project64/Source/Project64-core/N64System/Mips/MemoryVirtualMem.cpp

1064 lines
32 KiB
C++
Executable File

#include "stdafx.h"
#include <Project64-core\N64System\Mips\MemoryVirtualMem.h>
#include <Project64-core\N64System\SystemGlobals.h>
#include <Project64-core\N64System\N64Rom.h>
#include <Project64-core\N64System\N64System.h>
#include <Project64-core\N64System\Recompiler\RecompilerCodeLog.h>
#include <Project64-core\N64System\Mips\OpcodeName.h>
#include <Project64-core\N64System\Mips\Disk.h>
#include <Project64-core\ExceptionHandler.h>
#include <Common\MemoryManagement.h>
#include <stdio.h>
uint8_t * CMipsMemoryVM::m_Reserve1 = nullptr;
uint8_t * CMipsMemoryVM::m_Reserve2 = nullptr;
uint32_t CMipsMemoryVM::m_MemLookupAddress = 0;
MIPS_DWORD CMipsMemoryVM::m_MemLookupValue;
bool CMipsMemoryVM::m_MemLookupValid = true;
uint32_t CMipsMemoryVM::RegModValue;
#pragma warning(disable:4355) // Disable 'this' : used in base member initializer list
CMipsMemoryVM::CMipsMemoryVM(CN64System & System, bool SavesReadOnly) :
CPifRam(SavesReadOnly),
CFlashram(SavesReadOnly),
CSram(SavesReadOnly),
CDMA(*this, *this),
m_Reg(System.m_Reg),
m_AudioInterfaceHandler(System, System.m_Reg),
m_CartridgeDomain2Address1Handler(System.m_Reg),
m_RDRAMRegistersHandler(System.m_Reg),
m_DPCommandRegistersHandler(System, System.GetPlugins(), System.m_Reg),
m_MIPSInterfaceHandler(System.m_Reg),
m_PeripheralInterfaceHandler(*this, System.m_Reg),
m_PifRamHandler(*this, System.m_Reg),
m_RDRAMInterfaceHandler(System.m_Reg),
m_RomMemoryHandler(System, System.m_Reg, *g_Rom),
m_SerialInterfaceHandler(*this, System.m_Reg),
m_SPRegistersHandler(System, *this, System.m_Reg),
m_VideoInterfaceHandler(System, *this, System.m_Reg),
m_MemoryReadMap(nullptr),
m_MemoryWriteMap(nullptr),
m_TLB_ReadMap(nullptr),
m_TLB_WriteMap(nullptr),
m_RDRAM(nullptr),
m_DMEM(nullptr),
m_IMEM(nullptr),
m_DDRomMapped(false),
m_DDRom(nullptr),
m_DDRomSize(0)
{
g_Settings->RegisterChangeCB(Game_RDRamSize, this, (CSettings::SettingChangedFunc)RdramChanged);
}
CMipsMemoryVM::~CMipsMemoryVM()
{
g_Settings->UnregisterChangeCB(Game_RDRamSize, this, (CSettings::SettingChangedFunc)RdramChanged);
FreeMemory();
}
void CMipsMemoryVM::Reset(bool /*EraseMemory*/)
{
if (m_MemoryReadMap != nullptr && m_MemoryWriteMap != nullptr)
{
memset(m_MemoryReadMap, -1, 0x100000 * sizeof(size_t));
memset(m_MemoryWriteMap, -1, 0x100000 * sizeof(size_t));
for (uint32_t i = 0; i < 2; i++)
{
uint32_t BaseAddress = i == 0 ? 0x80000000 : 0xA0000000;
for (size_t Address = BaseAddress; Address < BaseAddress + m_AllocatedRdramSize; Address += 0x1000)
{
m_MemoryReadMap[Address >> 12] = (size_t)((m_RDRAM + (Address & 0x1FFFFFFF)) - Address);
m_MemoryWriteMap[Address >> 12] = (size_t)((m_RDRAM + (Address & 0x1FFFFFFF)) - Address);
}
for (size_t Address = BaseAddress + 0x04000000; Address < (BaseAddress + 0x04001000); Address += 0x1000)
{
m_MemoryReadMap[Address >> 12] = (size_t)(m_DMEM - Address);
m_MemoryWriteMap[Address >> 12] = (size_t)(m_DMEM - Address);
}
for (size_t Address = BaseAddress + 0x04001000; Address < (BaseAddress + 0x04002000); Address += 0x1000)
{
m_MemoryReadMap[Address >> 12] = (size_t)(m_IMEM - Address);
m_MemoryWriteMap[Address >> 12] = (size_t)(m_IMEM - Address);
}
}
}
if (m_TLB_ReadMap)
{
memset(m_TLB_ReadMap, 0, 0xFFFFF * sizeof(size_t));
