, const int16_t * u, uint32_t address);
typedef void (*subblock_transform_t)(int16_t * dst, const int16_t * src);
// Standard JPEG microcode decoder
static void jpeg_decode_std(CHle * hle,
const char * const version,
const subblock_transform_t transform_luma,
const subblock_transform_t transform_chroma,
const tile_line_emitter_t emit_line);
// Helper functions
static uint8_t clamp_u8(int16_t x);
static int16_t clamp_s12(int16_t x);
static uint16_t clamp_RGBA_component(int16_t x);
// Pixel conversion and formatting
static uint32_t GetUYVY(int16_t y1, int16_t y2, int16_t u, int16_t v);
static uint16_t GetRGBA(int16_t y, int16_t u, int16_t v);
// Tile line emitters
static void EmitYUVTileLine(CHle * hle, const int16_t * y, const int16_t * u, uint32_t address);
static void EmitRGBATileLine(CHle * hle, const int16_t * y, const int16_t * u, uint32_t address);
// Macroblocks operations
static void decode_macroblock_ob(int16_t * macroblock, int32_t * y_dc, int32_t * u_dc, int32_t * v_dc, const int16_t * qtable);
static void decode_macroblock_std(const subblock_transform_t transform_luma,
const subblock_transform_t transform_chroma,
int16_t * macroblock,
unsigned int subblock_count,
const int16_t qtables[3][SUBBLOCK_SIZE]);
static void EmitTilesMode0(CHle * hle, const tile_line_emitter_t emit_line, const int16_t * macroblock, uint32_t address);
static void EmitTilesMode2(CHle * hle, const tile_line_emitter_t emit_line, const int16_t * macroblock, uint32_t address);
// Sub blocks operations
static void TransposeSubBlock(int16_t * dst, const int16_t * src);
static void ZigZagSubBlock(int16_t * dst, const int16_t * src);
static void ReorderSubBlock(int16_t * dst, const int16_t * src, const unsigned int * table);
static void MultSubBlocks(int16_t * dst, const int16_t * src1, const int16_t * src2, unsigned int shift);
static void ScaleSubBlock(int16_t * dst, const int16_t * src, int16_t scale);
static void RShiftSubBlock(int16_t * dst, const int16_t * src, unsigned int shift);
static void InverseDCT1D(const float * const x, float * dst, unsigned int stride);
static void InverseDCTSubBlock(int16_t * dst, const int16_t * src);
static void RescaleYSubBlock(int16_t * dst, const int16_t * src);
static void RescaleUVSubBlock(int16_t * dst, const int16_t * src);
// Transposed dequantization table
static const int16_t DEFAULT_QTABLE[SUBBLOCK_SIZE] = {
16, 12, 14, 14, 18, 24, 49, 72,
11, 12, 13, 17, 22, 35, 64, 92,
10, 14, 16, 22, 37, 55, 78, 95,
16, 19, 24, 29, 56, 64, 87, 98,
24, 26, 40, 51, 68, 81, 103, 112,
40, 58, 57, 87, 109, 104, 121, 100,
51, 60, 69, 80, 103, 113, 120, 103,
61, 55, 56, 62, 77, 92, 101, 99};
// Zig-zag indices
static const unsigned int ZIGZAG_TABLE[SUBBLOCK_SIZE] = {
0, 1, 5, 6, 14, 15, 27, 28,
2, 4, 7, 13, 16, 26, 29, 42,
3, 8, 12, 17, 25, 30, 41, 43,
9, 11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34, 37, 47, 50, 56, 59, 61,
35, 36, 48, 49, 57, 58, 62, 63};
// Transposition indices
static const unsigned int TRANSPOSE_TABLE[SUBBLOCK_SIZE] = {