memset(m_TLB_WriteMap, 0, 0xFFFFF * sizeof(size_t));
for (size_t Address = 0x80000000; Address < 0xC0000000; Address += 0x1000)
{
m_TLB_ReadMap[Address >> 12] = ((size_t)m_RDRAM + (Address & 0x1FFFFFFF)) - Address;
m_TLB_WriteMap[Address >> 12] = ((size_t)m_RDRAM + (Address & 0x1FFFFFFF)) - Address;
}
if (g_Settings->LoadDword(Rdb_TLB_VAddrStart) != 0)
{
uint32_t Start = g_Settings->LoadDword(Rdb_TLB_VAddrStart); //0x7F000000;
uint32_t Len = g_Settings->LoadDword(Rdb_TLB_VAddrLen); //0x01000000;
uint32_t PAddr = g_Settings->LoadDword(Rdb_TLB_PAddrStart); //0x10034b30;
uint32_t End = Start + Len;
for (uint32_t Address = Start; Address < End; Address += 0x1000)
{
uint32_t TargetAddress = (Address - Start + PAddr);
if (TargetAddress < m_AllocatedRdramSize)
{
m_MemoryReadMap[Address >> 12] = ((size_t)m_RDRAM + TargetAddress) - Address;
m_MemoryWriteMap[Address >> 12] = ((size_t)m_RDRAM + TargetAddress) - Address;
}
if (TargetAddress >= 0x10000000 && TargetAddress < (0x10000000 + g_Rom->GetRomSize()))
{
m_MemoryReadMap[Address >> 12] = ((size_t)g_Rom->GetRomAddress() + (TargetAddress - 0x10000000)) - Address;
}
m_TLB_ReadMap[Address >> 12] = ((size_t)m_RDRAM + TargetAddress) - Address;
m_TLB_WriteMap[Address >> 12] = ((size_t)m_RDRAM + TargetAddress) - Address;
}
}
}
}
void CMipsMemoryVM::ReserveMemory()
{
m_Reserve1 = (uint8_t *)AllocateAddressSpace(0x20000000, (void *)g_Settings->LoadDword(Setting_FixedRdramAddress));
m_Reserve2 = (uint8_t *)AllocateAddressSpace(0x04002000);
}
void CMipsMemoryVM::FreeReservedMemory()
{
if (m_Reserve1)
{
FreeAddressSpace(m_Reserve1, 0x20000000);
m_Reserve1 = nullptr;
}
if (m_Reserve2)
{
FreeAddressSpace(m_Reserve2, 0x20000000);
m_Reserve2 = nullptr;
}
}
bool CMipsMemoryVM::Initialize(bool SyncSystem)
{
if (m_RDRAM != nullptr)
{
return true;
}
if (!SyncSystem && m_RDRAM == nullptr && m_Reserve1 != nullptr)
{
m_RDRAM = m_Reserve1;
m_Reserve1 = nullptr;
}
if (SyncSystem && m_RDRAM == nullptr && m_Reserve2 != nullptr)
{
m_RDRAM = m_Reserve2;
m_Reserve2 = nullptr;
}
if (m_RDRAM == nullptr)
{
m_RDRAM = (uint8_t *)AllocateAddressSpace(0x20000000);
}
if (m_RDRAM == nullptr)
{
WriteTrace(TraceN64System, TraceError, "Failed to reserve RDRAM (Size: 0x%X)", 0x20000000);
FreeMemory();
return false;
}
m_AllocatedRdramSize = g_Settings->LoadDword(Game_RDRamSize);
if (CommitMemory(m_RDRAM, m_AllocatedRdramSize, MEM_READWRITE) == nullptr)
{
WriteTrace(TraceN64System, TraceError, "Failed to allocate RDRAM (Size: 0x%X)", m_AllocatedRdramSize);
FreeMemory();
return false;
}
if (CommitMemory(m_RDRAM + 0x04000000, 0x2000, MEM_READWRITE) == nullptr)
{
WriteTrace(TraceN64System, TraceError, "Failed to allocate DMEM/IMEM (Size: 0x%X)", 0x2000);
FreeMemory();
return false;
}
m_DMEM = (uint8_t *)(m_RDRAM + 0x04000000);
m_IMEM = (uint8_t *)(m_RDRAM + 0x04001000);
// 64DD IPL
if (g_DDRom != nullptr)
{
m_DDRomMapped = false;
m_DDRom = g_DDRom->GetRomAddress();
m_DDRomSize = g_DDRom->GetRomSize();
}
CPifRam::Reset();
m_MemoryReadMap = new size_t [0x100000];
if (m_MemoryReadMap == nullptr)
{
WriteTrace(TraceN64System, TraceError, "Failed to allocate m_MemoryReadMap (Size: 0x%X)", 0x100000 * sizeof(size_t));
FreeMemory();
return false;
}
m_MemoryWriteMap = new size_t [0x100000];
if (m_MemoryWriteMap == nullptr)
{
WriteTrace(TraceN64System, TraceError, "Failed to allocate m_MemoryWriteMap (Size: 0x%X)", 0x100000 * sizeof(size_t));