0, 8, 16, 24, 32, 40, 48, 56,
1, 9, 17, 25, 33, 41, 49, 57,
2, 10, 18, 26, 34, 42, 50, 58,
3, 11, 19, 27, 35, 43, 51, 59,
4, 12, 20, 28, 36, 44, 52, 60,
5, 13, 21, 29, 37, 45, 53, 61,
6, 14, 22, 30, 38, 46, 54, 62,
7, 15, 23, 31, 39, 47, 55, 63};
/* IDCT related constants
* Cn = alpha * cos(n * PI / 16) (alpha is chosen such as C4 = 1) */
static const float IDCT_C3 = 1.175875602f;
static const float IDCT_C6 = 0.541196100f;
static const float IDCT_K[10] = {
0.765366865f, // C2-C6
-1.847759065f, // -C2-C6
-0.390180644f, // C5-C3
-1.961570561f, // -C5-C3
1.501321110f, // C1+C3-C5-C7
2.053119869f, // C1+C3-C5+C7
3.072711027f, // C1+C3+C5-C7
0.298631336f, // -C1+C3+C5-C7
-0.899976223f, // C7-C3
-2.562915448f // -C1-C3
};
// Global functions
// JPEG decoding microcode found in Japanese-exclusive version of Pokémon Stadium
void jpeg_decode_PS0(CHle * hle)
{
jpeg_decode_std(hle, "PS0", RescaleYSubBlock, RescaleUVSubBlock, EmitYUVTileLine);
}
// JPEG decoding microcode found in Ocarina of Time, Pokémon Stadium 1, and Pokémon Stadium 2
void jpeg_decode_PS(CHle * hle)
{
jpeg_decode_std(hle, "PS", NULL, NULL, EmitRGBATileLine);
}
// JPEG decoding microcode found in Ogre Battle and Bottom of the 9th
void jpeg_decode_OB(CHle * hle)
{
int16_t qtable[SUBBLOCK_SIZE];
unsigned int mb;
int32_t y_dc = 0;
int32_t u_dc = 0;
int32_t v_dc = 0;
uint32_t address = *dmem_u32(hle, TASK_DATA_PTR);
const unsigned int macroblock_count = *dmem_u32(hle, TASK_DATA_SIZE);
const int qscale = *dmem_u32(hle, TASK_YIELD_DATA_SIZE);
hle->VerboseMessage("jpeg_decode_OB: *buffer=%x, #MB=%d, qscale=%d", address, macroblock_count, qscale);
if (qscale != 0)
{
if (qscale > 0)
{
ScaleSubBlock(qtable, DEFAULT_QTABLE, qscale);
}
else
{
RShiftSubBlock(qtable, DEFAULT_QTABLE, -qscale);
}
}
for (mb = 0; mb < macroblock_count; ++mb)
{
int16_t macroblock[6 * SUBBLOCK_SIZE];
dram_load_u16(hle, (uint16_t *)macroblock, address, 6 * SUBBLOCK_SIZE);
decode_macroblock_ob(macroblock, &y_dc, &u_dc, &v_dc, (qscale != 0) ? qtable : NULL);
EmitTilesMode2(hle, EmitYUVTileLine, macroblock, address);
address += (2 * 6 * SUBBLOCK_SIZE);
}
}
// Local functions
static void jpeg_decode_std(CHle * hle, const char * const version, const subblock_transform_t transform_luma, const subblock_transform_t transform_chroma, const tile_line_emitter_t emit_line)
{
int16_t qtables[3][SUBBLOCK_SIZE];
unsigned int mb;
uint32_t address;
uint32_t macroblock_count;
uint32_t mode;
uint32_t qtableY_ptr;
uint32_t qtableU_ptr;
uint32_t qtableV_ptr;
unsigned int subblock_count;
unsigned int macroblock_size;
// Macroblock contains at most 6 sub blocks
int16_t macroblock[6 * SUBBLOCK_SIZE];
uint32_t data_ptr;
if (*dmem_u32(hle, TASK_FLAGS) & 0x1)
{
hle->WarnMessage("jpeg_decode_%s: task yielding not implemented", version);
return;
}
data_ptr = *dmem_u32(hle, TASK_DATA_PTR);
address = *dram_u32(hle, data_ptr);
macroblock_count = *dram_u32(hle, data_ptr + 4);
mode = *dram_u32(hle, data_ptr + 8);