FreeMemory();
return false;
}
m_TLB_ReadMap = new size_t[0x100000];
if (m_TLB_ReadMap == nullptr)
{
WriteTrace(TraceN64System, TraceError, "Failed to allocate m_TLB_ReadMap (Size: 0x%X)", 0x100000 * sizeof(size_t));
FreeMemory();
return false;
}
m_TLB_WriteMap = new size_t[0x100000];
if (m_TLB_WriteMap == nullptr)
{
WriteTrace(TraceN64System, TraceError, "Failed to allocate m_TLB_WriteMap (Size: 0x%X)", 0xFFFFF * sizeof(size_t));
FreeMemory();
return false;
}
Reset(false);
return true;
}
void CMipsMemoryVM::FreeMemory()
{
if (m_RDRAM)
{
if (DecommitMemory(m_RDRAM, 0x20000000))
{
if (m_Reserve1 == nullptr)
{
m_Reserve1 = m_RDRAM;
}
else if (m_Reserve2 == nullptr)
{
m_Reserve2 = m_RDRAM;
}
else
{
FreeAddressSpace(m_RDRAM, 0x20000000);
}
}
else
{
FreeAddressSpace(m_RDRAM, 0x20000000);
}
m_RDRAM = nullptr;
m_IMEM = nullptr;
m_DMEM = nullptr;
}
if (m_TLB_ReadMap)
{
delete[] m_TLB_ReadMap;
m_TLB_ReadMap = nullptr;
}
if (m_TLB_WriteMap)
{
delete[] m_TLB_WriteMap;
m_TLB_WriteMap = nullptr;
}
if (m_MemoryReadMap)
{
delete[] m_MemoryReadMap;
m_MemoryReadMap = nullptr;
}
if (m_MemoryWriteMap)
{
delete[] m_MemoryWriteMap;
m_MemoryWriteMap = nullptr;
}
CPifRam::Reset();
}
CSram* CMipsMemoryVM::GetSram(void)
{
return dynamic_cast<CSram*>(this);
}
CFlashram* CMipsMemoryVM::GetFlashram()
{
return dynamic_cast<CFlashram*>(this);
}
bool CMipsMemoryVM::LB_VAddr(uint32_t VAddr, uint8_t& Value)
{
uint8_t * MemoryPtr = (uint8_t*)m_MemoryReadMap[VAddr >> 12];
if (MemoryPtr != (uint8_t*)-1)
{
Value = *(uint8_t*)(MemoryPtr + (VAddr ^ 3));
return true;
}
if (m_TLB_ReadMap[VAddr >> 12] == 0)
{
return false;
}
Value = *(uint8_t*)(m_TLB_ReadMap[VAddr >> 12] + (VAddr ^ 3));
return true;
}
bool CMipsMemoryVM::LH_VAddr(uint32_t VAddr, uint16_t& Value)
{
uint8_t * MemoryPtr = (uint8_t*)m_MemoryReadMap[VAddr >> 12];
if (MemoryPtr != (uint8_t*)-1)
{
Value = *(uint16_t*)(MemoryPtr + (VAddr ^ 2));
return true;
}
if (m_TLB_ReadMap[VAddr >> 12] == 0)
{
return false;
}
Value = *(uint16_t*)(m_TLB_ReadMap[VAddr >> 12] + (VAddr ^ 2));
return true;
}
bool CMipsMemoryVM::LW_VAddr(uint32_t VAddr, uint32_t & Value)
{
uint8_t * MemoryPtr = (uint8_t*)m_MemoryReadMap[VAddr >> 12];
if (MemoryPtr != (uint8_t *)-1)
{
Value = *(uint32_t*)(MemoryPtr + VAddr);
return true;
}
if (VAddr >= 0xA3F00000 && VAddr < 0xC0000000)
{
if ((VAddr & 0xFFFFE000ul) != 0xA4000000ul) // !(A4000000 <= addr < A4002000)
{
VAddr &= 0x1FFFFFFF;
LW_NonMemory(VAddr, &Value);
return true;
}
}
uint8_t* BaseAddress = (uint8_t*)m_TLB_ReadMap[VAddr >> 12];
if (BaseAddress == nullptr)
{
return false;
}
Value = *(uint32_t*)(BaseAddress + VAddr);
// if (LookUpMode == FuncFind_ChangeMemory)
// {
// g_Notify->BreakPoint(__FILE__, __LINE__);
// if ( (Command.Hex >> 16) == 0x7C7C)
// {
// Command.Hex = OrigMem[(Command.Hex & 0xFFFF)].OriginalValue;
// }
// }
return true;
}
bool CMipsMemoryVM::LD_VAddr(uint32_t VAddr, uint64_t& Value)
{
uint8_t * MemoryPtr = (uint8_t*)m_MemoryReadMap[VAddr >> 12];
if (MemoryPtr != (uint8_t *)-1)
{
*((uint32_t*)(&Value) + 1) = *(uint32_t*)(MemoryPtr + VAddr);
*((uint32_t*)(&Value) + 0) = *(uint32_t*)(MemoryPtr + VAddr + 4);
return true;
}
if (m_TLB_ReadMap[VAddr >> 12] == 0)
{
return false;
}
*((uint32_t*)(&Value) + 1) = *(uint32_t*)(m_TLB_ReadMap[VAddr >> 12] + VAddr);
*((uint32_t*)(&Value) + 0) = *(uint32_t*)(m_TLB_ReadMap[VAddr >> 12] + VAddr + 4);