qtableY_ptr = *dram_u32(hle, data_ptr + 12);
qtableU_ptr = *dram_u32(hle, data_ptr + 16);
qtableV_ptr = *dram_u32(hle, data_ptr + 20);
hle->VerboseMessage("jpeg_decode_%s: *buffer=%x, #MB=%d, mode=%d, *Qy=%x, *Qu=%x, *Qv=%x", version, address, macroblock_count, mode, qtableY_ptr, qtableU_ptr, qtableV_ptr);
if (mode != 0 && mode != 2)
{
hle->WarnMessage("jpeg_decode_%s: invalid mode %d", version, mode);
return;
}
subblock_count = mode + 4;
macroblock_size = subblock_count * SUBBLOCK_SIZE;
dram_load_u16(hle, (uint16_t *)qtables[0], qtableY_ptr, SUBBLOCK_SIZE);
dram_load_u16(hle, (uint16_t *)qtables[1], qtableU_ptr, SUBBLOCK_SIZE);
dram_load_u16(hle, (uint16_t *)qtables[2], qtableV_ptr, SUBBLOCK_SIZE);
for (mb = 0; mb < macroblock_count; ++mb)
{
dram_load_u16(hle, (uint16_t *)macroblock, address, macroblock_size);
decode_macroblock_std(transform_luma, transform_chroma, macroblock, subblock_count, (const int16_t(*)[SUBBLOCK_SIZE])qtables);
if (mode == 0)
{
EmitTilesMode0(hle, emit_line, macroblock, address);
}
else
{
EmitTilesMode2(hle, emit_line, macroblock, address);
}
address += 2 * macroblock_size;
}
}
static uint8_t clamp_u8(int16_t x)
{
return (x & (0xff00)) ? ((-x) >> 15) & 0xff : x;
}
static int16_t clamp_s12(int16_t x)
{
if (x < -0x800)
{
x = -0x800;
}
else if (x > 0x7f0)
{
x = 0x7f0;
}
return x;
}
static uint16_t clamp_RGBA_component(int16_t x)
{
if (x > 0xff0)
{
x = 0xff0;
}
else if (x < 0)
{
x = 0;
}
return (x & 0xf80);
}
static uint32_t GetUYVY(int16_t y1, int16_t y2, int16_t u, int16_t v)
{
return (uint32_t)clamp_u8(u) << 24 |
(uint32_t)clamp_u8(y1) << 16 |
(uint32_t)clamp_u8(v) << 8 |
(uint32_t)clamp_u8(y2);
}
static uint16_t GetRGBA(int16_t y, int16_t u, int16_t v)
{
const float fY = (float)y + 2048.0f;
const float fU = (float)u;
const float fV = (float)v;
const uint16_t r = clamp_RGBA_component((int16_t)(fY + 1.4025 * fV));
const uint16_t g = clamp_RGBA_component((int16_t)(fY - 0.3443 * fU - 0.7144 * fV));
const uint16_t b = clamp_RGBA_component((int16_t)(fY + 1.7729 * fU));
return (r << 4) | (g >> 1) | (b >> 6) | 1;
}
static void EmitYUVTileLine(CHle * hle, const int16_t * y, const int16_t * u, uint32_t address)
{
uint32_t uyvy[8];
const int16_t * const v = u + SUBBLOCK_SIZE;
const int16_t * const y2 = y + SUBBLOCK_SIZE;
uyvy[0] = GetUYVY(y[0], y[1], u[0], v[0]);
uyvy[1] = GetUYVY(y[2], y[3], u[1], v[1]);
uyvy[2] = GetUYVY(y[4], y[5], u[2], v[2]);
uyvy[3] = GetUYVY(y[6], y[7], u[3], v[3]);
uyvy[4] = GetUYVY(y2[0], y2[1], u[4], v[4]);
uyvy[5] = GetUYVY(y2[2], y2[3], u[5], v[5]);
uyvy[6] = GetUYVY(y2[4], y2[5], u[6], v[6]);
uyvy[7] = GetUYVY(y2[6], y2[7], u[7], v[7]);
dram_store_u32(hle, uyvy, address, 8);
}
static void EmitRGBATileLine(CHle * hle, const int16_t * y, const int16_t * u, uint32_t address)
{
uint16_t rgba[16];
const int16_t * const v = u + SUBBLOCK_SIZE;
const int16_t * const y2 = y + SUBBLOCK_SIZE;
rgba[0] = GetRGBA(y[0], u[0], v[0]);
rgba[1] = GetRGBA(y[1], u[0], v[0]);
rgba[2] = GetRGBA(y[2], u[1], v[1]);
rgba[3] = GetRGBA(y[3], u[1], v[1]);