return true;
}
bool CMipsMemoryVM::SB_VAddr(uint32_t VAddr, uint8_t Value)
{
uint8_t * MemoryPtr = (uint8_t*)m_MemoryWriteMap[VAddr >> 12];
if (MemoryPtr != (uint8_t *)-1)
{
*(uint8_t*)(MemoryPtr + (VAddr ^ 3)) = Value;
return true;
}
if (m_TLB_WriteMap[VAddr >> 12] == 0)
{
return false;
}
*(uint8_t*)(m_TLB_WriteMap[VAddr >> 12] + (VAddr ^ 3)) = Value;
return true;
}
bool CMipsMemoryVM::SH_VAddr(uint32_t VAddr, uint16_t Value)
{
uint8_t * MemoryPtr = (uint8_t*)m_MemoryWriteMap[VAddr >> 12];
if (MemoryPtr != (uint8_t *)-1)
{
*(uint16_t*)(MemoryPtr + (VAddr ^ 2)) = Value;
return true;
}
if (m_TLB_WriteMap[VAddr >> 12] == 0)
{
return false;
}
*(uint16_t*)(m_TLB_WriteMap[VAddr >> 12] + (VAddr ^ 2)) = Value;
return true;
}
bool CMipsMemoryVM::SW_VAddr(uint32_t VAddr, uint32_t Value)
{
uint8_t * MemoryPtr = (uint8_t*)m_MemoryWriteMap[VAddr >> 12];
if (MemoryPtr != (uint8_t *)-1)
{
*(uint32_t*)(MemoryPtr + VAddr) = Value;
return true;
}
if (VAddr >= 0xA3F00000 && VAddr < 0xC0000000)
{
if ((VAddr & 0xFFFFE000ul) != 0xA4000000ul) // !(A4000000 <= addr < A4002000)
{
VAddr &= 0x1FFFFFFF;
SW_NonMemory(VAddr, Value);
return true;
}
}
if (m_TLB_WriteMap[VAddr >> 12] == 0)
{
return false;
}
*(uint32_t*)(m_TLB_WriteMap[VAddr >> 12] + VAddr) = Value;
return true;
}
bool CMipsMemoryVM::SD_VAddr(uint32_t VAddr, uint64_t Value)
{
uint8_t * MemoryPtr = (uint8_t*)m_MemoryWriteMap[VAddr >> 12];
if (MemoryPtr != (uint8_t *)-1)
{
*(uint32_t*)(MemoryPtr + VAddr + 0) = *((uint32_t*)(&Value) + 1);
*(uint32_t*)(MemoryPtr + VAddr + 4) = *((uint32_t*)(&Value));
return true;
}
if (m_TLB_WriteMap[VAddr >> 12] == 0)
{
return false;
}
*(uint32_t*)(m_TLB_WriteMap[VAddr >> 12] + VAddr + 0) = *((uint32_t*)(&Value) + 1);
*(uint32_t*)(m_TLB_WriteMap[VAddr >> 12] + VAddr + 4) = *((uint32_t*)(&Value));
return true;
}
bool CMipsMemoryVM::ValidVaddr(uint32_t VAddr) const
{
return m_TLB_ReadMap[VAddr >> 12] != 0;
}
bool CMipsMemoryVM::VAddrToRealAddr(uint32_t VAddr, void * &RealAddress) const
{
if (m_TLB_ReadMap[VAddr >> 12] == 0)
{
return false;
}
RealAddress = (uint8_t *)(m_TLB_ReadMap[VAddr >> 12] + VAddr);
return true;
}
bool CMipsMemoryVM::TranslateVaddr(uint32_t VAddr, uint32_t &PAddr) const
{
// Change the virtual address to a physical address
if (m_TLB_ReadMap[VAddr >> 12] == 0)
{
return false;
}
PAddr = (uint32_t)((uint8_t *)(m_TLB_ReadMap[VAddr >> 12] + VAddr) - m_RDRAM);
return true;
}
bool CMipsMemoryVM::LB_NonMemory(uint32_t PAddr, uint32_t* Value, bool /*SignExtend*/)
{
if (PAddr < 0x800000)
{
*Value = 0;
return true;
}
if (PAddr >= 0x10000000 && PAddr < 0x16000000)
{
uint32_t Value32;
if (!m_RomMemoryHandler.Read32(PAddr & ~0x3, Value32))
{
return false;
}
*Value = ((Value32 >> (((PAddr & 3) ^ 3) << 3)) & 0xff);
}
else
{
g_Notify->BreakPoint(__FILE__, __LINE__);
*Value = 0;
}
return true;
}
bool CMipsMemoryVM::LH_NonMemory(uint32_t PAddr, uint32_t* Value, bool/* SignExtend*/)
{
if (PAddr < 0x800000)
{
*Value = 0;
return true;
}
if (PAddr >= 0x10000000 && PAddr < 0x16000000)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
*Value = 0;
return false;
}
bool CMipsMemoryVM::LW_NonMemory(uint32_t PAddr, uint32_t* Value)
{
m_MemLookupAddress = PAddr;
switch (PAddr & 0xFFF00000)
{
case 0x03F00000: m_RDRAMRegistersHandler.Read32(PAddr, m_MemLookupValue.UW[0]); break;
case 0x04000000: m_SPRegistersHandler.Read32(PAddr, m_MemLookupValue.UW[0]); break;
case 0x04100000: m_DPCommandRegistersHandler.Read32(PAddr, m_MemLookupValue.UW[0]); break;
case 0x04300000: m_MIPSInterfaceHandler.Read32(PAddr, m_MemLookupValue.UW[0]); break;
case 0x04400000: m_VideoInterfaceHandler.Read32(PAddr, m_MemLookupValue.UW[0]); break;
case 0x04500000: m_AudioInterfaceHandler.Read32(PAddr, m_MemLookupValue.UW[0]); break;
case 0x04600000: m_PeripheralInterfaceHandler.Read32(PAddr, m_MemLookupValue.UW[0]); break;
case 0x04700000: m_RDRAMInterfaceHandler.Read32(PAddr, m_MemLookupValue.UW[0]); break;
case 0x04800000: m_SerialInterfaceHandler.Read32(PAddr, m_MemLookupValue.UW[0]); break;
case 0x05000000: m_CartridgeDomain2Address1Handler.Read32(PAddr, m_MemLookupValue.UW[0]); break;
case 0x06000000: Load32CartridgeDomain1Address1(); break;
case 0x08000000: Load32CartridgeDomain2Address2(); break;
case 0x1FC00000: m_PifRamHandler.Read32(PAddr, m_MemLookupValue.UW[0]); break;
case 0x1FF00000: Load32CartridgeDomain1Address3(); break;
default:
if (PAddr >= 0x10000000 && PAddr < 0x16000000)
{
m_RomMemoryHandler.Read32(PAddr, m_MemLookupValue.UW[0]);
}
else
{
m_MemLookupValue.UW[0] = ((PAddr & 0xFFFF) << 16) | PAddr & 0xFFFF;
}
}
*Value = m_MemLookupValue.UW[0];
return true;
}
bool CMipsMemoryVM::SB_NonMemory(uint32_t PAddr, uint8_t Value)
{
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
if (PAddr < RdramSize())
{
g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF, 0xFFC, CRecompiler::Remove_ProtectedMem);
::ProtectMemory(m_RDRAM + (PAddr & ~0xFFF), 0xFFC, MEM_READWRITE);
*(uint8_t *)(m_RDRAM + PAddr) = Value;
}
break;
default:
return false;
}
return true;
}
bool CMipsMemoryVM::SH_NonMemory(uint32_t PAddr, uint16_t Value)
{
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
if (PAddr < RdramSize())
{
g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF, 0x1000, CRecompiler::Remove_ProtectedMem);
::ProtectMemory(m_RDRAM + (PAddr & ~0xFFF), 0xFFC, MEM_READWRITE);
*(uint16_t *)(m_RDRAM + PAddr) = Value;
}
break;
default:
return false;
}
return true;
}
bool CMipsMemoryVM::SW_NonMemory(uint32_t PAddr, uint32_t Value)
{
m_MemLookupValue.UW[0] = Value;
m_MemLookupAddress = PAddr;
switch (PAddr & 0xFFF00000)
{
case 0x00000000:
case 0x00100000:
case 0x00200000:
case 0x00300000:
case 0x00400000:
case 0x00500000:
case 0x00600000:
case 0x00700000:
if (PAddr < RdramSize())
{
g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF, 0x1000, CRecompiler::Remove_ProtectedMem);
::ProtectMemory(m_RDRAM + (PAddr & ~0xFFF), 0xFFC, MEM_READWRITE);
*(uint32_t *)(m_RDRAM + PAddr) = Value;
}
break;
case 0x03F00000: m_RDRAMRegistersHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x04000000:
if (PAddr < 0x04002000)
{
g_Recompiler->ClearRecompCode_Phys(PAddr & ~0xFFF, 0xFFF, CRecompiler::Remove_ProtectedMem);
*(uint32_t *)(m_RDRAM + PAddr) = Value;
}
else
{
m_SPRegistersHandler.Write32(PAddr, Value, 0xFFFFFFFF);
}
break;
case 0x04100000: m_DPCommandRegistersHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x04300000: m_MIPSInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x04400000: m_VideoInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x04500000: m_AudioInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x04600000: m_PeripheralInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x04700000: m_RDRAMInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x04800000: m_SerialInterfaceHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x05000000: m_CartridgeDomain2Address1Handler.Write32(PAddr, Value, 0xFFFFFFFF); break;