rgba[4] = GetRGBA(y[4], u[2], v[2]);
rgba[5] = GetRGBA(y[5], u[2], v[2]);
rgba[6] = GetRGBA(y[6], u[3], v[3]);
rgba[7] = GetRGBA(y[7], u[3], v[3]);
rgba[8] = GetRGBA(y2[0], u[4], v[4]);
rgba[9] = GetRGBA(y2[1], u[4], v[4]);
rgba[10] = GetRGBA(y2[2], u[5], v[5]);
rgba[11] = GetRGBA(y2[3], u[5], v[5]);
rgba[12] = GetRGBA(y2[4], u[6], v[6]);
rgba[13] = GetRGBA(y2[5], u[6], v[6]);
rgba[14] = GetRGBA(y2[6], u[7], v[7]);
rgba[15] = GetRGBA(y2[7], u[7], v[7]);
dram_store_u16(hle, rgba, address, 16);
}
static void EmitTilesMode0(CHle * hle, const tile_line_emitter_t emit_line, const int16_t * macroblock, uint32_t address)
{
unsigned int i;
unsigned int y_offset = 0;
unsigned int u_offset = 2 * SUBBLOCK_SIZE;
for (i = 0; i < 8; ++i)
{
emit_line(hle, &macroblock[y_offset], &macroblock[u_offset], address);
y_offset += 8;
u_offset += 8;
address += 32;
}
}
static void EmitTilesMode2(CHle * hle, const tile_line_emitter_t emit_line, const int16_t * macroblock, uint32_t address)
{
unsigned int i;
unsigned int y_offset = 0;
unsigned int u_offset = 4 * SUBBLOCK_SIZE;
for (i = 0; i < 8; ++i)
{
emit_line(hle, &macroblock[y_offset], &macroblock[u_offset], address);
emit_line(hle, &macroblock[y_offset + 8], &macroblock[u_offset], address + 32);
y_offset += (i == 3) ? SUBBLOCK_SIZE + 16 : 16;
u_offset += 8;
address += 64;
}
}
static void decode_macroblock_ob(int16_t * macroblock, int32_t * y_dc, int32_t * u_dc, int32_t * v_dc, const int16_t * qtable)
{
int sb;
for (sb = 0; sb < 6; ++sb)
{
int16_t tmp_sb[SUBBLOCK_SIZE];
// Update decode
int32_t dc = (int32_t)macroblock[0];
switch (sb)
{
case 0:
case 1:
case 2:
case 3:
*y_dc += dc;
macroblock[0] = *y_dc & 0xffff;
break;
case 4:
*u_dc += dc;
macroblock[0] = *u_dc & 0xffff;
break;
case 5:
*v_dc += dc;
macroblock[0] = *v_dc & 0xffff;
break;
}
ZigZagSubBlock(tmp_sb, macroblock);
if (qtable != NULL)
{
MultSubBlocks(tmp_sb, tmp_sb, qtable, 0);
}
TransposeSubBlock(macroblock, tmp_sb);
InverseDCTSubBlock(macroblock, macroblock);
macroblock += SUBBLOCK_SIZE;
}
}
static void decode_macroblock_std(const subblock_transform_t transform_luma,
const subblock_transform_t transform_chroma,
int16_t * macroblock,
unsigned int subblock_count,
const int16_t qtables[3][SUBBLOCK_SIZE])
{
unsigned int sb;
unsigned int q = 0;
for (sb = 0; sb < subblock_count; ++sb)
{
int16_t tmp_sb[SUBBLOCK_SIZE];
const int isChromaSubBlock = (subblock_count - sb <= 2);
if (isChromaSubBlock)
{
++q;
}
MultSubBlocks(macroblock, macroblock, qtables[q], 4);
ZigZagSubBlock(tmp_sb, macroblock);
InverseDCTSubBlock(macroblock, tmp_sb);
if (isChromaSubBlock)
{
if (transform_chroma != NULL)
{
transform_chroma(macroblock, macroblock);
}
}
else
{
if (transform_luma != NULL)
{
transform_luma(macroblock, macroblock);
}
}
macroblock += SUBBLOCK_SIZE;
}
}
static void TransposeSubBlock(int16_t * dst, const int16_t * src)
{
ReorderSubBlock(dst, src, TRANSPOSE_TABLE);
}
static void ZigZagSubBlock(int16_t * dst, const int16_t * src)
{
ReorderSubBlock(dst, src, ZIGZAG_TABLE);