case 0x08000000: Write32CartridgeDomain2Address2(); break;
case 0x1FC00000: m_PifRamHandler.Write32(PAddr, Value, 0xFFFFFFFF); break;
default:
if (PAddr >= 0x10000000 && PAddr < 0x16000000)
{
m_RomMemoryHandler.Write32(PAddr, Value, 0xFFFFFFFF);
return true;
}
return false;
break;
}
return true;
}
void CMipsMemoryVM::ProtectMemory(uint32_t StartVaddr, uint32_t EndVaddr)
{
WriteTrace(TraceProtectedMem, TraceDebug, "StartVaddr: %08X EndVaddr: %08X", StartVaddr, EndVaddr);
if (!ValidVaddr(StartVaddr) || !ValidVaddr(EndVaddr))
{
return;
}
// Get physical addresses passed
uint32_t StartPAddr, EndPAddr;
if (!TranslateVaddr(StartVaddr, StartPAddr))
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
if (!TranslateVaddr(EndVaddr, EndPAddr))
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
// Get length of memory being protected
int32_t Length = ((EndPAddr + 3) - StartPAddr) & ~3;
if (Length < 0)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
// Protect that memory address space
uint8_t * MemLoc = Rdram() + StartPAddr;
WriteTrace(TraceProtectedMem, TraceDebug, "Paddr: %08X Length: %X", StartPAddr, Length);
::ProtectMemory(MemLoc, Length, MEM_READONLY);
}
void CMipsMemoryVM::UnProtectMemory(uint32_t StartVaddr, uint32_t EndVaddr)
{
WriteTrace(TraceProtectedMem, TraceDebug, "StartVaddr: %08X EndVaddr: %08X", StartVaddr, EndVaddr);
if (!ValidVaddr(StartVaddr) || !ValidVaddr(EndVaddr)) { return; }
// Get physical addresses passed
uint32_t StartPAddr, EndPAddr;
if (!TranslateVaddr(StartVaddr, StartPAddr))
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
if (!TranslateVaddr(EndVaddr, EndPAddr))
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
// Get length of memory being protected
int32_t Length = ((EndPAddr + 3) - StartPAddr) & ~3;
if (Length < 0)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
//Protect that memory address space
uint8_t * MemLoc = Rdram() + StartPAddr;
::ProtectMemory(MemLoc, Length, MEM_READWRITE);
}
const char * CMipsMemoryVM::LabelName(uint32_t Address) const
{
sprintf(m_strLabelName, "0x%08X", Address);
return m_strLabelName;
}
void CMipsMemoryVM::TLB_Mapped(uint32_t VAddr, uint32_t Len, uint32_t PAddr, bool bReadOnly)
{
uint32_t VEnd = VAddr + Len;
for (uint32_t Address = VAddr; Address < VEnd; Address += 0x1000)
{
size_t Index = Address >> 12;
m_MemoryReadMap[Index] = (size_t)((m_RDRAM + (Address - VAddr + PAddr)) - Address);
m_TLB_ReadMap[Index] = ((size_t)m_RDRAM + (Address - VAddr + PAddr)) - Address;
if (!bReadOnly)
{
m_MemoryWriteMap[Index] = (size_t)((m_RDRAM + (Address - VAddr + PAddr)) - Address);
m_TLB_WriteMap[Index] = ((size_t)m_RDRAM + (Address - VAddr + PAddr)) - Address;
}
}
}
void CMipsMemoryVM::TLB_Unmaped(uint32_t Vaddr, uint32_t Len)
{
uint32_t End = Vaddr + Len;
for (uint32_t Address = Vaddr; Address < End; Address += 0x1000)
{
size_t Index = Address >> 12;
m_MemoryReadMap[Index] = (size_t)-1;
m_MemoryWriteMap[Index] = (size_t)-1;
m_TLB_ReadMap[Index] = 0;
m_TLB_WriteMap[Index] = 0;
}
}
void CMipsMemoryVM::RdramChanged(CMipsMemoryVM * _this)
{
const size_t new_size = g_Settings->LoadDword(Game_RDRamSize);
const size_t old_size = _this->m_AllocatedRdramSize;
if (old_size == new_size)
{
return;
}
if (old_size > new_size)
{
DecommitMemory(_this->m_RDRAM + new_size, old_size - new_size);
}
else
{
void * result = CommitMemory(_this->m_RDRAM + old_size, new_size - old_size, MEM_READWRITE);
if (result == nullptr)
{
WriteTrace(TraceN64System, TraceError, "Failed to allocate extended memory");
g_Notify->FatalError(GS(MSG_MEM_ALLOC_ERROR));
}
}
if (new_size > 0xFFFFFFFFul)
{ // Should be unreachable because: size_t new_size = g_Settings->(uint32_t)
g_Notify->BreakPoint(__FILE__, __LINE__);
} // However, FFFFFFFF also is a limit to RCP addressing, so we care
_this->m_AllocatedRdramSize = (uint32_t)new_size;
}
void CMipsMemoryVM::ChangeSpStatus()
{
if ((RegModValue & SP_CLR_HALT) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_HALT;
}
if ((RegModValue & SP_SET_HALT) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_HALT;
}
if ((RegModValue & SP_CLR_BROKE) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_BROKE;
}
if ((RegModValue & SP_CLR_INTR) != 0)
{
g_Reg->MI_INTR_REG &= ~MI_INTR_SP;
g_Reg->m_RspIntrReg &= ~MI_INTR_SP;
g_Reg->CheckInterrupts();
}
if ((RegModValue & SP_SET_INTR) != 0 && HaveDebugger())
{
g_Notify->DisplayError("SP_SET_INTR");
}
if ((RegModValue & SP_CLR_SSTEP) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SSTEP;
}
if ((RegModValue & SP_SET_SSTEP) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SSTEP;
}
if ((RegModValue & SP_CLR_INTR_BREAK) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_INTR_BREAK;
}
if ((RegModValue & SP_SET_INTR_BREAK) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_INTR_BREAK;
}
if ((RegModValue & SP_CLR_SIG0) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG0;
}
if ((RegModValue & SP_SET_SIG0) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG0;
}
if ((RegModValue & SP_CLR_SIG1) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG1;
}
if ((RegModValue & SP_SET_SIG1) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG1;
}
if ((RegModValue & SP_CLR_SIG2) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG2;
}
if ((RegModValue & SP_SET_SIG2) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG2;
}
if ((RegModValue & SP_CLR_SIG3) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG3;
}
if ((RegModValue & SP_SET_SIG3) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG3;
}
if ((RegModValue & SP_CLR_SIG4) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG4;
}
if ((RegModValue & SP_SET_SIG4) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG4;
}
if ((RegModValue & SP_CLR_SIG5) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG5;
}
if ((RegModValue & SP_SET_SIG5) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG5;
}
if ((RegModValue & SP_CLR_SIG6) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG6;
}
if ((RegModValue & SP_SET_SIG6) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG6;
}
if ((RegModValue & SP_CLR_SIG7) != 0)
{
g_Reg->SP_STATUS_REG &= ~SP_STATUS_SIG7;
}
if ((RegModValue & SP_SET_SIG7) != 0)
{
g_Reg->SP_STATUS_REG |= SP_STATUS_SIG7;
}
if ((RegModValue & SP_SET_SIG0) != 0 && g_System->RspAudioSignal())
{
g_Reg->MI_INTR_REG |= MI_INTR_SP;
g_Reg->CheckInterrupts();
}
//if (*( uint32_t *)(DMEM + 0xFC0) == 1)
//{
// ChangeTimer(RspTimer,0x40000);
//}
//else
//{
try
{
g_System->RunRSP();
}
catch (...)