}
static void ReorderSubBlock(int16_t * dst, const int16_t * src, const unsigned int * table)
{
unsigned int i;
// Source and destination sub blocks cannot overlap
assert(abs(dst - src) > SUBBLOCK_SIZE);
for (i = 0; i < SUBBLOCK_SIZE; ++i)
dst[i] = src[table[i]];
}
static void MultSubBlocks(int16_t * dst, const int16_t * src1, const int16_t * src2, unsigned int shift)
{
unsigned int i;
for (i = 0; i < SUBBLOCK_SIZE; ++i)
{
int32_t v = src1[i] * src2[i];
dst[i] = clamp_s16(v) << shift;
}
}
static void ScaleSubBlock(int16_t * dst, const int16_t * src, int16_t scale)
{
unsigned int i;
for (i = 0; i < SUBBLOCK_SIZE; ++i)
{
int32_t v = src[i] * scale;
dst[i] = clamp_s16(v);
}
}
static void RShiftSubBlock(int16_t * dst, const int16_t * src, unsigned int shift)
{
unsigned int i;
for (i = 0; i < SUBBLOCK_SIZE; ++i)
dst[i] = src[i] >> shift;
}
/*
TODO: find a better, more general resource for this
Fast 2D IDCT using separable formulation and normalization
Computations use single precision floats
Implementation based on Wikipedia:
https://fr.wikipedia.org/wiki/Transform%C3%A9e_en_cosinus_discr%C3%A8te
*/
static void InverseDCT1D(const float * const x, float * dst, unsigned int stride)
{
float e[4];
float f[4];
float x26, x1357, x15, x37, x17, x35;
x15 = IDCT_K[2] * (x[1] + x[5]);
x37 = IDCT_K[3] * (x[3] + x[7]);
x17 = IDCT_K[8] * (x[1] + x[7]);
x35 = IDCT_K[9] * (x[3] + x[5]);
x1357 = IDCT_C3 * (x[1] + x[3] + x[5] + x[7]);
x26 = IDCT_C6 * (x[2] + x[6]);
f[0] = x[0] + x[4];
f[1] = x[0] - x[4];
f[2] = x26 + IDCT_K[0] * x[2];
f[3] = x26 + IDCT_K[1] * x[6];
e[0] = x1357 + x15 + IDCT_K[4] * x[1] + x17;
e[1] = x1357 + x37 + IDCT_K[6] * x[3] + x35;
e[2] = x1357 + x15 + IDCT_K[5] * x[5] + x35;
e[3] = x1357 + x37 + IDCT_K[7] * x[7] + x17;
*dst = f[0] + f[2] + e[0];
dst += stride;
*dst = f[1] + f[3] + e[1];
dst += stride;
*dst = f[1] - f[3] + e[2];
dst += stride;
*dst = f[0] - f[2] + e[3];
dst += stride;
*dst = f[0] - f[2] - e[3];
dst += stride;
*dst = f[1] - f[3] - e[2];
dst += stride;
*dst = f[1] + f[3] - e[1];
dst += stride;
*dst = f[0] + f[2] - e[0];
}
static void InverseDCTSubBlock(int16_t * dst, const int16_t * src)
{
float x[8];
float block[SUBBLOCK_SIZE];
unsigned int i, j;
// IDCT 1D on rows (+transposition)
for (i = 0; i < 8; ++i)
{
for (j = 0; j < 8; ++j)
{
x[j] = (float)src[i * 8 + j];
}
InverseDCT1D(x, &block[i], 8);
}
// IDCT 1D on columns (thanks to previous transposition)
for (i = 0; i < 8; ++i)
{
InverseDCT1D(&block[i * 8], x, 1);
// C4 = 1 normalization implies a division by 8
for (j = 0; j < 8; ++j)
{
dst[i + j * 8] = (int16_t)x[j] >> 3;
}
}
}
static void RescaleYSubBlock(int16_t * dst, const int16_t * src)
{
unsigned int i;
for (i = 0; i < SUBBLOCK_SIZE; ++i)
{
dst[i] = (((uint32_t)(clamp_s12(src[i]) + 0x800) * 0xdb0) >> 16) + 0x10;
}
}
static void RescaleUVSubBlock(int16_t * dst, const int16_t * src)
{
unsigned int i;
for (i = 0; i < SUBBLOCK_SIZE; ++i)
{
dst[i] = (((int)clamp_s12(src[i]) * 0xe00) >> 16) + 0x80;
}
}