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
//}
}
void CMipsMemoryVM::ChangeMiIntrMask()
{
if ((RegModValue & MI_INTR_MASK_CLR_SP) != 0)
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_SP;
}
if ((RegModValue & MI_INTR_MASK_SET_SP) != 0)
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_SP;
}
if ((RegModValue & MI_INTR_MASK_CLR_SI) != 0)
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_SI;
}
if ((RegModValue & MI_INTR_MASK_SET_SI) != 0)
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_SI;
}
if ((RegModValue & MI_INTR_MASK_CLR_AI) != 0)
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_AI;
}
if ((RegModValue & MI_INTR_MASK_SET_AI) != 0)
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_AI;
}
if ((RegModValue & MI_INTR_MASK_CLR_VI) != 0)
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_VI;
}
if ((RegModValue & MI_INTR_MASK_SET_VI) != 0)
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_VI;
}
if ((RegModValue & MI_INTR_MASK_CLR_PI) != 0)
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_PI;
}
if ((RegModValue & MI_INTR_MASK_SET_PI) != 0)
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_PI;
}
if ((RegModValue & MI_INTR_MASK_CLR_DP) != 0)
{
g_Reg->MI_INTR_MASK_REG &= ~MI_INTR_MASK_DP;
}
if ((RegModValue & MI_INTR_MASK_SET_DP) != 0)
{
g_Reg->MI_INTR_MASK_REG |= MI_INTR_MASK_DP;
}
}
void CMipsMemoryVM::Load32CartridgeDomain1Address1(void)
{
// 64DD IPL ROM
if (g_DDRom != nullptr && (m_MemLookupAddress & 0xFFFFFF) < g_MMU->m_DDRomSize)
{
m_MemLookupValue.UW[0] = *(uint32_t *)&g_MMU->m_DDRom[(m_MemLookupAddress & 0xFFFFFF)];
}
else
{
m_MemLookupValue.UW[0] = m_MemLookupAddress & 0xFFFF;
m_MemLookupValue.UW[0] = (m_MemLookupValue.UW[0] << 16) | m_MemLookupValue.UW[0];
}
}
void CMipsMemoryVM::Load32CartridgeDomain1Address3(void)
{
m_MemLookupValue.UW[0] = m_MemLookupAddress & 0xFFFF;
m_MemLookupValue.UW[0] = (m_MemLookupValue.UW[0] << 16) | m_MemLookupValue.UW[0];
}
void CMipsMemoryVM::Load32CartridgeDomain2Address2(void)
{
uint32_t offset = (m_MemLookupAddress & 0x1FFFFFFF) - 0x08000000;
if (offset > 0x88000)
{
m_MemLookupValue.UW[0] = ((offset & 0xFFFF) << 16) | (offset & 0xFFFF);
return;
}
if (g_System->m_SaveUsing == SaveChip_Auto)
{
g_System->m_SaveUsing = SaveChip_FlashRam;
}
if (g_System->m_SaveUsing == SaveChip_Sram)
{
// Load SRAM
uint8_t tmp[4] = "";
g_MMU->DmaFromSram(tmp, offset, 4);
m_MemLookupValue.UW[0] = tmp[3] << 24 | tmp[2] << 16 | tmp[1] << 8 | tmp[0];
}
else if (g_System->m_SaveUsing != SaveChip_FlashRam)
{
if (HaveDebugger())
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
m_MemLookupValue.UW[0] = m_MemLookupAddress & 0xFFFF;
m_MemLookupValue.UW[0] = (m_MemLookupValue.UW[0] << 16) | m_MemLookupValue.UW[0];
}
else
{
m_MemLookupValue.UW[0] = g_MMU->ReadFromFlashStatus(m_MemLookupAddress & 0x1FFFFFFF);
}
}
void CMipsMemoryVM::Write32CartridgeDomain2Address2(void)
{
uint32_t offset = (m_MemLookupAddress & 0x1FFFFFFF) - 0x08000000;
if (g_System->m_SaveUsing == SaveChip_Sram && offset < 0x88000)
{
// Store SRAM
uint8_t tmp[4] = "";
tmp[0] = 0xFF & (m_MemLookupValue.UW[0]);
tmp[1] = 0xFF & (m_MemLookupValue.UW[0] >> 8);
tmp[2] = 0xFF & (m_MemLookupValue.UW[0] >> 16);
tmp[3] = 0xFF & (m_MemLookupValue.UW[0] >> 24);
g_MMU->DmaToSram(tmp, (m_MemLookupAddress & 0x1FFFFFFF) - 0x08000000, 4);
return;
}
/*if ((m_MemLookupAddress & 0x1FFFFFFF) != 0x08010000)
{
if (HaveDebugger())
{
g_Notify->BreakPoint(__FILE__, __LINE__);
}
}*/
if (offset > 0x10000)
{
return;
}
if (g_System->m_SaveUsing == SaveChip_Auto)
{
g_System->m_SaveUsing = SaveChip_FlashRam;
}
if (g_System->m_SaveUsing == SaveChip_FlashRam)
{
g_MMU->WriteToFlashCommand(m_MemLookupValue.UW[0]);
}
}